“SUPERFORTH 64"

for Total Control of the
Commodore 64*

© Copyright 1983 , 1964
by
Elliot B. Schneider
All Rights Reserved

Disk Enclosed

Published by
PARSEC RESEARCH
Drawer 1766
Fremont, CA 94538
{415) 651-3160

SUPER-FORTH 64™ of Parsec Rescarch
*Commodore 64™ of Commodore Computer Co.

Available at the Vintage Volts website

http://www.vintagevolts.com

Copyright Notice

COPYRIGHT (C) 1983,1984 by Elliot B. Schneider. All rights reserved.
No part of this publication or software may be reproduced in whole or
in part without the prior written consent of the Author.

This software package is available for use on a single computer only.
Unauthorized copying or transmitting of this copyrighted software on
any media is strictly prohibited by federal law. Any unauthorized
distribution of this product deprives the author of his royalties.

Although every attempt has been made to verify the accuracy of this
document, we cannot assume any liability for errors or omissions. No
warranty or other guarantee can be given as to the suitability or
accuracy of this software for a particular purpose, nor can we be
liable for damage arising from the use of same. As a condition of
purchase and/or use of this product, the purchaser or user accepts all
risk of damage or liability arising from the use of same.

SUPER-FORTH 64 is a registered trademark of Parsec Research, Inc.

This copy of SUPER-FORTH 64 has a traceble serial number embedded
within the system.

SUPER-FORTH 64 (TM)

Note:

Errata

1.3 Getting Started (p 3.)

The Naster disk has two sides to it...
a system side and a source code side., The
System side is to te Loaded First,

Whenever the instructions in the manual
requests that you list a source screen # or
Load a source screen # (ie, 10 LIST, 10 LOAD
or 10 20 THRU) then you insert the Source
Code Side of the master disk into your drive
and type the appropriate command..

To make a complete backup of the master
disk you will need 2 blank disks, one for
the system side and one for the source code
side, Follow the instructions on page 3 to
copy the system, and page 72, 73 to make a
backup copy of the source code,

Your working copy should consist of
two additional disks, one system disk and
one blank formatted disk, Your program
listings are stored on the blank formatted
disk and your compiled program becomes part
of the system disk,

To make a backup copy of the AI and Kath
Modules follow the instructions on pages 72 &

73.

TABLE OF CONTENTS

Section Page
1. Introduction To the System 1
1.1 System Support 1
1.2 About This Manual 1
1.3 Getting Started 3
1.3.1 Disk Based Systems 3
1.3.2 Cassette Based Systems 4
1.3.3 Once the System Is Running 4
1.4 Demo Program 5
1.5 Warm Starting 6
1.6 Exiting and Cold Starting 6
1.7 Resetting the System 7
1.8 FORTH and the Commodore Screen Editor 7
1.9 FORTH and Machine Language 7
1.9.1 FORTH 6510 Assembler 7
1.9.2 External Machine Language Routines 8
1.10 FORTH Editor 8
1.11 FORTH Code Storage 8
1.11.1 Standard Mode (Disk Only) 9
1.11.2 File Mode (Cassette or Disk) 10

. 1.11.3 Initial Mode Settings 10
1.12 Special Features 11
1.12.1 Saving Applications 11
1.12.2 Debugging Features 11
1.12.3 Math Routines 12
1.12.4 High RAM Access 12
1.12.5 Graphics and Sound Words 12
1.12.6 I/0 Redirection 13
1.12.7 Diskette Backup Utilities 13
1.13 Vectored FORTH System Routines 13
1.14 Vocabularies 14
2. System Memory Usage 15
2,1 System Memory Organization 15
2.2 Zero Page Usage ‘ 17
2.3 Return Stack and Input Buffer 17
2.4 FORTH Dictionary Area 17
2.5 Reducing SUPER FORTH 64 To Minimum Size 19
2.6 Disk Buffer Area 19
2.7 User Area 20
2.8 High RAM 21
2.9 Running Out of Memory 21
2.10 Stripping System For An Application 21

SUPER-FORTH 64 (TM)

« & a « s

=IO L W N

Wl W W ww

- - [] L] L] L]
= - BN R R PR N

b B b B B R s

.3

FORTH Source Disk
SUPER FORTH 64 System Diskette
Screens and Blocks
File Mode
Standard Mode
Multiple Disk Systems
4040 Drives
Disk Error Recovery

FORTH Assembler Usage
How the Assembler Works
Entering Assembly Code
Opcodes, Operands and Addressing Modes
Interfacing With FORTH
Returning to Interpreter
Code Structures
Subroutines
Macros

Implementation Specific Words
Editor Words
Configuring the Editing Screen
C : Copy A Line On A Screen
COPY : Copy Screen
EDITOR : Use Editor Vocabulary
F : Flush (Save) The Current Screen
K : Kill A Line
L : List A Screen
LIST : List A Screen
M : Move A Line On A Screen
N : Next Screen
O : Open A Line For Input
P : Previous Screen
SC : Copy Line From Different Screen
SCOPY : Copy A Group of Screens
SM : Move Line From Different Screen
W : Wipe the Current Screen Clear
X : eXtract A Line

rce Screen File Mode Words

VUi m g g s,
s e e e e

C~OnbaWwNoEo

s n s s [f1e 1 »
HHROR~-SANLBEWNHFDHFHFHFFEFREHEFRFHMEEODR-IOW & WK -

F~EDIT : Set Up To Edit File
F-EXIT : Exits File Mode

F-LOAD : Load File Into System
F-NEW : File Mode Initialization

« & a
. e+

F-SAVE : Save Source Screen File
FILE-MCDE : Invoke File Mode
FLAST : Last Screen Variable

0 FNAME : Default File Name

1 FOPEN : Open Default File

READB : Read Block Into Buffer

.2.13 WRITEB : Write Block Into File

C64 Bit/Byte Manipulation Words

MNNMNMNNNNMOMNNNN

mnmuyyunuaiyianan anaun
« s
;8]
.
-
%)

SUPER-FORTH 64 (TM)

F~-APPEND : Append A File To Block Buffers

F-NUMBER : Renumber the Block Buffer Screens

23
23
24
24
24
25
26
26

27
27
28
29
32
34
35

37

39
40
42
44
44
44
44
44
45
45
45
45
46
46
46
46
46
47
47
47
48
49
49
49
50
50
50
51
51
51
51
52
52
52

W W W W w W

(RO ROR RS NS NSRS
. a 5 = = & a [}
. n.

5.4

" e+ 8 - * @ @ L]
Ll ol Sl A A s

OO Ud g Uy U g w g Ut ad dowg g Waal

(RS RS RS N NS S, T, NS, Y, Y |

Uit o u o
L] L] n‘ L] L]

5.6

CATNIB : Concatenate Two Nibbles

CBIT : Clear Bits in Byte

FBIT : On Flag CBIT/SBIT in Byte
LSHIFT : Perform a 16-bit Left Shift
MASK : Calculate 2%**N ,
RSHIFT : Perform a 16-bit right shift
SBIT : Set Bits in Byte

SPLIT : Split A Cell Into Two Bytes

4 Specific I/O Words & Extensions

?TERMINAL : Query Current Input Device For Character
CMD : Set File Number As Current Output Device
CMDI : Set File Number As Current Input Device
EMIT : Output Character

EMIT7 : Output 7-Bit Character

EXPECT : Get Input Line

FRE : Display Amount of Free Space Available
GET# : Get A Character From File

INPLFN : Input Device Logical File Number

INPUT : Input A Number From Current Input Device
INPUT# : Input A Number From File

JOY1 : Joystick Constant

JOY2 : Joystick Constant

KEY : Input Character

MODE : Source File Mode Variable

QUTLFN : OQutput Device Logical File Number
PADDLE@ : Fetch Paddle X,Y Values

PRINT# : Print A Number To File

PRINTER : Open a Printer File and Re-direct Output
PUT# : Set Output File and Send Character

RS232 : Open An RS-232 Channel

RWTS : Read/Write Track & Sector

SAVE-FORTH : Save A Compiled System

SECTRKT : Sectors/Track Table

SYSDEV : System Device Variable

UPORT : User Port Constant

Kernel Interface Words

CHARIN : Character Input

CLALL : Close All Files

CLOSE : Close A Logical File

CLRCHN : Close I/0 Channels

LOADRAM : Load A Program File Into Memory
OPEN : Open A Logical File

SAVE : Save Memory to Device
SAVENAME : Name of File To Be Saved
SETLFS : Set Logical, First, Second
SETNAM : Set Name of File

ST : Get Kernel I/O Status Byte

Utility Words

<ROT : Reverse Rotate Stack

?DEPTH : Check Stack Depth

A-REMOVE : Remove Assembler From System
APPLICATION : Save System As An Application

.1 E-PROMing APPLICATION Programs

SUPER-FORTH 64 (TM)

52
52
53
53
53
53
54
54
54
55
55
56
56
56
56
57
57
57
58
58
58
59
59
59
59
59
60
60
61
61
62
62
63
63
63
63
64
64
64
64
64
65
65
66
66
656
66
66
67
67
67
68
69

AR NN ARRATNANRNRNN R

AR REORDEOGREOHEORLEURLRLEORE RN RE N R GRS FE NS,

B e s s & 8 » o s s e e a s e

- - *® -
HPHFHFEFHEFFMFEFFRFRWDOSIOU D WA N WDHN NN
O~ bW~ O

iy nmaaunaauonaumu;moad
R B B B BN B B B B B B R L LS IR I S |

CHANGE : Change SUPER FORTH Configuration
CASE Structure Extensions

1 CASE : Begin Case Structure

2 OF : Test For Particular Case

3 :; 1 Specify End of Particular Case

4 ENDCASE : Specify End of CASE Structure
Backup Utilities

1 BACKUP : Complete Diskette Backup Utility
2 COPYBUF : Copy Up to #BUFPF Screens

3 PCOPY : Perform A Partial Disk Backup

4 SOURCE-BACKUP : Perform A Backup Copy of Source
D2* : Double Word Mult. By Two

DECOMPILE : Source Decompiler Utility

DIR : Display Disk Directory

DOS : Send A Command To the Disk

DOSERR : Read and Print the Disk Error Channel
DUAL : Dual Drive Specifier

MAX-BUFFS : Re-configure System For Maximum Buffers
OFF : Leave Constant Zero On Stack

ON : Leave Constant One On Stack

PATCH : Patch Memory

RDTIM : Read the 60 Cycle Clock

RECURSE : Call A Definition Recursively

SETTIM : Set the 60 Cycle Clock

SWAPIN : Swap Kernel ROM & I/0 Area In

SWAPOUT : Swap Kernel ROM & I/0O Area Out

S¥S : Call Machine Language Routine

SYSCALL : Call Machine Language Routine

TRACE

Tracing Forth Definitions

VLEN : VLIST Line Length Variable

VLIST : List Vocabulary Words

VTAB : VLIST Tab Length Variable

WAIT : Pause N Clock Ticks

aphics Related Words

'BANK : Get Address of 16K Bank

'BITMAP : Get Address of Bitmap Area
'CHARBASE : Get Address of Character Memory
'SCREEN : Get Address of Screen Memory

ARC : Plot A Hi-res ARC _
B-CLINE : Plot A Color Line On the Bitmap
B-CPLOT : Plot A Color Point On the Bitmap
B-COLOR : Select Bitmap Character Colors
B-COLOR-FILL : Fill Bitmap Color Area
B-DRAW : Set the System to Draw Mode
B-ERASE : Set the System to Erase Mode
B-FILL : Fill Bitmap with Byte Pattern
B~GRAPHICS : Turn Bitmap Graphics On/Off
B-LINE : Plot A Line On the Bitmap

B-PEN : Draw/Erase Mode Variable

B-PLOT : Plot a Point In the Bitmap

B-X : Return X Coordinate Value

B-Y : Return Y Coordinate Value

SUPER-FORTH 64 (TM)

71
71
72
72
72
72
72
73
73
74
74
74
74
75
75
75
75
76
76
76
76
77
77
77
78
78
78
79
79

80
80
8l
8l
81
85
85
85
86
86
86
87
87
87
88

88

88
83

-89

90
90
91
91

5.7.19 BANK : Set VIC-II Bank 91
5.7.20 BITMAP : Set BITMAP Area 92
5.7.21 BORDER : Set Border Color 92
5.7.22 BKGND : Set A Background Register Color 92
5.7.23 CHARBASE : Set Character Base Area 93
5.7.24 CIRCLE : Draw A Hi-res Circle 93
5.7.25 Color Constants 93
5.7.26 COLOR-MEM : Address of Color Memory Area 94
5.7.27 ELLIPSE : Plot A Hi-res Ellipse 94
5.7.28 B-MFLAG : Turn Mirror Function On/Off 94
5.7.29 M-ORIGIN : Set the Mirror Origin 34
5.7.30 M-PLOT : Plot A Four Point Mirror Image 95
5.7.31 M-X : X Coordinate of Mirror Center 95
5.7.32 M-Y : Y Coordinate of Mirror Center 95
5.7.33 MULTI-COLOR : Set/Clear Multi-color Mode 96
5.7.34 R-PLOT : Plot A Point Relative To Center 96
5.7.35 S1, 52, 83, 5S4, S5, S6, S7, S8 : Set Active Sprite 36
5.7.36 S-B-COLLISION : Get Spr-Bkgnd Collision Reg. 96
5.7.37 S-COLOR : Set Sprite Color ‘ 97
5.7.38 S-DEF : Sprite Definition Structure 97
5.7.39 S-EDITOR : Sprite Editor 98
5.7.40 S-ENABLE : Turn Sprite On/Off 99
5.7.41 S-FSET : Set/Clear Bit in Sprite Register on Flag 99
5.7.42 S-MULTI : Set/Clear Multi-Color Mode for A Sprite 59
5.7.43 S~-MULTIR : Set Multi-Color Sprite Register Color 100
5.7.44 S-POINTER : Set Sprite Pointer Number 100
5.7.45 S-POSITION : Set Sprite Position 100
5.7.46 S-PRIORITY : Set Sprite-Background Priority 101
5.7.47 5-S~Collision : Get Spr-Spr Collision Reqg. 101
5.7.48 S-XEXP : Expand Sprite In X-Direction 101
5.7.49 S-YEXP : Expand Sprite In Y-Direction 101
5.7.50 SCREEN : Set Screen Display Area 102
.8 Turtle Graphics _ 102
5.8.1 BACK : Move Turtle Backward 103
5.8.2 BACKGROUND : Set Background Color 103
5.8.3 BG : Set Background Color 104
5.8.4 BK : Move Backward 104
5.8.5 CLEARSCREEN : Clear the Graphics Area 104
5.8.6 CS : Clear the Graphics Area 104
5.8.7 DRAW : Initialize Turtle Screen 104
5.8.8 FD : Move Forward 105
5.8.9 FORWARD : Move Turtle Forward - 105
5.8.10 FS : Set Graphics Screen 105
5.8.11 FULLSCREEN : Set Graphics Screen 105
5.8.12 HEADING : Heading Variable 106
5.8.13 HOME : Position To Center of Screen 106
5.8.14 LEFT : Turn Left 106
5.8.15 LT : Turn Left ' 107
5.8.16 ND : Set Text Screen 107
5.8.17 NODRAW : Set Text Screen 107
5.8.18 PC : Set Color of Pen 107
5.8.19 PENCOLOR : Set Ccolor of Pen 107
5.8.20 PENFLG : Pen Variable 108

SUPER-FORTH 64 (TM)

[¥)]
.
O

Luuvuiunuiyavyiuug L a

Cle » 5 &« & o s » o s = »

DI EMEO R RV RGO R RN R RN EL R RS R NN BT |

\D\D\O\D\D\D\D\D\D\D\DQ\D\D\D@\O\D\D\D\D\D\Q

» * & a * = s 8 = & @

WNFOWRITOVWUM & W PO

.10.10
.10.11

PD : Set Pen Down

PENDOWN : Set Pen Down

PENUP : Set Pen Up

PU : Set Pen Up

RIGHT : Turn Right

RT : Turn Right

SETH : Set Turtle Heading
SETHEADING : Set Turtle Heading
SETX : Move To New X Coordinate
SETXY : Set X,Y Coordinate

SETY : Move To New Y Coordinate
SPLITSCREEN : Set Split Graphics/Text Screen
S5 : Set Split Graphics/Text Screen

Sound Related Words

ENV3@ : Fetch Envelope Value

F-FREQ : Set Filter Frequency

MODEVOL : Set Mode/Volume

NOTE@ : Fetch Note from NOTE-VALUES
NOTE~VALUES : Table of Chromatic Note Values
OSC3@ : Fetch Oscillator 3 Value
PLAY.NOTE : Play A Chromatic Note
RESFILT : Set Resonance/Filter

SID : SID Address Variable

SID! : Store Value into SID Register
S5ID@ : Fetch Value From SID Register
SOUND.INIT : Initialize Sound System
Sound Constants

V-AD : Set Voice Attack/Decay

V-CTRL : Set Voice Control Register
V-DEFAULT : Default Settings of the SID Chip
V-FREQ : Set Voice Fregency

V-PW : Set Voice Pulse Width

V-SR : Set Voice Sustain/Release

V! : Put Value in Active Voice Register
V1l,v2,V3 : Set Active Voice

VOICE : Active Voice Variable

WAVE : Waveform Variable-

Editor Words :

DURATION : Note Duration Variable

NCALC : Calculate the Time for A Note Duration
NEXT.NOTE : Timing For Next Note For Each Voice

Notes : Play a Chromatic Note

0@ : Fetch the Current Octave Value

0! : Set New Octave Value

PLAY ,WAIT : Wait Until Ready and Play Note
SONG.INIT : Initialize Timers for Song

T@ : Fetch Transposition Value

T! : Set New Transposition vValue

TEMPO : Music Tempo Variable

String Extension Words

.11.1
11,2
.11.3

" : Create An Immediate String
“* : Create A Null String
$. : Display A String

SUPER-FORTH 64 (TM)

108 -~

108
108
109
109
109
109
109
110
110
110
110
111
111
111
112
112
112
112
112
113
114
114
114
115
115
115
116
116
116
116
117
117
117
117
118
118
118
120
121
121
122
122
122
122
123
123
123
123
124
125
125
125

5.11.4
5.11.5
5.11.6
5.11.7
5.11.8
5.11.9
5.11.190
5.11.11
5.11.12
5.11.13
5.11.14
5.11.15
5.11.16
5.11.17
5.11.18
5.11.19
5.11.20

$< : Test Strings For <
$= : Test Strings For =
$> : Test Strings For >

$CLR : Clear A String

$CMP : String Comparison

SCONCAT : Concatenate Strings)
SCONSTANT : Define String Constant
$SFIND : Locate A String Within Another String
SINPUT : Input A String

$LEFT : Concatenate Leftmost Substring
SLEN : Get Length of String

SMID : Concatenate Middle Substring
$RIGHT : Concatenate Right Substring
$VAL : Get Numeric Value of String
$VARIABLE : Create String Variable

<"> : Immediate String Run-time Routine
<$CONCAT> : Perform Concatenation

5.12 Interrupt Extension Words

5.12.1
5.12,2
5.12.3
5.12.4
5.12.5
5.12.6

I-CLEAR : Clear User Interrupt Routine Address
$7F : Interrupt Return Flag '

I-INIT : Initialize Interrupt System

I-S5ET : Set User Interrupt Routine Address
I-SYSTEM : Set I-FLAG to System Routine Exit
I-USER : Set Interrupt Return Flag to Exit

5.13 Display Screen Words

5.13.1
5.13.2
5.13.3
5.13.4
5.14 (64
5.14.1
5.14.2
5.14.3
5.14.4
5.15 Data
5.15.1 .
-5,15.2
5.16 Math
5.16.1

5.16.
5.16.
5.16.
5.16,
5.16.
5.16.
5.16.
5.16.
5.16.

5.16.2

5.16.
5.16.
5.16.
5.16.

D-CLEAR : Clear Screen From Cursor Position
D-READ : Return Position of Cursor on Screen
D-POSITION : Position Cursor On Screen
D-SPLIT : Split Screen Into Hi-res/Text

High RAM Access Words

H! : Store Value At High RAM Address
H@ : Fetch Value From High RAM Address
HC! : Store Byte At High RAM Address

HC@ : Fetch Byte From High RAM Address
Structure Words

1ARRAY : One Dimensional Array Structure
2ARRAY : Two Dimensional Array Structure
Extension Words

Floating Point Extensions

1.1 <FNUM> : Floating Number Conversion Routine
1,2 DFIX : Convert Floating to Double Integer
1.3 DFLOAT : Convert Double Integer to Floating
1.4 El : Enter Floating Number in Scientific
1.5 FCOS : Return Floating Point Cosine

1.6 FEXIT : Exit Floating Point Mode

1.7 FLOAT : Convert Integer to Floating

1.8 FSIN : Return Floating Point Sin of An Angle
1.9 FSQRT : Return Floating Square Root

Trig Extensions

2.1 <SIN>

2.2 <COS>

2.3 QSIN : Quick Sin Routine

2.4 QCOS : Quick Cosine Routine

SUPER-FORTH 64 (TM)

125
126
126
126
127
127
128
128
128
129
129
129
130
130
131
131
131
132
134
134
135
135
135
136
136
136
136
137
137
137
138
138
139
139
139
140
140
140
140
141
141
142
142
142
142
143
143
143
143
144
144
144
144

-r

5.16.2.5 SIN : Sin Routine 145

5.16.2.6 COS : Cosine Routine 145
6. MVP Standard Word Set Glossary 146
APPENDICES
I. Example Programs 171
I-1 Designing A Program- Sound Synthesizer Example 172
I-1.1 Sound Synthesizer Example 173
I-1.2 Extending SUPER FORTH- Music Tools 177
IT. SUPER-FORTH 64 User Source Screens 181
ITI. SUPER-FORTH Dictionary List 228
III-1 SUPER FORTH 64 Main Vocabulary Word Set 228
III-2 Editor Vocabulary Word Set 231
ITI-3 Assembler Vocabulary Word Set 231
IV. Various Articles of Implemented Screens 233 .
V. Recommended Books [available from Parsec] 233
V-1 FORTH Programming 233
V-2 FORTH Reference Guides 233
V-3 Commodore 64 Reference 233
V-4 Commodore 64 Graphics/Sound Related 234
V-5 Assembly Language Programming 234
VI. Error Messages 235
INDEX
=x=== 237

SUPER-FORTH 64 (TM)

Py

Introduction To the System

1. Introduction To the System

SUPER FORTH 64 is a superset of the Version 1.xx.03 MVP-FORTH system as
defined in the annotated glossary, ALL ABOUT FORTH by Glen B. Hayden.
Questions concerning definitions and implementations within the MVP.
FORTH Kernel can be resolved by referring to ALL ABOUT FORTH. ALL
ABOUT FORTH also describes the implementation of various FIG-FORTH
words which are not used or have been renamed.

SUPER FORTH 64 1is a complete implementation of the FORTH-79 Required
and Extension Word Sets. It contains extensions from FIG FORTH,
STARTING FORTH by Leo Brodie, and special extensions to take advantage
of the particular hardware in the Commodore 64 computer.

This manual contains definitions for each ALL ABOUT FORTH word used in
the SUPER FORTH 64 system. Therefore, ALL ABOUT FORTH is NOT a
required guide to definitions in this system, but will be useful to the
advanced FORTH programmer for the detailed information it contains
about each MVP FORTH word.

1.1 System Support

We have attempted to bring you a correctly working system and a manual
which is error-free. However, gquestions on system usage will arise
from time to time. We encourage you to contact Parsec Research (Drawer
1766, Fremont, CA 94538: 415-651-3160) to report any anomolies in the
system or particular problems which you may be encountering with it.
We will attempt to answer all questions as quickly as possible. We are
also interested in user feedback as to potential changes or
enhancements which would facilitate use of the system.

It is IMPORTANT to send in the registration card which is enclosed with
the system, This card will enable us to send users periodic updates
concerning the SUPER FORTH 64 system. These updates will contain
useful information, such as bug fixes, enhancements to the system and
answers to commonly asked gquestions.

1.2 About This Manual

This is a reference manual for the SUPER FORTH implementation of the
FORTH language on the Commodore 64 computer. It is NOT meant to be
used as a tutorial for learning how to program in FORTH. It is assumed
that the user either has some familiarity with the FORTH language, or
will use STARTING FORTH or a similar tutorial (see appendix for a list
of recommended books) to learn enough to use the system. It 1is also
assumed that the user has a basic operating knowledge of the Commodore
64. This can be acquired through use of the Commodore 64 User's Guide
which comes with the machine.

1 SUPER-FORTH 64 (TM)

Introduction To the System

To fully understand the Graphics and Sound capabilities of the
Commodore 64, and thus to utilize the special extensions for these
features, it is recommended that ' the user read one of the books which
deals with C64 sound and/or graphics (see appendix) and use it in
conjunction with the sections in this manual on Sound and Graphics
Extension words (Sections 5.7 and 5.8).

Since the . hexadecimal number system (base 16) is often used when
dealing with computer hardware (addresses which often seem strange in
decimal are usually even multiples of 16, 16**2 or 16**3) I have
included the hex conversion for addresses given in parenthesis after
the decimal address. Hex numbers are numbers which are prefixed with a
"$" (such as $12AB). In FORTH the base can easily be switched by using
the FORTH words HEX and DECIMAL.

2 SUPER-FORTH 64 (TM)

Introduction To the System

1.3 Getting Started

1.3.1 Disk Based Systems
To get started working with SUPER FORTH perform the following steps :

1. Turn on the computer and disk drive, and insert the SUPER FORTH
64 system diskette into the drive (use device 8 in a multi-
drive system).

2. To load the demo system, skip to section 1.4, "Demo Prdgram"; to
load a normal SUPER. FORTH system perform the following commands

LOAD "SUPER FORTH 64",8 {return}
RUN {return}

The SUPER FORTH system should now be running.
It is recommended that you make a working copy of your master SUPER
FORTH 64 system immediately and keep the master in a safe place. To
make the working copy you must first format a blank diskette (Commodore
refers to this as "NEWing" a diskette). Place a blank diskette in the
drive and type the following to format a "working copy" diskette:

" NQ:diskname,id" DOS

where "diskname" and "id" are as defined in the VIC-1541 User's Manual,
The operation will take about two minutes.

When formatting is finished type the following:
SAVE-FORTH

Your system will be saved to disk as a file named "SUPER FORTH 64".
This diskette should now be used as your working copy of SUPER FORTH.

You will need a separate formatted diskette in order to save source

code for the FORTH programs you will write. Place a blank diskette in

the drive and type the following to format a "source screens" diskette:
" NO:diskname,id" DOS

This diskette may be used as your working "source screens" diskette.

3 SUPER-FORTH 64 (TM)

Introduction To the System

1.3.2 Cassette Based Systems

To get started working with SUPER FORTH 64 perform the following steps

1. Turn on the computer and insert the SUPER FORTH 64 system
cassette into the cassette drive.

2. Perform the following commands :
LOAD "SUPER FORTH 64" {return}

Follow procedure for 1loading a program from cassette. When the
program is done loading type:

RUN {return}
The FORTH system should now be running.

It is recommended that you make a backup copy of your master SUPER
FORTH 64 system immediately and work from the backup copy. Place a new
cassette in the drive and key in the following:

SAVE~FORTH

A copy will be made to the new cassette. This should be used as your
working copy of the system.

1.3.3 Once the System Is Running

It is worthwhile (and probably a lot of fun) to go through the program
examples in the manual. Especially useful for the beginner are the
Graphics and Music Editor examples 1in sections 5.7 and 5.9. If you
want to start saving programs quickly go through the editing tutorial
in section 5.1, Editor Words. Section 4 provides a tutorial on the
FORTH Assembler. It is intended for programmers who have a general
assembler experience, but not using a FORTH assembler. By following
the examples on your C64 and seeing what they do, you will quickly
develop a "feel" for FORTH without really knowing how to program in it,

If you are a beginning FORTH programmer, use the instructional guide
STARTING FORTH (see book list in Appendix V) by Leo Brodie, Prentice
Hall, 1981, or THE COMPLETE FORTH by Alan Winfield, Wiley Press.
STARTING FORTH is a more comprehensive guide to the FORTH language and
internals, while THE COMPLETE FORTH is aimed towards users of BASIC who
wish to program in FORTH.

Note: This version of FORTH is intended to be compatible with the
vocabulary used in STARTING FORTH. However, there are a few

4 SUPER-FORTH 64 (TM)

Introduction To the System

instances where the STARTING FORTH word is in conflict with the
FORTH 79 Standard. In those cases, the 79 Standard is adhered

to.
The most notable difference is in the word, ' (tick). In this
system, ' returns the PFA of a word, in STARTING FORTH it

returns the CFA. Therefore, to follow examples in the book,
follow use of ' with CFA.

Other words which differ are S0 and ?STACK.

The FORTH source screen editor differs from that in the book. See
section 5.1 on The Editor before attempting to edit source
screens,

The really adventurous FORTH programmer may want to read ALL ABOUT
FORTH by Dr. Glen Hayden. ALL ABOUT FORTH is a complete annotated
description of this particular implementation of the FORTH Kernel. It
contains the definition of each Kernel word and a description of its

use.

If you are an experienced FORTH programmer you will probably be
interested in the wvarious extension words for writing applications
programs using SUPER FORTH. This manual describes all extension words
particular to the SUPER FORTH system.

1.4 Demo Program

Included in SUPER FORTH 64 is a demonstration program called DEMO The
source code screens are provided as examples of how the various
extensions, and FORTH itself, can be used to program the C64 (see DEMO
screens in Appendix II).

DEMO includes use of high-res graphics, sprite graphics and the SID
sound chip. It also demonstrates advanced programming techniques, such
as recursion and co-routines. '

The complete SUPER FORTH system, including the demos, is provided in
the program file "DEMO-SYSTEM". Enter the following to execute the

demo:
LOAD "DEMO",8 {return}
RUN
DEMO

After the demo completes the system is left waiting for FORTH commands.

5 SUPER~-FORTH 64 (TM)

Introduction To the System

1.5 Warm Starting

The RUN-STOP/RESTORE key sequence will cause a warm start to FORTH.
After warm starting the system will be left in the following state:
Newly entered definitions will remain available. Vectors which have
been changed will remain intact., The I/O re-direction variables
(OUTLFN and INPLFN) will be intialized to their default wvalues. The
‘parameter and return stacks will be emptied, and execution proceeds
from the interpreter,

A system warm start may be effected from the BASIC interpreter by
entering the BASIC command SYS 2067.

1.6 Exiting and Cold Starting

To exit FORTH and restore the system to its initial state use the word
BYE. This performs a system cold start. FORTH can be re-entered only
if no numbered BASIC lines have been entered in the default BASIC
program area, since that is where the FORTH dictionary resides.. 3

The default BASIC area starts at 2049 ($801). 'The FORTH dictionary
area is defined to start at 2064 - ($0810), leaving room for the BASIC
instruction 10 SYS5(2064) to be saved and loaded with the .FORTH system
file, enabling the user to start up the FORTH system by typing RUN.
Placing FORTH at 2064 also insures that a cold start will not destroy
the beginning of FORTH.

After cold start if a BASIC program is to be entered or a directory

listing is to be performed and re-entry to FORTH will be desired, the

BASIC program space must be moved so that it won't overwrite the

beginning of the FORTH dictionary. Moving BASIC to 32768 ($8000) 1is

probably safe and can be accomplished by the following BASIC commands:
POKE 44,128: POKE 32768,0: NEW

After performing the BASIC functions, reset the BASIC area by entering
the following:

POKE 44,8: NEW
To re-enter FORTH type the following:

10 SYS(2064)
RUN

6 SUPER-FORTH 64 (TM)

Introduction To the System

1.7 Resetting the System

The 6510 microprocessor (the heart of this system) has a very nice
feature built in whereby you can reset the system without losing your
program. Unfortunately, Commodore did not see fit to provide any way
for the end user (you) to utilize this feature. However, there are
expansion cards available which have a ‘"reset" button built on which
when pressed will activate the reset feature,

It is recommended, especially for the beginner, that you purchase one
of these boards, since beginners often tend to crash the system while
learning how to program in FORTH. This way, your system would be
recovered at the click of a switch instead of having to re-boot the
system from disk.

1.8 FORTH and the Commodore Screen Editor

Input in this FORTH system makes use of the Commodore screen editor.
This is the same editor used by Commodore Basic. It allows a user to
enter data anywhere on the screen by using the Commodore Screen Editing
keys to move the cursor and edit the line on which the cursor was moved

to.

When the RETURN key is depressed the editor copies the line where the
cursor was residing into an input buffer, from which FORTH get its
input a character at a time. Only the line in which the cursor was
placed (it doesn't matter where on the line the cursor resides) is
moved into the input buffer. Thus, the screen editing functions can be
used during immediate FORTH input to correct and/or re-enter FORTH
lines.

19 FORTH and Machine Language

FORTH supports both externally and internally coded machine language
routines. Internally coded routines are created using the FORTH 6510
Assembler. Externally coded routines are loaded and linked to using
various SUPER FORTH words described below.

1.9.1 FORTH 6510 Assembler

A 6510 machine language assembler for use within .the FORTH environment
ig included in this implementation. It 1s essentially the one written
by William Ragsdale and published in FORTH Dimensions Vol. III, No. 5.
This assembler also includes extensions for the FORTH constructs
BEGIN. . .AGAIN, BEGIN...WHILE...REPEAT and BEGIN...UNTIL and a
conditional specifier for the overflow status bit, VS,

A feature of this system 1is that the assembler may be made to be

7 SUPER-FORTH 64 (TM)

Introduction To the System

"remote", that is, it is not compiled into the main dictionary space.
Thus, applications may use the assembler to assemble machine code, but
need not have it in memory during execution. See the article in the
appendix for detailed operating instructions and the section on
Assembler Usage (Section 4.,) for a tutorial on usage.

1.9.2 External Machine Language Routines
External routines can be loaded and used by the SUPER FORTH system.

Before entering external routines 1into the system it must be verified
that they will not be loaded over an area which is used by the system.
Many external machine language routines are loaded into the area at
$§C000, since in the default machine confiquration this is an unused
area above BASIC. SUPER FORTH, however, allows use of all memory below
$D000. Therefore, if routines reside in the $C000 area, the top of
SUPER PORTH must be moved below it (see CHANGE).

If the routines are in the form of program files on a diskette, LOADRAM
can be used to load them into memory. Otherwise, PATCH may be. used to
"hand enter" machine code into memory.

Once the routines are in memory, ' they may be linked to using one of
various words- SYS and SYSCALL preserve the 6510's registers and allow
data to be placed in them before calling an external routine. GO calls
a routine without preserving registers. A routine must end with an RTS
instruction in order to return to SUPER FORTH.

WARNING! AN EXTERNAL ROUTINE MAY BE USING ZERO-PAGE AREAS
WHICH SUPER FORTH EXPECTS TO BE LEFT UNTQUCHED.
THIS WOULD RESULT IN A CRASH OF THE SYSTEM AND
SHOULD BE CHECKED BEFORE USING THE EXTERNAL
ROUTINE.

1.10 FORTH Editor

An Editor is included for entering SUPER FORTH source code; the edited
" code can be saved to disk or cassette. The Editor is a screen editor
which works functionally the way the Commodore Basic Editor works. It
includes words for copying screens, copying sections of screens and
moving sections of screens. See the section titled "Editor Words" for
more detailed information.

1.11 FORTH Code Storage

FORTH code exists in the system in two forms: source code and compiled
code. Source code format is used to store user readable code 1in the
form of source screens. FORTH source words can be individually entered
or modified by wusing the SUPER FORTH Editor (Note: The Editor is NOT
the STARTING FORTH editor- see "Editor Words" for details).

8 SUPER-FORTH 64 (TM)

Introduction To the System

The source code is stored using one of two modes of storage, Standard
Mode (as in "standard" FORTH I/0 systems) or File Mode. Disk users
should use Standard Mode. Cassette users MUST use File Mode. A by-
product of the implementation, however, is that File Mode MAY be used
by disk users, but 1is not recommended since Standard Mode generally
provides greater flexibility. SUPER FORTH programs which are stored in
File Mode (using F-SAVE) may, however, be mixed with BASIC files on the
same diskette.

Compiled code is generated by the FORTH system either by entering FORTH
word definitions interactively or by loading source code screens using
LOAD or F-LOAD. - A source word must be compiled into the system before
it can be executed. Once compiled, it can be invoked (called upon for
execution) interactively or can be used as part of the definition of a
new word. When a source screen is compiled it in effect becomes part
of a new FORTH system which contains all previous definitions AND the
newly compiled definitions.

VLIST can be used to display the words which have been compiled.
Compiled words may be "decompiled" by using the word DECOMPILE. 1In
this way the user can examine the definitions of words which have been
entered interactively along with compiled source screens.

SAVE-FORTH and APPLICATION are words which can be used to save the
complete compiled FORTH system as a Commodore program Ffile. All user
defined words which have been compiled will be saved along with the
SUPER FORTH 64 original system. 1In this way, user extensions can be
added, compiled and saved without having to re-compile them each time
the system needs to be loaded in.

Note: Disk users must use a FORMATTED Commodore diskette for EITHER
mode of operation.

1.11.1 Standard Mode (Disk Only)

Standard Mode provides compatibility with other MVP-FORTH systems by
utilizing the standard FORTH definition, BLOCK, to provide the typical
FORTH wvirtual disk system. Using Standard Mode, all FORTH blocks
available (the total in all drives) may be looked upon as a single fast
random access file. 1If an application requires a data base which spans
multiple disk drives, Standard Mode may be the way to go. Standard
Mode is the mode of operation described in STARTING FORTH in both the
Editor and the I/O chapters.

Users whose applications require a random access database will find
that a Standard Mode system will run faster than a Commodore relative
file system because there 1is no sector lookup to determine where a
particular sector lies. Relative files may take up to three disk
accesses to read or write a single sector. Standard Mode will make
only one disk access per sector.

9 SUPER-FORTH 64 (TM)

Introduction To the System

Standard Mode allows greater area usage of the diskette for FORTH
source code, since 680 of the 683 sectors are available for use as
source screens. It also allows minimal disk buffer allocation for
loading of a very large source program since a program is loaded by
specifying actual screen numbers. However, because these screens are
written and read using direct sector I/0 routines, source screens
created on a diskette using this mode cannot be mixed with standard
Commodore files. The Commodore directory may, in fact, have been used
to store FORTH source information (see section titled "Standard Mode")!

Standard Mode utilizes a wvirtual buffer system- the number of buffers
-defined in the system simply determines how many screens may reside in
memory before the system must flush (write out to disk) a . screen in
order to make room for a new one. This process 1is carried out
automatically by the system, so the user need not concern himself with
buffer management. Buffer management is reduced to a matter of system
efficiency- if there are more buffers available the system will have. to
perform less I/0 while the user is editing screens. Initially 8
buffers are allocated to the system.

Cassette users cannot use Standard Mode since a random access device
must be available.

1.11.2 File Mode (Cassette or Disk)

File Mode enables the user to create and edit a group of FORTH source
screens as a named file. File Mode provides the ability to wuse the
Commodore file system to keep track of groups of screens as files, but
has the limitation that all screens for a particular file name must fit
in memory (just as a complete BASIC program must fit in available
memory - see section titled "File Mode").

Using File Mode, the user loses the use of FORTH's virtual buffer
facility. The user must insure that there are enough buffers available
to completely contain a file before the editing begins or the file is

loaded in. When all. buffers are full new screens can no 1longer be

added and the file must be written out. As in Standard Mode, 8 buffers
are allocated for File Mode initially.

1.11.3 1Initial Mode Settings

Cassette users MUST use File Mode since Standard Mode assumes
availability of a disk unit. Cassette based systems will come up in
File Mode configured for cassette. 1If a cassette user wants to change
over to a disk based system, he should type B8#SYSDEV#! (this changes
the system device to disk 8) and type SAVE-FORTH to save the systenm to
disk. The saved system will come up disk based.

Disk based systems initially come wup in Standard Mode. 1If you prefer
File Mode, type F-NEW to enter File Mode and save the FORTH system by

10 SUPER~-FORTH 64 (TM)

-

Introduction To the System

typing SAVE-FORTH. The saved system will come up in File Mode. If a
disk based user wants to change over to a cassette based system
(there's always one in every crowd), he should type 1 SYSDEV ! (this

changes the system device to 1- cassette) and type SAVE-FORTH to save
the system to cassette. The saved system will come up cassette based.

1.12 Special Features

The following are special wutilities and features implemented in SUPER
FORTH 64.

1,12.1 Saving Applications

After the FORTH program designer develops an application using SUPER
FORTH 64, the word APPLICATION can be used to save the system as a
special "application" program file which can be loaded by end users.
This £file, when loaded and run, will immediately execute the
application word. The FORTH system is not wvisible toc a wuser running
the application. 1In this way the applications designer may market the
application program without infringing on the copyright of the FORTH
system (see section titled "APPLICATION" for more detailed

information).

NOTE: The word APPLICATION must be entered in order to
release you from infringing on the Author’'s
copyrights.

1.12.2 Debugging Features

Several utilities are provided to ease debugging of programs written
using SUPER FORTH 64:

A decompiler is provided which enables the user to decompile any high-

level word in the system (including FORTH Kernel words). This
Decompiler was written by Robert Dudley Ackerman and published in FORTH
Dimensions Vol. IV, No. 2. See the article in Appendix VII for a

complete description of its use.

A trace facility is provided to aid developers in their debugging of
newly defined FORTH words. This trace was adapted from the one written
by Paul van der Eijk and published in FORTH Dimensions Vol. III, No. 2.
See the article in Appendix VII and section 5.6.24 for operating
instructions.

A non-destructive stack dump, .S 1is provided to enable users to see
what is on the parameter stack without losing any data values. The
stack may be displayed from latest to oldest value, or oldest to latest
See the descriptions in the Kernel Glossary (.S, .SR and .SL)

11 SUPER-FORTH 64 (TM)

Introduction To the System

A memory dump facility, DUMP is provided to enable users to display
both the hex and ASCII values of sections of memory. See the Kernel
Glossary for a description of DUMP.

Example:
11730 32 DUMP

Dumps 32 locations starting at 11730.

1.12.3 Math Routines

A simple floating point package, fixed point sin/cos routines
(resolution down to a degree) and a fixed point square root routine
have been provided to aid in developing graphics and mathematical
applications. See the appropriate articles in Appendix VII and the
section on Math Extension Words for usage.

1.12.4 High RAM Access

Special extension words are provided to enable easy access to the 12K
of RAM which resides underneath the Kernel ROM and I/O Memory Map
areas. This is greater than 1/5 the total memory of the machine which
is normally inaccessable (see section titled "C64 High RAM Access
Words"ij!

1.12.5 Graphics and Sound Words

Extensions are provided to take much of the difficulty out of
programming graphics and sound on the Commodore 64.

The low level extensions are intended to take the user a level away
from the hardware so that he does not have to deal with the details of
chip addresses and alignment of data within hardware registers (if
you've tried programming the graphics or sound chips using BASIC you
know what I mean).

Higher level graphics words included in the system allow the user to
plot hi-res 1lines, arc, ellipses, circles and mirrored images. A
Turtle Graphics package is included as part of the high 1level word
support. There 1is a simple sprite editor included (S-EDITOR) which
will enable you to enter sprites and incorporate them into the system
directly.

Included in the set of sound words is a music editor which can be used
to compose and play back three part music. The music editor is’
implemented as an extension vocabulary to the SUPER FORTH 64 system,
therefore, music can actually by programmed using SUPER FORTH
structures!

12 SUPER-FORTH 64 (TM)

Introduction To the System

1.12.6 TI/0 Redirection

The SUPER FORTH system has the ability to redirect standard I/0 to
devices other than keyboard and screen. Thus, for example, output can
be directed to a printer or both input and ouput could be directed to
an RS-232 device (see sec 4.4).

1.12.7 Diskette Backup Utilities

A utility word, BACKUP, is provided with this FORTH system to allow
users to make backup copies of diskettes. Words are provided to
perform either partial or complete backups, using either a single disk
drive or two drives.

The copy is accomplished by using the allocated buffer space to read a
section of the "from" disk and then write that section to the "to"
disk. This process is repeated as many times as necessary to complete
the copy. In a basic FORTH system this can be accomplished in five
section read/writes. This copy performs direct sector I/0 and thus
cannot be used to copy particular files, but can copy a complete
Commodore system disk in about twenty minutes (see section titled
"Backup Utilities"}.

1.13 Vectored FORTH System Routines

Vectoring is a method which enables FORTH programmers to customize a
FORTH System Kernel without having to re-assemble the system. Certain
FORTH words are referenced by vector addresses, so by changing the
address of the vector, the system will reference a new system routine.
The following table 1lists the vectored words, their vector address
words, and the offset of the vector within the User Area {see User Area

description).

WORD VECTOR ADDRESS USER AREA OFFSET
-FIND ' ~FPIND $16
?TERMINAL ' 2TERMINAL $18
ABORT ' ABORT S1A
BLOCK ' BLOCK $1C
CR 'CR $1E
EMIT 'EMIT $20
EXPECT 'EXPECT $22
INTERPRET ' INTERPRET $24
KEY 'KEY $26
LOAD 'LOAD $28
NUMBER ' NUMBER $2A
PAGE ' PAGE $2C
R/W 'R/W $2E
T&SCALC ' T&SCALC $30
VOCABULARY ' VOCABULARY $32
WORD 'WORD $34
13 SUPER-FORTH 64 (TM)

Introduction To the System

As an example, let's say we want to change the system definition of
PAGE to emit a form feed (ASCII code 12) instead of a clear screen
character. This way, if output is to a printer, PAGE would cause the
printer to go to a new page. We could enter the following:

NEW-PAGE 12 EMIT ; (New definition of PAGE)
NEW-PAGE CFA (Puts code field adr of NEW-PAGE on stack)
PAGE ! (and stores its addr in vector for PAGE)

Using PAGE would now vector to the definition of NEW-PAGE. Cold
starting would reset PAGE to its original definition,

Other uses of re-vectored words may be to add a disk handler for a non-~
1541 type disk drive. T&SCALC and/or R/W may be rewritten to use
definitions which would handle these non-standard drives.
1.14 Vocabularies

Both the FORTH-79 and the FIG types of vocabularies are supported by
the MVP-FORTH Kernel. The system comes up assuming FORTH-79 vocabulary
structure. If the FIG vocabulary structure is preferred, VOCABULARY
can be re-vectored to point to the FIG definition instead. The
following will accomplish this:

' <VOCABULARYFIG> CFA 'VOCABULARY |
To get back to the FORTH-79 vocabulary structure enter the following:

' <VOCABULARY79> CFA 'VOCABULARY !

14 SUPER-FORTH 64 (TM)

1

SyStem Memory Usage

2. System Memory Usage

Part of the FORTH start-up procedure is to swap out the system's C64
BASIC ROM, making available the 8K of RAM located at the ROM's address
space. Thus the user memory available for FORTH extensions is a
contiguous area of memory starting from the present top of FORTH to
53120 ($CF80 - where the FORTH USER variables area is located). In the
initial SUPER FORTH 64 system about 30K of RAM is available for wuse in
creating new word definitions and/or for disk buffer space. A
"stripped” system (see section 2.4, FORTH Dictionary Area) uses just
under 10K of RAM. In such a system, about 41K of RAM is initially
available new word definitions and/or disk buffer space.

2.1 System Memory Organization

Memory is partitioned into various areas both for the FORTH system and
for the Commodore Kernel. The memory map on the following page
describes the initial FORTH system.

The 8k of RAM underneath the C64 Kernel and the 4k of RAM under the I/0
Memory Map area are available to the user through use of the High RAM
word extensions.

The SUPER FORTH dictionary can be stripped partially or completely down
to the MVP Kernel area. A selection of the source screens provided can
then be re-compiled into the system and the new system saved using
SAVE-FORTH. 1In this way the user may customize his initial SUPER FORTH
system (see section 2.4).

L5 SUPER-FORTH 64 (TM)

System Memory Usage

SE000

$D00O

$CF80

SAF60

$63A4

$3394

$2CD7

$0810
$0200
$0100

$0000

C64 Kernel ROM
{8k high RAM)

C64 MEMORY MAPPED I/O AREA
(4k high RAM)

FORTH USER VARIABLES

DISK BUFFER AREA
(initially 8 buffers)

FORTH DICTIONARY
FREE SPACE

FORTH DICTIONARY
SUPER FORTH 64 HIGH LEVEL
EXTENSION DEFINITIONS
(source code provided)

FORTH DICTIONARY
SUPER FORTH 64 EXTENSION
DEFINITIONS
(reclaimable)

FORTH DICTIONARY
MVP KERNEL
DEFINITIONS

SCREEN & C64 Kernel DATA

RETURN STACK & TERMINAL INPUT BUFFER

ZERO PAGE AREA

57344

53248

53120

44896

25508

13204

11479
<--Minimum system

2064
512

256

Dashed lines are used to represent movable memory boundaries.

16

SUPER-FORTH 64

(TM)

System Memory Usage

2.2 Zero Page Usage

This section describes zero page usage of the SUPER FORTH system. The
information will generally be of use to programmers who wish to write
assembly code routines utilizing zero page memory.

The FORTH stack uses the zero page area from $78 down to $07. Since
the stack grows down from $78 the user can generally use lower zero
page locations from $07 on up. How much can be used depends on the
FORTH stack usage. If recursive words are not used then the stack will
probably not go TOO far down, but the user will have to experiment
(recursive definitions can quickly eat up both parameter and return

stack space).

The following table describes zero page usage by FORTH:

ADDRESS DESCRIPTION
$0002-$0003 IP : Interpretive Pointer
$0004-50005 UAP : User Area Pointer
$0007 Bottom of parameter stack
$0078 Top of parameter stack

$007A-$007B Address of system interrupt routine
$007C-$007D Address of user interrupt routine

$007E Address of interrupt parameter stack
$007F Interrupt return flag

$0080 W-1 : Indirect jump instruction
$0081-$0082 W : CFA address of word being interpreted
$0083 XSAVE : 6502 .X register save area

$0084 Raster split screen Iine #

$0086 N-1

$0087-5008F N to N+8 : System zero page work area

2.3 Return Stack and Input Buffer

The system hardware stack is used as the FORTH return stack. As per
normal usage it uses page one of memory ($0l00-$01FF), and grows down
from the top of page one. The FORTH Terminal Input Buffer is also
located in page one. It works its way up from the bottom of page one
at 256 ($0100).

2.4 FORTH Dictionary Area

The FORTH dictionary resides in the locations from 2064 ($0810) through
the beginning of the disk buffer area. It 1is partitioned into two
areas: the FORTH system, including any user extensions, is located at
the lower end of the dictionary area. The dictionary free space area
(that which is available for defining new FORTH words) i1s located at
the upper end of the dictionary area. As the FORTH system grows, the
free space area shrinks.

17 SUPER-FORTH 64 (TM)

System Memory Usage

Initially, the top of the dictionary free space area is location 44896
($AF60), however this may be changed by . the user (see Digk Buffer
Area). The bottom of the free space area {(which is also the top of the
FORTH system area) is at location 25508 ($63A4) in the initial system..
Parts of the system space may be reclaimed by the user, as described
below.

Included within the system definitions on disk are the MVP FORTH Kernel
words, C64 extension words (graphics, sound, etc.), the FORTH Editor, a
FORTH format Assembler, and the utilities and supplemental screens
defined in ALL ABOUT FORTH. Initially, the system occupies about 23.5K
of RAM. If not required for an application, parts or everything except
for the Kernel words may be "forgotten" by the system, thus reclaiming
the memory which had been used for those words. The order of these
"forgettable" definitions is as follows:

(Source code is not supplied for the following [1725 bytes])
CATNIB SPLIT SAVE SYS SAVENAME SAVE-FORTH

APPLICATION MASK SBIT CBIT FBIT SWAPOUT SWAPIN

'BANK 'SCREEN 'BITMAP 'CHARBASE BANK SCREEN

BITMAP CHARBASE B-X B-Y B-PEN B-ERASE B-DRAW

B-PLOT SPRITE S-POSITION SID VOICE SIDi V!

F-FREQ PADDLEA OSC3@ ENV3@

D-SPLIT D-POSITION D-READ D-CLEAR

I-INIT I-SYSTEM I-USER I-SET I-CLEAR

(Source code is supplied for the following words)

THRU '

C64 Utility words

C64 Kernel Interface words

String Extensions

File Mode Extensions

Low Level Graphics Extensions

Low Level Sound Extensions

MVP Utility words
.5 .SL .SR .SS .INDEX <ROT MAX-BUFFS BMOVE COPY SCOPY
DSWAP D- DO= D= D> D@ DCONSTANT -
DMAX DMIN DOVER DU< DVARIABLE
PAUSE INDEX ?LOADING —--> DUMP 'TITLE TITLE TRIAD
<EMIT7> ID. VTAB VLEN VLIST

MVP Supplemental word set
'S 2! 2@ 2CONSTANT 2DROP 2DUP 20VER 2SWAP 2VARIABLE
>BINARY EMPTY ERASE FLUSH H U.R {']

L.ocal ASSEMBLER

SUPER FORTH Screen Editor

DECOMPILE Utility

Math Routines- Trig, Square Root and Floating Point

C64 Data & Constants

Data Structure Examples

Hi Level Graphics, I/0 & Utilities

Music Editor

Sprite Editor

Turtle Graphics Extensions

18 SUPER-FORTH 64 (TM)

System Memory Usage

2.5 Reducing SUPER FORTH 64 To Minimum Size

Typing FORGET CATNIB would reduce the system to its minimum of about
9.5k bytes. Prior to invoking FORGET, VLIST may be used to determine
the actual order of FORTH words in the dictionary.

Note that typing FORGET CATNIB removes not only words for which the
source is supplied, but also those for which source is NOT supplied
(From CATNIB thru I-CLEAR). It is probably more useful to type FORGET
THRU which would leave a system which could be modified and rebuilt by
loading in the appropriate source screens.

If File Mode is being used, it may be appropriate to save an editing
system which consists of only the Kernel words, extensions thru File
Mode words, and the editor in order to make available the greatest
amount of buffers for editing (see section titled " Source Screen File
Mode Words"). This should not be a concern unless the source file is

quite sizable.

2.6 Disk Buffer Area

A FORTH disk buffer (including its 4 byte header) is 1028 ($0404) .bytes
long. The buffer area ends at 53120 ($CF80) and begins at 53120 minus
the number of disk buffers * 1028. The FORTH disk system requires a
minimum of two disk buffers but is initialized with eight buffers for
ease of editing. Thus, in the initial configuration the start of the
disk buffers area is 53120 - 8*1028 = 44896 (SAF60).

$BUFF is a constant which returns the number of buffers the system is
set up to wuse., If it is determined that a different number is
required, the following FORTH line may be used to change the system to
use a different number of buffers :

new-number ' #BUFF ! CHANGE

Example:
16 ' #BUFF ! CHANGE
will change the number of disk buffers to 16.
This may be done to increase the number of buffers (for editing a large
number of screens for instance) or decrease the number of buffers to
gain full dictionary usage of memory. A word, MAX-BUFFS 1is provided

which automatically calculates the maximum amount of buffer space
available and re-configures the system for it

19 SUPER-FORTH 64 (TM)

System Memory Usage

2.7 User Area

The FORTH User Area variables and vectors are located starting at 53120
($CFB0). These are typically not used directly by the FORTH user, but
through invocation of a user variable name. Unused User Area positions
($52 ~ $7E) may be assigned through use of the USER defining word (HEX
52 USER name - 7E USER name).

The User Area (and the start of the disk buffers area) may be moved by
changing the value of the constant LIMIT and invoking the word CHANGE.
The system will cold start (losing unflushed buffers) and use the new
User Area for 1its system variables. This procedure is wuseful for
freeing up the 4K block of $C000-$CFFF which may be used by independent
machine language routines or I/O peripherals.

Example: We want to move the User Area to 48896 ($BF00), freeing up
the area from 49152 ($C000) to 53247 (SCFFF). Perform the

following:
48896 ' LIMIT ! (SETS NEW USER AREA ADDR.)
CHANGE { RE-CONFIGURES SUPER FORTH }

Entering the following will switch back to the default area:

53120 ' LIMIT ! CHANGE

The position and order of the User Area data is as follows:

HEX Offset Description
$00 - Last name addr
$02 - Delete character (not used)
s04 UAP - Pointer to start of user area ($SCF80)
$06 SP0 - Pointer to top of stack
$08 RO - Pointer to top of return stack
$O0A TIB - Pointer to terminal input buffer
$0C WIDTH - Name field max. width (31)
$OE WARNING - Warning flag (not FIG usage)
$10 FENCE - Fence against forgetting Kernel
$12 DP - Dictionary Pointer
$14 VOC-LINK - Vocabulary link
$16 - $35 : Vector addresses (see vector table)
836 >IN - Input stream character offset
$38 BASE - -Current number base
$3A BLK - Current block being LOADed
$3C CONTEXT - Current CONTEXT vocabulary link
$3E CSP - Check stack position variable
$40 CURRENT - Current DEFINITIONS vocabulary link
$42 DPL - Decimal Point Location (digits to right)
$44 FLD - Field length for numeric output conversion
$46 HLD - Holds latest char during numeric conversion

20 SUPER-FORTH 64 (TM)

System Memory Usage

$48 OFFSET - Block offset to determine actual block #
$4A OUT - Value incremented by EMIT

$4C R# - Number of current editing line

S4E SCR - Number of current editing screen

$50 STATE - Non-zero = compiling

$52 - $7E : Available to user

28 High RAM

The area from 53248 ($D000) through the end of memory is generally
occupied by the I/0 Memory Map area and Commodore Kernel ROM. However,
"hidden" in these areas is RAM which the user can access using special
extension words in this FORTH system. The special extensions are
listed in the section titled "C64 High RAM Access Words". The
extension words take care of inhibiting interrupts, swapping the RAM in
performing the operation, and returning the system to its usable state.

2.9 Running Out of Memory

The following lists some steps which may be taken when the system seems
to be running low on memory.

1. Reduce the number of disk buffers in use, if possible. Each
buffer uses over 1K of RAM. Initially, there are 8 buffers

allocated. The system may be reduced to having only two buffers
(see CHANGE).

2. Make use of the 12K of RAM available by placing large arrays and
data structures in that space. Use the High RAM Access words to
maintain the data.

3. Strip unused words from the system and re~compile only those
necessary for a particular application (see next section).
2.10 Stripping System For An Application
To strip a system perform the following steps:
1. Determine which words are necessary to compile an application.

2. Create a "Load Script Screen" which contains the commands
required to build the system.

3. LOAD the Load Scfipt. If there are 1load errors do the
following: load the EDITOR screens, correct the errors, and re-
do this step.

An example Load Script is provided on screen #122. This Script was
used to create the "DEMO4TH" program file on your master disk. Note

21 SUPER-FORTH 64 (TM)

System Memory Usage

the initial "FORGET D-READ". Since the Interrupt words and two Display
words are not required, we may FORGET some words preceding THRU. Note
also that IMMEDIATE words (such as RECURSE) may be compiled into the
Transient Assembler area, since their definitions are only needed

during compilation.

The following was entered in order to use the Load Script and save the
stripped system as a program file:

(PLACE MASTER SCREENS DISKETTE IN DRIVE)
122 LOAD (CREATE STRIPPED SYSTEM)

(REPLACE SCREENS DISKETTE WITH FORMATTED PROGRAM DISKETTE)
APPLICATION "DEMO4TH"

22 SUPER-FORTH 64 (TM)

FORTH Source Disk

3. FORTH Source Disk

FORTH differs from BASIC in numerous ways. One of these is the way
that code is stored and executed., While using BASIC, the code is

stored in what 1is essentially a source code format. The BASIC
interpreter reads the program source code and "interprets" it into an
executable machine form. Whenever it is time for a particular BASIC

statement to be executed it must be re-interpreted. This is probably
the major reason why BASIC runs so slowly (blank spaces and remarks
also must be interpreted).

FORTH systems, however, pre-compile their source code 1into a more
readily executable form. In interactive mode, for example, definitions
are compiled upon execution of ";". This is why a decompiler (see
DECOMPILE) must be used to re-construct the FORTH definition if the
source code is not available. A result of this compilation is that the
source code need not reside in memory after it has been compiled.

Source code must be read in and compiled before execution. This is
generally accomplished using the FORTH word LOAD. As mentioned in the
introduction on disks, this system provides two distinct modes for
storing and retrieving source code. Cassette users MUST use File Mode,
since Standard Mode assumes availability of a random access device
{such as a disk).

3.1 SUPER FORTH 64 System Diskette

Along with the FORTH system itself, the " system diskette comes with
various FORTH source screens. These screens have already been compiled
into the SUPER FORTH system. They are provided to allow flexibility
for the advanced FORTH user who may wish to customize his system, and
as an educational tool for the beginner who desires examples of FORTH
programs and routines (see Appendix II).

Specifically, the Graphics/Sound Demc program is an example of how high
resolution graphics, sprites, and the SID sound chip may be controlled
by the FORTH programmer. The C64 Constants screens define many useful

constants relating to the hardware registers on the C64. The Data
Structures screens present examples of how to define data structures
using FORTH. Single and two dimensional array structures, a string

constant structure and a structure for initializing sprite areas are
defined. '

See the source screens index 1in the appendix for a complete 1list of
what source screens are provided.

After starting up SUPER FORTH 64, insert the master diskette into the
drive (if it is not there already). Perform the following commands:

23 SUPER-FORTH 64 (TM)

FORTH Source Disk

1 LIST
2 LIST

will list screens 1 and 2 on the display. These screens contains a
directory of the source screens on the master diskette.

You may have noticed that the SUPER FORTH 64 system diskette contains
both Standard Mode screens AND a Commodore program file (namely SUPER
FORTH 64)! I highly recommend NOT trying to mix these Fformats unless
you really have a good idea about where things will end up.

3.2 Screens and Blocks

FORTE systems historically use their own type of disk format. A
standard FORTH disk is divided up into 1024 byte blocks (when listing
or editing "blocks" are also referred to as "screens") and each block
is referenced by its block number,.

3.3 File Mode

A FORTH source file consists of a group of FORTH screens which can be
saved and loaded as a named file. For editing purposes, the screens
are numbered sequentially starting at 1. Screen numbers are used only
as reference to allow editing various parts of the file.

An extension set of FORTH words is used to operate in this mode. See
File Mode extension words, section 5.2, for a complete description of
File Mode word usage.

3.4 Standard Mode

To enter Standard Mode from File Mode use F-EXIT. In Standard Mode
FORTH system knows nothing about the Commodore file system, therefore
FORTH style blocks should not be mixed with Commodore style files when
using this mode. In particular, the FORTH system itself is saved as a
Commodore program file, therefore, when saving a new version of FORTH
make sure that a Commodore diskette and NOT a FORTH screens diskette is
in the drive!

The advantage, for the FORTH programmer, is that the former disk
directory track 1is now available for use, allowing full use of
virtually all sectors on a diskette with the following exceptions:

There are 683 sectors on a standard Commodore disk, however sector 0 of
track 18 must not be written over by the programmer (specifically,
there is a byte which specifies that the diskette has been formatted on
a 1541 disk drive. If that byte is changed the diskette is still
readable, but it can no longer be updated on a 1541 drive. T know of
no method of changing this byte back short of re-formatting the

24 SUPER-FORTH 64 (TM)

FORTH Source Disk

diskette [which will wipe it clean] therefore I strongly recommend not
changing that byte). Since there are 4 sectors per FORTH screen, the
diskette is divided up into 170 FORTH screens, numbered 0 to 169.

The astute wuser will have noticed that 680 sectors are allocated as
FORTH screens, leaving three unused by the FORTH disk system. The
FORTH word T&SCALC performs the calculations to skip those sectors, sgo
the user need not worry about them. The three sectors are- track 17
sector 20, track 18 sector 0, and track 18 sector 1. The primitive
disk word RWTS (normally not called directly by the user) allows access
to all sectors on the disk, so the brave {and foolish) can still manage
to destroy their disk despite system protection. This direct access by
the system is necessary, however to perform a complete diskette to
diskette BACKUP.

3.5 Multiple Disk Systems

FORTH can accommodate up to five disk drives, Commodore device numbers
8 through 12. Initially, the system is set up to use device 8 as the
system drive (for file saves). The system device number can be changed
by storing a new device number in the FORTH variable SYSDEV (see
section 5.4.25). The FORTH system uses the names DRO, DR1, DR2, DR3
and DR4 to refer to the drives.

Initially, the system comes up assuming a single drive. If more than
one drive is 1in use, CONFIGURE (see Glossary, Section 6.) must be
entered to set the system to the correct number (if desired, the system
may then be saved with the new confiquration parameters set up,
eliminating the need for reconfiguring each time the system is brought
up). On Warm/Cold Starts or after using CONFIGURE, DRO is selected.

FORTH screens are specified as a relative offset to block 0 of the
currently selected drive. Thus, if DRO is selected, the following
table could be used to reference screens on any drive relative to drive
G:

Relative to DRO Relative to Self
FORTH # Device # First Last First Last
DRO 8 0 169 0 169
DR1 9 170 339 0 169
DR2 10 340 509 0 169
DR3 11 510 679 0 169
DR4 12 680 849 0 169

The "Relative to Self" column is used if the block to be accessed is on
the currently selected drive.

Example: Two ways of listing the same screen are as follows:
DRO 200 LIST (LIST BLOCK 30 ON DR1)
DR1 30 LIST (LIST BLOCK 30 ON DR1)

25 SUPER-FORTH 64 (TM)

FORTH Source Disk

3.6 4040 Drives

If you own a 4040 drive, configure your system to use two drives (see
"CONFIGURE") and type ON DUAL. Your dual drive will now work with
SUPER FORTH.

3.7 Disk Error Recovery

If a disk operation should result in an error during "Standard Mode"
operation, the SUPER FORTH disk system will automatically display to
disk error channel so the user can immediately ascertain what the
problem is. On errors the system re-initializes the disk (DOS command
"I") for the user.

If an error has occurred in reading the disk, there may be erroneous
information in the disk buffers. EMPTY-BUFFERS should be used to clear

out the buffers.

If repeated "NO CHANNEL" error messages appear, try entering the
following:

9 CLOSE (CLOSES THE DISK CHANNEL)
CLRCHN { CLEARS I/0 CHANNELS)
" I" DOS (INITIALIZES THE DISK)

Note that turning a drive on after the system has come up results in
an error message and the drive should be initialized
interactively.

26 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

4. FORTH Assembler Usage

This system includes the Bill Ragsdale 6510 (ne 6502) FORTH Assembler.
The original article describing the Assembler is included in the
Appendix. The article contains all information necessary for an
experienced FORTH programmer to use the Assembler, however, programmers
who are experienced in "typical" assemblers and NOT FORTH may look at
the article and say "This is crazy!". This section is intended to ease
the user into the world of the FORTH Assembler. The article should be
used as reference while going through this introduction. After
finishing the introduction the article should be re-read and the
examples within it tried out on the machine.

The FORTH Assembler is part of an integrated applications development
system (SUPER FORTH 64). It enables users to develop programs
completely in high level FORTH and then, if desired, speed up the
program by using the FORTH assembler to re-write only the words which
are necessary to have running in machine language.

Another feature of the SUPER FORTH 64 system is that unlike other FORTH
systems which provide assemblers which must reside in the dictionary in
order to use them, the SUPER FORTH 64 Assembler may be removed from the
dictionary after the application program is loaded, before using
APPLICATION to save it to disk. This reduces the size of the program
which must be loaded in by the end-user, or the amount of ROM memory to
be used if the application is to be ROM'd. See the word A-REMOVE for
instructions on removing the assembler.

It is highly recommended that beginning machine language programmers
obtain one of the many 6502 machine language introductions which can be
found in bookstores which carry computer books. It is also recommended
that beginning programmers do not attempt to understand the Assembler
before understanding how to use FORTH in general.

4.1 How the Assembler Works

First, some background on assembling in FORTH. In a typical assembler
environment - you enter code using an editor, assemble the module
producing an object module, load the object module in and call it. IFf
you wish to link the machine code with a high level language, there is
usually a somewhat clumsy interface (if at all) with the machine
language routine.

In the FORTH environment you enter code either interactively or editing
to a screen. Just as in entering regular FORTH definitions, each
method works the same way, but in one case you enter code directly
(interactive) and in the other you edit a screen which contains the
code to be loaded into the system later.

27 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

As assembly code 1is entered it is compiled into the dictionary. The
same mechanism is used as when compiling definitions. The difference
is that when compiling definitions, addresses of other FORTH words are
compiled into the dictionary. When using the Assembler, actual machine
language is compiled into the dictionary. CODE and END-CODE replace :
and ; for delimiting a FORTH module.

4.2 Entering Assembly Code

The first thing you need to know in order to use the Assembler is how
to enter code. Two words are used to control the interaction of
assembly code with high level FORTH code: CODE and END-CODE. As
described in the preceding section, CODE and END-CODE delimit an
assembly module, The length of the module may be arbitrary, but it
must be delimited by CODE and END-CODE.

CODE performs various tasks for the assembly coder. First, it calls in
the ASSEMBLER vocabulary. Thus, the wuser need not concern himself
about "entering" the Assembler- he simply uses CODE in the beginning of
the routine. CODE expects a routine name following it, such as:

CODE FOOBAR

CODE uses CREATE to create a header for a definition which will be
called FOOBAR (in this example). It performs virtually the same
functions as :, but whereas : leaves the run-time routine DOCOLON as
its code field address, CODE leaves the start of the assembler module
as 1its code field. You really needn't concern yourself with the
technical aspects at the moment, just understand that an assembler
module must start with CODE.

END-CODE, as you might guess, is used to end an assembly code
definition. It restores whatever vocabulary was in effect when CODE
was called (usually FORTH) and performs some verification that things
are in order. If things are not in order a message will be displayed.

Example:
CODE FOOBAR (CREATE HEADER)
NEXT JMP, (LINK TO FORTH INTERPRETER)
END-CODE (END OF CODE)

The example defines an assembly routine named FOOBAR with a minimum
amount of code defined within it.

The word, FOOBAR, could be called from the keyboard or from within
another FORTH routine. The second 1line NEXT JMP, is required to link
to the system and will be explained in a bit. Try executing FOOBAR,
It may not do much, but it's your first assembly code linked with the
FORTH system. '

28 SUPER~FORTH 64 (TM)

FORTH Assembler Usage

4.3 Opcodes, Operands and Addressing Modes

One of the immediately recognizable confusions arises from the FORTH
Assemblers use of Reverse Notation in specifying the operands and
opcodes. The confusion gets worse in the more complicated addressing
modes. The typical assembler has the following fields which may be
entered (ignoring the comments field):

LABEL OPCODE OFERAND

where OPERAND itself 1is wusually of various forms depending on the
addressing mode used. The FORTH Assembler expects code in the
following form:

OPERAND OPCODE,

where again the OPERAND is broken down into various addressing modes to
be discussed later in this section. There is no LABEL field. This is
because labels are not required in this assembler, since code labels
are used as places to branch to and branches will be generated by
special control structures.,

The OPCODE...OPERAND fields are reversed, and opcodes are always ended
with a comma. Thus, as in the previous example, where a typical
assembler would say:

JMP NEXT
to specify an unconditional jump to the routine NEXT, our FORTH
Assembler requires

NEXT JMP,

here are some examples of typical vs. FORTH assembler for one mode and
simple address mode opcodes:

Typical FORTH

BRK BRK,

PHA PHA,

LDA ADDR ADDR LDA, (ABSOLUTE ADDRESSING)
INC A A INC, (ACCUMULATOR ADDRESSING)

The article 1lists three reasons for having a comma following the
opcode, none of which I particularly subscribe to. I heartily
encourage experimentation with the Assembler source code (source
screens have been provided~ 1If an easier to use implementation is come
up with I'm sure the 6502 based FORTH world would be very grateful.
Please let us know the results if any).

29 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

Simple addressing modes, such as an absolute addresses, pose little
problem (as seen in the above example). Complex operands, however, can
start to look very unfamiliar when coded in the FORTH assembletr.

The immediate mode address mode reverses the value and the #. Also, a
space’ must be left between them. It is worth knowing that the value is
left on the stack for processing. Therefore, FORTH words may be used
to compute an immediate value. This is equivalent to calculating an
immediate expression with a typical assembler, but since ALL FORTH
WORDS are available to perform calculations with, the FORTH Assembler
probably is much more flexible:

TYPICAL FORTH

OPCODE #VALUE VALUE # OPCODE,

LDA #3 3 # LDA,

LDX #>DTA.ADDR DTA,.ADDR 255 AND # LDX,

LDY #<DTA.ADDR DTA.ADDR 8 RSHIFT # LDY,

LDA #ROUT.NFA ' ROUT NFA # LDA,

aADC #8660 60 SIN # ADC,
The first example 1is the more typical use of immediate mode, that is
specifying a simple value. Examples two and three describe ways of
specifying the low and high bytes of a data address (DTA.ADDR leaves
its PFA on the stack when executed). Example 4 describes a way of

loading the name field address of a FORTH routine: ' ROUT leaves the
PFA of ROUT on the stack and NFA converts it to the name field address.
Example 5 1is included just to give you an idea of some of the
interesting (strange?) things that can be done by using other FORTH
words. Here, we want the integer sine of 60 degrees added to the
accumulator.

Okay, at this point we know enough to construct simple programs. The
next example will increment location 32768 by 5 each time it is called.
Following the code definition is a high level definition which tests
the code out. '

CODE INCR32K

CLC, (CLEAR CARRY FOR ADD)
32768 LDA, (GET DATA FROM 32768)
5 % ADC, (INCREMENT IT BY 5)
32768 STA, (PUT IT BACK)
NEXT JMP, { GO BACK TO FORTH)
END-CODE
0 32768 ! (CLEAR 32768 INITIALLY)
: TEST1 { TEST THE CODE)
20 0 DO
INCR32K 32768 ?
LOOP ;
TEST!L

Note that we can call our machine language routine from within a FORTH

30 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

definition, just as if it was another FORTH word. INCR32K can be
executed interactively from the keyboard also. Notice too that by
looking at TEST1 we would have NO IDEA that INCR32K is a machine
language routine! This is one of the niceties of FORTH- programs can
be completely written and debugged in high level and then optimized by
re-writing the time critical words in machine code WITHOUT AFFECTING
THE STRUCTURE OF THE PROGRAM. Try that in another language!

By this point you should be starting to get the idea of how addressing
modes work. If you don't understand the previous part, go over it
again before going on.

Indexed X and indexed Y are similar. The operands are actually very
close to "typical":

TYPICAL FORTH
LDA ARRAY, X ARRAY ,X LDA,
STA ARRAY,Y ARRAY ,Y STA,

Other than the OPERAND OPCODE reversal the only difference is really a
space between the operand and the index.

The final three modes are just slightly stranger than immediate
addressing:

TYPICAL FORTH
JMP (VECTOR) VECTOR) JMP,
EOR (6,X) 6 ,X) EOR,
CMP (DATA) , Y DATA),Y CMP,

As can be seen, the 1left open parenthesis is gone, the address is
separated from the address modifier by a space, and of course the
operand appears before the opcode and the modifier.

In general, the jump indirect instruction will rarely be used (and in
fact it is a good idea to avoid it on any 6502 based chips- there is a
hardware bug [excuse me, feature] involving indirect jumps whose
addresses span page boundaries- JMP ($xxFF) will produce effectively
indeterminate results. It does not matter what page xx is!).

At this point we can write programs using any instruction other than

branches. This code 1initializes variable D1 with 6325, the wvalue of
constant Cl.

31 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

6325 CONSTANT C1l
VARIABLE D1l

CODE MOVEDATA
Cl 255 AND # LDA,
D1 STA,
Cl 8 RSHIFT # LDA,
D1 1+ STA,
NEXT JMP,
END-CODE
MOVEDATA D1 ?

LO BYTE OF Cl
LO BYTE OF D1
HI BYTE OF Cl
HI BYTE OF D1

Cl 255 AND isolates the low byte of Cl, by ANDing its value with $FF
(255). Cl 8 RSHIFT isolates the high byte of Cl by performing an 8 bit
right shift on its value. D1l leaves the address of the low byte of its
data area on the stack. Dl 1+ leaves the address of the high byte of
the D1 data area on the stack.

4.4 Interfacing With FORTH

On entry to the machine language routine the 6510 registers are set up
as follows: The .A register 1is undefined and may be freely used. The
-X register points to the bottom of the parameter stack. On return it
must point to a proper parameter stack value. The .Y register is zero.
It may be freely used. The stack pointer points to one byte below the
bottom return stack item.

Certain values are set up for use by the assembly language programmer:
XSAVE may be used to save the value of the .X register. N defines a 9
byte area from N-1 through N+7 which can be used for temporary
calculations., SETUPN can be used to move values from the parameter
stack to the N area. The bottom stack value is moved to N, the second
to N+2, etc.

32 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

Example:

CODE OVERADD (N1 N2 N3 --— N1 N2 N3 N1+N4)
XSAVE STX, SAVE PARAM STACK PTR.)

3% LDA, # OF VALUES TO BE MOVED TO N)
SETUPN JSR, MOVE THEM)
CLC, CLEAR CARRRY FOR ADD)

N 2+ LDA,
N 4 + ADC,

TAY,
N 3 + LDA,
N 5 + ADC,
XSAVE LDX,

GET VALUE OF N2 LO)
ADD N1 LO)

SAVE LO BYTE)

GET N2 HI)

ADD N1 HI)

RESTORE STACK POINTER)

DEX, MAKE ROOM FOR NEW STACK VALUE)
DEX,
0 ,X STY, (PUT LO ON STACK)
1 ,X STa, (PUT HI ON STACK)
NEXT JMP, { PUSH N2 ONTO STACK)
END-CODE

400 500 600 OVERADD .S DDROP DDROP

This example is a somewhat oblique way of adding together the 2nd and
3rd numbers on the stack and 1leaving them on the bottom of the stack.
Two words, BOT and SEC are provided to ease referencing the bottom and
second to bottom values of the parameter stack. BOT is equivalent to
0,X. SEC is equivalent to 2,X. Let's re-write the OVERADD . routine to
use the values directly from the stack:

Example:
CODE OVERADD2 (N1 N2 N3 --- N1 N2 N3 N1+N2Z)
CLC,
SEC LDA, (GET VALUE OF N2 LO)
4 ,X ADC, (ADD N1 LO)
TAY, { SAVE IT)
SEC 1+ LDa, (GET N2 HI)
5 ,X ADC, (ADD N1 HI)
DEX, { MAKE ROOM ON STACK)
DEX,
BOT STY, { PUT LO ON STACK)
BOT 1+ STA, (PUT HI ON STACK)
NEXT JMP, '

END-CODE
600 700 800 OVERADDZ .S DDROP DDROP

Notice that when we decrement X twice (once for each byte) to point to
a new bottom that wusing BOT reflects this change. Now that we can
manipulate values on the stack, we can easily interface with either
high level routines or other machine language routines which use the
stack. All the outside world needs to know is what goes on the stack
and what remains after the routine is run.

33 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

4.5 Returning to Interpreter

Several return points to the FORTH interpreter are provided.

which is to link back to FORTH must perform a JMP to one of
points. The alternate return points provide easy ways of
parameter stack in the proper form:

NEXT : Has no effect on the parameter stack.

POP : Discards the bottom parameter on the stack. POP is equivalent

to INX, INX, NEXT JMP,.

POPTWO : Discards the bottom two parameters on the stack. POPTWO is
equivalent to INX, INX, INX, INX, NEXT JMP,.
PUSH : Adds a value to the parameter stack. The low byte of the

value must be on the return stack, the high byte is in the .a
register. PUSH is equivalent to DEX, DEX, 1 X STA,

X STA,.

PUT : Copies a value over the bottom parameter on the

stack.
low byte of the wvalue must be on the return stack, the high byte

A routine
the return
leaving the

PLA, 0

is in the .A register. PUT is equivalent to 1 ,X STA, PLA,

0 ,X STa,.

Let's use an alternate return point to shorten our OVERADD example even
more. Remember, the last thing we want to do is to push the new 2 byte

value onto the parameter stack:

Example:
CODE OVERADD3 (N1 N2 N3 --- N1 N2 N3 NI+N2)
CLC,
SEC LDA, GET VALUE OF N2 LO)
4 X ADC, ADD N1 LO)
PHA, SET UP FOR PUSH)

SEC 1+ LDaA,
5 ,X ADC,
PUSH JMP,
END-CODE

GET N2 HI)
ADD N1 HI)
PUSH VALUE AND RETURN)

N e p—

123 456 789 OVERADD3 .S DDROP DDROP

Well, that certainly simplifies it! How does this compare

with high

level FORTH code? I ran a test comparing OVERADD3 with the following

high level routine:

HILVL >R DDUP + R> SWAP ;

Over 10000 executions, OVERADD3 ran in 1.4167 seconds, while

HILVL ran

34 SUPER-FORTH 64 (TM)

The

FORTH Assembler Usage

in 4.7333 seconds. So OVERADD3 ran about 3 1/3 times as fast {BASIC,
by the way, takes about 30 seconds to add two numbers together).

4.6 Code Structures

Now that we can write straight line code, it would be nice if we could
use branches. ~ This assembler provides branches around code the same
way the high level FORTH does: using program constructs. The following
table lists the names of the high and low level constructs:

High Level Low Level
scond IF...ELSE...THEN mcond IF,...ELSE,...THEN,
BEGIN...scond UNTIL BEGIN, ...mcond UNTIL,
BEGIN...scond WHILE...REPEAT BEGIN,...mcond WHILE,...REPEAT,
BEGIN...AGAIN BEGIN,...AGAIN,

There are two differences to the user, the low level word all end with
a comma, and the high level words check for a stack condition (scond)
while the low level words check for a machine status condition (mcond).

The stack condition is specified by a value on the stack. If the value
is 0 the condition is considered false. Anything other than 0 is true.
The machine condition is tested by specifying a condition testing word.
The following table lists these words:

Words Condition Tested

cs Carry status flag set?

0< Negative flag set (<0)

0= Zero flag set (=0)

CS NOT Carry flag clear?

0< NOT Negative flag clear (>=0)?
VS Overflow flag set?

VS NOT Overflow flag clear?

The following example implements a routine which compares two numbers
for equality non-destructively and leaves the result on the stack.

35 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

CODE A= (N1 N2 --- N1l N2 FLAG)
BOT LDA, { GET LO BYTE N1)
SEC CMP, (= LO N2?)
0= IF,

BOT 1+ LDA, (GET HI BYTE N1)
SEC 1+ CMP, (= HI BYTE N2?)
0= IF,
INY, (SET Y=1)
THEN,
THEN,
TYA, PHA, (SET UP FOR PUSH)
0 # LDA, (ZERO HI BYTE)
PUSH JMP,
END-CODE

1435 1235 A= .S DDROP DROP
1435 1435 A= .S DDROP DROP

The machine level routine will run quicker, but look at the simplicity
of the high level routine:

: NON= DDUP = ;

4.7 Subroutines

Subroutines may be created and linked to by creating a header, entering
the assembler, entering the code and ending the subroutine with an RTS:

ASSEMBLER (MUST INVOKE MANUALLY, SINCE NOT USING "CODE")
CREATE ONE+ (B -+~ B+l) |
BOT LDY,
INY,
BOT STY,
RTS,
CODE TWO+ (B -—-- B+2)
ONE+ JSR,

ONE+ JSR,
NEXT JMP,
END-CODE

5 TWO+ .
The example implements a subroutine, ONE+ which performs a byte
increment by one, and an assembler routine, TWO+ which performst a byte
incrment of two by calling ONE+ twice.

WARNING! DO NOT CALL SUBROUTINES FROM HIGH LEVEL~ THE SYSTEM WILL.
CRASH!

36 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

4.8 Macros

A macro 1is a code definition which compiles code when it 1is called.
Macros may be created by enclosing code within a regular colon
definition. When the macro name is invoked, the code within the
definition will be generated:

LSHIFT16 (———) during assembly time
{ N -— N+1) during execution
ASSEMBLER ({ MUST BE INVOKED) .
BOT ASL, (SHIFT LO BYTE)
BOT 1+ ROL, (SHIFT CARRY INTO HI BYTE)
CODE 32MULT (N --- N*32)
LSHIFT16
LSHIFT16
LSHIFT16
LSHIFT16
LSHIFT16
NEXT JMP,
END-CODE
10 32MULT

This example defines a macro, LSHIFT16 which performs a 1 bit shift of
a two byte wvalue. Since a 1 bit 1left shift is equivalent to
multiplying by 2, we can define a routine, 32MULT which multiplies a
value by 32 by invoking LSHIFT16 5 times to generate code for 5 1 bit
left shifts.

Within the macro definition, FORTH can be used to control what actually
gets generated when the macro is invoked. For instance, an alternative
version of the LSHIFT16 macro could accept a number on the stack during
assembly time and generate that many left shifts:

: MLSHIFT16 (M ---) during assembly time
(N -—— N LSHIFT M) during execution
ASSEMBLER
0 DO
BOT ASL,
BOT 1+ ROL,
LOOP ;

CODE 32MULTB (N —— N*32)

5 MLSHIFT16 { GENERATES 5 LEFT SHIFTS)
NEXT JMP,

END-CODE

10 32MULTB

37 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

Both 3ZMULT and 32MULTB have generated exactly the same code! This can
be verified by using DUMP to examine them:

' 3Z2MULT 32 DUMP
' 32MULTB 32 DUMP

Well, there you have 1it. The only thing 1left to do is start writing
some machine lanquage routines. Be warned, it is VERY EASY to crash
the system when writing in machine language! Here are some things to
be careful about:

1) Always be sure to end your code with a JMP to NEXT, PUT, PUSH,
POP or POPTWO. If the jump is missing you will crash since the
system will not know how to link back to FORTH.

2) Be sure you have preserved the .X register and restore it
properly when you are ready to exit your routine.

3) A PHA, without a corresponding PLA, (or a call to PUT or PUSH)
will crash the system since the return stack will have an
improper value in it.

4) A PLA, without a PHA, will crash because you have probably
"trashed" the systems return address.

There are probably thousands of imaginative ways to crash a system

using machine language, but the above four seem to be the ones which
turn up most often.

38 SUPER~-FORTH 64 (TM)

Implementation Specific Words

5. Implementation Specific Words

The Standard MVP FORTH Word Set is listed in Section 6. This section
details the MVP FORTH words which are specific to this implementation
of the MVP FORTH Kernel and the extension words which have been
designed to handle specific Commodore 64 functions. The combination of
these two sets of words comprise the SUPER FORTH 64 Word Set.

The implementation specific words and extensions fall into the
following categories:

1. Editor Words
2. File Mcde Words
3. C64 Primitive Words
4. C64 Specific I/0 Words and Extensions
5. Cb4 Kernel Interface Words
6. C64 System Utility Words
7. Graphics Words
8. Turtle Graphics Words
9. Sound Words
10. Music Editor Words
11. String Words
12, Interrupt Words
13. Display Screen Words
14. High RAM Access Words
15, Data Structure Words
16. Math Words

The notation used to describe FORTH words is as follows:
1) The word name and a brief description of its use.
2) A stack description of the following format:
{ input --- output) text

where "input" ‘is a 1list of the wvalues which are expected on the
stack upon entry to the word and ‘"output" is a list of values
which are left on the stack by the word at the end of its
execution. "Text", if 1included, is entered after the word's
name. Text in brackets, such as [(filename] indicates that the
text following the word is optional.

3) A déscription of the usage and operation of the word.

4) An example of usage, where appropriate.

39 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.1 Editor Words

New FORTH definitions may be saved by editing them onto a FORTH screen.
Editing within a screen remains the same with either mode (File Mode or
Standard Mode). The differences are in initial access to screens and
loading. In Standard Mode screens are accessed as described in
STARTING FORTH, that is, individually, by block number. In File Mode a
file workspace is set up either by using F-NEW to create an area for
editing a new file, or by using F-EDIT to read in a previously created
file for editing.

The editor vocabulary 1is entered either by 1listing a screen, using
LIST, or by typing the word EDITOR. A line is edited by LISTing out a
block (the LISTed block becomes the current screen) and using the
Commodore screen edit keys to enter or modify a particular line of a
screen (that line becomes the current line). The FORTH words "1)
2)...15)" are used to insert the text following them on that numbered
line. LIST can be stopped prematurely by hitting any key while the
LIST is occuring. This may be useful for editing a screen which does
not completely fit on the monitor

The FORTH editor extensions are provided to ease copying 1lines, moving
lines around, etc. The current screen number is stored in SCR. The
current line number is stored in R#.

Example: This example describes a typical Standard Mode editing
session. Most of the common editing commands will be used,
therefore it is recommended that the beginning user follow the
example referring to the appropriate section to understand the
commands which are being performed. Let's say we wish to
perform the following edits for our session:

1) Enter new text on screens #100, 101, 102 and 103.
2) Re-edit 102.

3) Enter new text on 104.

4) Re-edit 100 and 101,

5} Load in screens 100 to 104 and test definitions.

Follow this example on a formatted (NEW'd) blank diskette:

100 LIST (SETS THE EDITOR SCREEN POINTER)
W (CLEAR SCREEN 100 FOR EDITING)

{ POSITION CURSOR AND ENTER THE FOLLOWING)
0) {(EDITOR EXERCISE: SCREEN 100)

1) : TESTI1

2) ." THIS IS SCREEN 100 "

3) CR ; _

D-CLEAR (THIS SHOULD CLEAR THE BOTTOM OF SCREEN)

'L (LIST OUT 100 TO VERIFY - IF NOTHING IS ON IT
BE SURE YOU ENDED EDITING LINES WITH A CARRIAGE RETURN)

10 SUPER-FORTH 64 (TM)

Implementation Specific Words

112 C (COPIES LINE 1 TO LINE 12)

213 ¢C (COPIES LINE 2 TO LINE 13)

314 C (COPIES LINE 3 TO LINE 14)

L (LIST SCREEN TO VERIFY EDITS)

12 5 M { MOVES LINE 12 TO LINE 5 & EXTRACTS 12)
12 6 M (MOVES LINE 12- WAS PREVIOUSLY LINE 13)
12 7 M (MOVES LINE 12- WAS 14)

L (LIST SCREEN TO VERIFY EDITS)

2 XL (EXTRACT LINE 2 AND LIST SCREEN)

1 K2 KL (KILL LINES 1 AND 2 AND LIST SCREEN)
40L (OPEN LINE 4 AND LIST)

N W (THIS WRITES OUT 100, CLEARS & LISTS 101)
100 7 SC (COPIES LINES 5-7 FROM PREVIOUS SCREEN INTO)
100 6 SC (LINES 4-6)

100 5 SC (LINE 4 WAS PREVIOUSLY EDITED LINE)

L { LIST SCREEN)

F (WRITE OUT SCREEN 101)

101 102 COPY 102 LIST (COPY SCREEN 101 TO 102)
N W (WRITE OUT 102, CLEAR & LIST 103)

(POSITION CURSOR TO AND ENTER THE FOLLOWING)
0) (EDITOR EXERCISE: SCREEN 103)

1)

2) : TEST3

3) THIS LINE WILL BE REMOVED

4) ." SCREEN #1103 "

5) ." ANOTHER LINE " ;

D-CLEAR

50L (OPEN LINE 5 & LIST SCREEN)

(POSITION CURSOR TO LINE 5)
5) CR

(POSITION CURSOR TO BOTTOM OF SCREEN)
3XL { REMOVE LINE 3 & LIST SCREEN)
PL (WRITE 103 & LIST 102)

(POSITION CURSOR TO LINE 0)
0) EDITOR EXERCISE: SCREEN 102)

(POSITION CURSOR TO LINE 4)

4) : TEST2

5) ." THIS IS SCREEN 102 "

D-CLEAR (LEAVE A SPACE AFTER D-CLEAR)

104 L W (WRITE 102, LIST CLEAR & LIST 104)

{ POSITION CURSOR & ENTER TEXT)
0} (EDITOR EXERCISE: SCREEN 104)

41 SUPER-FORTH 64 (TM)

Implementation Specific Words

l) : TEST4 ." SCREEN 104 " ;
D-CLEAR
100 L { WRITE OUT 104 AND GO BACK TO 100)

2X2X2XL (MOVE TEXT DOWN TO LINE 2)

(POSITION CURSOR TO LINE 2)

2) : TESTO
D-CLEAR
N L { WRITE OUT 100 & LIST 101)

(POSITION CURSOR & ENTER TEXT)
0) (EDITOR EXERCISE: SCREEN 101)

(POSITION CURSOR & EDIT TEXT)

5) ." THIS IS SCREEN 101 "
D-CLEAR
F (WRITE OUT 101)

(IF THE PREVIOUS WAS CORRECTLY ENTERED NOTHING SHOULD)
(BE WRITTEN WHEN THE FOLLOWING COMMAND IS EXECUTED)
SAVE~-BUFFERS

(INDEX CAN BE USED TO CHECK LINE ZERC OF A SET OF SCREENS)
100 104 INDEX

100 104 THRU (LOADS DEFINITIONS INTO DICTIONARY)
{ WE COULD HAVE LOADED SCREENS INDIVIDUALLY WITH)
(100 LOAD 101 LOAD 102 LOAD 103 LOAD 104 LOAD)
VLIST (VERIFIES DEFINITIONS HAVE BEEN LOADED)
(TEST OUT NEW DEFINTIONS)

TESTO

TEST1

TEST?2

TEST3

TEST4

FORGET TESTO (FORGETS ALL TEST DEFINITIONS)

Notice that during normal editing, screens are automatically flushed
(written out to the disk) by using the editing commands N, P, L or F.
It 1is a good practice to use SAVE-BUFFERS (also called FLUSH in
STARTING FORTH) at the end of an editing session to insure that all
screens have been written out to disk.

5.1.1 Confiquring the Editing Screen
SUPER FORTH 64 provides the user the flexibility of determining his
optimal screen format and configuring the system for that format. A

screen always occupies 1024 bytes in memory, but how it is displayed is
determined by the word C/L, a word which returns the number of

42 SUPER-FORTH 64 (TM)

Implementation Specific Words

characters per listing 1line. The number of 1lines to be 1listed is
determined by the number of characters in a screen buffer {1024)
divided by C/L. The initial system is confiqured for 64 characters per
line (typing C/L . should display 64). Therefore, the initial screen
format is 16 lines by 64 characters (1024/64=16 lines).

A user may wish to change the default format for various reasons. 1If a
user never overflows his lines on the screen, for instance, he may
prefer 35 characters per line, not wasting the 29 characters per line
(positions 36 thru 64) which are always blank filled by the system. A
format of 35 characters by 29 lines may also be useful for defining
sprites using S-DEF. If the number base is changed to binary, a
pictoral representation of the sprite may be entered as data (see S-
DEF).

To change the listing format, the number of characters per line must be
placed in C/L. This can be accomplished as follows:

chars ' C/L !
The additional Editor words 16), 17) ... will have to be defined to
enable the Editor to handle the extra lines on the screen. The editing
screen which defines 0) ... 15) alsoc contains auxillary definitions for
lines 16) ... 24), but these are not compiled into the initial system.

For example, to change the listing format to 40 characters by 25 lines,
the following must be done:

DEFINE EDITOR COMMANDS FOR LINES 16 THRU 24)

(

: 16) 16 SE ; : 17) 17 SE ; : 18) 18 SE ;
: 19) 19 SE ; : 20) 20 SE ; : 21) 21 SE ;
: 22) 22 SE ; : 23) 23 SE ; : 24) 24 SE ;

(CHANGE CHARACTERS PER LINE TO 40)
40 ' C/L !t

Once the change has been made, screens which have been entered using a
different format will appear jumbled. However, once the 1line
definitions have been entered, changing format back (to list screens on
the master disk, for instance) is easy:

64 ' C/L ! (CHANGES BACK TO DEFAULT FORMAT)
(LIST OR EDIT 64 CHARACTER FORMAT SCREENS)
40 ' C/L 1 { CHANGES TO 40 CHARACTER FORMAT)

1 recommend that if you change to another format, that format be stuck
to. This will avoid screen format confusion

43 SUPER~FORTH 64 (TM)

Implementation Specific Words

5.1.2 € : Copy A Line On A Screen
(FROM§ TO§ ——-)

On the current screen copy the line at FROM# over the line at TO#. The
line at FROM# remains the same.

Example: 14 3 C will copy line 14 over line 3 on the current screen.
Line 14 will be untouched.
5.1.3 COPY : Copy Screen
(FROM# TO# ---)

Copies screen FROM# to screen TO#.

5.1.4 EDITOR : Use Editor Vocabulary

(=)

This word may be used prior to editing to insure that the EDITOR
vocabulary is invoked. The EDITOR is kept as a separate vocabulary so
that no conflict will arise with other words having the same names as
EDITOR words.

5.1.5 F : Flush (Save) The Current Screen
(===

In Standard Mode, this is used to flush (save) the current screen to
the disk if the screen has been updated since the last flush. Unlike
using SAVE-BUFFERS (or FLUSH as STARTING FORTH recommends) the flushed
screen will remain accessible without re-reading it, F performs no
action if the screen has not been updated since the last flush.
F is automatically invoked by N and P, This insures that when moving
to the next or previous screens, the information in the current screen
will be saved. F only need be wused if LIST is used to get the next
screen to update.

5.1.6 K : Kill A Line

(LINE# ---)
Kill (replace with blanks) the line at LINE# on the current screen.

Example: 10 K replaces line 10 with blanks.

44 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.1.7 L : List A Screen

(IN] ===)

LISTs the ASCII symbolic contents of a screen to the current output
device. . If there is no parameter on the stack then the current screen
is listed to the current output device. If there is a parameter on the
stack then the current screen is flushed if it has been updated and
screen N is listed to the current output device. Edits may be made
directly to the lines listed by using the CRSR keys to position the
cursor and the INST/DEL key for inserting for deleting text from the
line, Edits on a line must be ended with a carriage return (this form
of editing is the same as in BASIC).

Example:
L (LISTS CURRENT SCREEN)
20 L (FLUSHES CURRENT SCREEN AND LISTS SCREEN 20)

5.1.8 LIST : List A Screen
(N ---)
Lists the ASCII symbolic contents of screen N on the current output
device, setting N as the current screen. N is stored in the current
screen variable, SCR. Also invokes the EDITOR vocabulary if it is not
already invoked.

Example: 1 LIST lists screen 1.

5.1.9 M : Move A Line On A Screen
(FROM# TO# -—-—-)

Copies line at FROM# to line at TO# and extracts line at FROM# from the
current screen,

Example: 4 13 M will insert line 4 under line 13 and removes line 4.

5.1.10 N : Next Screen
(===)

Flushes the current screen if it has been updated (see F) and sets the
current screen to be the next sequential screen number.

Example: If the current screen is 5, N L would flush screen 5, set
the current screen to 6 and list it.

45 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.1.11 O : Open A Line For Input

(LINE}# ——)

Opens up the line at LINE# by moving from LINE# to 14 down 1 line.
Line 15 is lost and LINE# is set to blanks.

Example: 6 O will open up line 6 by moving lines 6-14 to 1lines 7-15
and blanking out line 6.

5.1.12 P : Previous Screen

(===)

Flushes the current screen if it has been updated (see F) and sets the
current screen to be the previous screen number. '

Example: If the current screen 1is 5, P L would flush the current
screen, set the current screen to 4 and list it.
5.1.13 SC : Copy Line From Different Screen

(SCR# LINE# ---)

Opens the current line in the current screen and copies LINE# from SCR#
screen into it. The current line and current screen remain the same.

Example: If the current screen is 5 and the current line is 10, 8 &
SC will move lines 10-14 to 11-15 on screen 5 and copy line 4
from screen 8 into line 10 of screen 5.
5.1.14 SCOPY : Copy A Group of Screens
(FR-START FR-END TO-START ---)
Copies the group of screens from FR-START thru FR-END to the area
starting at TO-START. This is useful for re-arranging areas of a
standard disk. The copy proceeds from low to high, so be careful of
overlapping areas!

Example: 5 10 14 SCOPY copies screens 5-10 to screens 14-19.

5.1.15 SM : Move Line From Different Screen
(SCR§f LINE# ---)

Opens the current line in the current screen, extracts LINE# from SCR#

46 SUPER-FORTH 64 (TM)

Implementation Specific Words

and copies it into the current line in the current screen. The current
line and current screen remain the same.

Example: If the current screen is 5 and the current line is 8,
typing 10 2 SM will open line 8 (moving 8-14 down one line),
copy line 2 of screen 10 into line 8 of screen 5, and remove
line 2 of screen 10.

5.1.16 W : Wipe the Current Screen Clear

(===

Sets the contents of the current screen to blanks and LISTs it. This
should always be used prior to initially editing a screen in Standard
Mode. In File Mode W 1is not necessary since the buffers are
initialized to blanks.

Example: N W will flush the current screen, set the next to current,
wipe it and list out the blank screen. This is wuseful when
initially entering a set of sequential screens.

5.1.17 X : eXtract A Line
(LINE§ ———)

Extracts (removes) the 1line at LINE# from the current screen. All
lines from LINE# until the end of the block are moved down one line.
Line 15 is blanked out.

Example: 3 X Extracts line 3 of the current screen, moving lines 4-
15 to 3-14 and blanking out line 15.

5.2 Source Screen File Mode Words

The words in this section are used to control source screen editing
when in File Mode. The parameter [filenamel is an optional filename
which may be entered in quotes after the word is entered. If
[filename] is entered it becomes the default filename, that is, the
filename which is wused to name the source file in’ following commands
-where [filename] is not entered.

Since File Mode defaults to program files to store source code, using
the system for either cassette or disk is simply a matter of specifying
the system device number in SYSDEV where cassette is device 1 and disk
is one of device numbers 8 through 12.

Example:

SYSDEV !

47 SUPER-FORTH 64 (TM)

Implementation Specific Words

will set the system to use cassette for file mode.

A File Mode type file can easily be converted to Standard Mode on disk
by using F-EDIT to read the file in, use F-NUMBER to renumber the
screens to the new Standard Mode area, F-EXIT to exit File Mode, and
SAVE-BUFFERS to save the screens out in Standard Mode. See F-NUMBER
for an example of File Mode to Standard Mode conversion.

A brief description of various File Mode words follows: F-NEW is used
to creater a new FORTH source file. After editing screens F-SAVE is
used to save the file, F-EDIT is used to read an existing source file
into memory for editing. F-APPEND will append a source file to screens
already in memory. F-LOAD loads the source file in and compiles it
into the dictionary. F-NUMBER 1is useful for re-numbering screens for
conversion to or from Standard Mode. Typing F-NEW, F-EDIT, F-SAVE and
F-LOAD automatically enter File Mode from Standard Mode.

Because the complete file must reside in memory for editing, if File
Mode is to be used extensively it is recommended that the user create a
special editing system which would make full wuse of the buffer space
available. The following code produces such a system and saves it as a
program file,

FORGET S-MULTIR
(INSERT FORTH SOURCE SCREENS DISKETTE)

25 26 THRU (LOAD MAX-BUFFS, DSWAP)

42 45 THRU (LOADS EDITOR)

MAX-BUFFS (ALLOCATES THE MAX # OF BUFFERS)}
F-NEW ' (INITIALIZES SYSTEM FOR FILE MODE)

(INSERT A BLANK, FORMATTED DISKETTE)
SAVE-FORTH "SUPER FORTH.EDIT"

Note: The new system is an "edit only" system and should not be used
to attempt loading in the edit program since only a limited
amount of dictionary space is available and many of the higher
level extensions (which may be required by the application) have
been removed.

5.2.1 F-APPEND : Append A File To Block Buffers
{ -—-——) [filename]
Assumes the block buffers have already been set up and contain
information. Uses variable FLAST to determine which block buffer to
start reading the file into and reads the file in, appending it to

screens which are already in the block buffer area. FLAST - is updated
to point to the last screen number assigned for the file.

For example:

F-EDIT "FILE1" { Reads first file into buffers)
F-APPEND "FILE2" (Appends another file to first)

48 SUPER-FORTH 64 (TM)

Implementation Specific Words

{ perform editing of screens }

F-SAVE "NEWFILE" { Saves the concatenated file)
or
" SO0:FILEl1" DOS (Scratches FILEl)

F-SAVE "FILE1" (Replaces FILEl with the new file)

5.2.2 F-EDIT : Set Up To Edit File
(———) [filename]

Sets File Mode, initializes the block buffers, sets the default
filename (if given) and reads the default file into the block buffer
area for editing. Variable FLAST is set to the number of the last
screen read in. An error condition exists if a file of the given name
does not exist. The screens numbers will go from 1 to the screen
number stored in FLAST.

Note: There must be enough buffers available to read in
the file. If not, the end of the file will not
be read in and the file must be read in again
after changing the number of buffers.

Example: F-EDIT "FILE" reads FILE into the block buffers for
editing.

5.2.3 F-EXIT : Exits File Mode

(=)

Sets up system to use "standard" mode for editing source screens. Does
not affect the block buffer contents.

5.2.4 F-LOAD : Load File Into System
(——) [filename]

Opens file of name “"filename", reads the file in and performs a LOAD of
each block as it is read in. Closes file when load is finished. P~
LOAD requires a minimum of 2 buffers. to be allocated for loading.
Therefore, if a large program is to be loaded, set the number of system
buffers to 2 to minimize buffer space.

F~LOAD must be used AFTER a file has be saved using F-SAVE, since it

reads the file in as it loads it. LOAD or THRU may be used to 1load in
screens directly from the block buffers while still in edit mode.

49 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example:

F-LOAD "filename"

5.2.5 F-NEW : File Mode Initialization

—

Initializes the system for File Mode. Calls FILE-MODE, empties and
resets block buffer pointers, initializes FLAST to 0 and initializes
SCR to 1. This word is called by F-EDIT and F-LOAD, so File Mode is
automatlcally entered by 1nvok1ng one of those words. Can be used to
insure the block buffers are initialized correctly.

5.2.6 F-NUMBER : Renumber the Block Buffer Screens

{ start ---)

F-NUMBER will renumber the used blocks of the block buffer area.
Numbering proceeds seguentially from "start". The buffers are checked
starting with the buffer at FIRST. If the buffer has been used, it is
assigned the next sequential number. "All used blocks will be marked at
UPDATEd.

This word is useful for conversion between Standard Mode and File Mode.
File Mode screens are always numbered starting from 1, therefore if
more than one File Mode file is to be put onto a Standard Mode disk,
the screens must be renumbered first. Since F-NUMBER also marks
screens as UPDATEd, SAVE-BUFFERS can be used to save the newly re-
numbered screens to a standard disk after using F-EXIT to leave File
Mode.

Example: If a File Mode file TESTFILE is 8 screens long and we wish
to convert the file to Standard Mode and place the screens at
screen 40 through 47, the following sequence may be used:

F-EDIT "TESTFILE" Reads TESTFILE into buffers)
40 F-NUMBER Renumbers screens & sets update)

{
(
P-EXIT { Leaves File Mode, enters standard)
SAVE-BUFFERS (Saves 8 screens at 40 through 47)

5.2.7 F-SAVE : Save Source Screen File
{ ~—) [filename]
Sets the default filename if given. Opens the default file and writes

the screens in the block buffers to that file. Closes the file when
done.

50 SUPER-FORTH 64 (TM)

Implementation Specific Words

If the file already exists and a replacement is desired, first scratch
the old file before saving the new one.
Examples:

F-SAVE "TESTFILE"
saves the buffers to a new file called TESTFILE.
" S0:TESTFILE" DOS F-SAVE "TESTFILE"
replaces the previous TESTFILE with the contents of the block
buffers.
5.2.8 FILE-MODE : Invoke File Mode
(——~) [filename]
This is the primitive used by other File Mode words to invoke File Mode
and set up the default filename. It invokes DRO, sets the mode to 1
and replaces <R/W> (the standard disk read/write routine) with FR/W (a
dummy read/write routine which performs no I/0 and drops all arguments
passed to it) assuring that standard block I/0 cannot occur (this can
still be over-ridden, however, by words such as INDEX and BACKUP which
use RWTS directly, bypassing the standard system.
5.2.9 FLAST : Last Screen Variable
(-——- ADDR)
Variable which contains the highest screen number accessed in File
Mode. This variable can be examined after using F-EDIT to determine
how many screens were read in.
5.2.10 FNAME : Default File Name
(--- ADDR)
String variable which is set up by FILE-MODE to contain the default
file name.
5.2,11 F-OPEN : Open Default File
(PFLAG ——~)
Primitive invoked by various File Mode words to open logical file 9 as
the file in FNAME on the current system device. If FLAG=0 the file is

opened as a "read" file. If FLAG=1 the file is opened as a "write"
file.

51 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.2.12 READB : Read Block Into Buffer
(ADDR ---)
Primitive invoked by F-APPEND and F-LOAD to read 1024 characters from
the currently opened file into the buffer at ADDR.
5.2.13 WRITEB : Write Block Into File
{ ADDR ---)
Primitive invoked by F-SAVE to write 1024 characters from the buffer at
ADDR into the currently opened file.
5.3 (€64 Bit/Byte Manipulation Words
Many of the words in this section were defined to implement particular
functions related to the Commodore 64. They are available for use by
the user.
5.3.1 CATNIB : Concatenate Two Nibbles
{ NH NL -——- BYTE)

Concatenate the two nibble (4-bit) wvalues, NH and NL into the byte (8-
bit) value BYTE.

Example: HEX 8 9 CATNIB leaves 89 on the stack.

5.3.2 CBIT : Clear Bits in Byte
{ ADDR MASK ---)

Clears the bits in the byte at ADDR according to the bits set in MASK.
If a bit is set to 1 in MASK the corresponding bit of the byte at ADDR
will be cleared. The remaining bits will be unchanged. This word can
be used to clear one or more bits of an I/0 register. '

Example: HEX DO0l6 18 CBIT clears the multi-color mode and the 40

column select bits in the VIC Control Register (see memory map
in C64 reference manual).

52 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.3.3 FBIT : On Flag CBIT/SBIT in Byte
(FLAG ADDR MASK ---)}

If FLAG is true (1) calls SBIT to set the MASKed bits in the byte at
ADDR. 1If FLAG is false (0) calls CBIT to clear the MASKed bits in the

byte at ADDR.

Example: HEX 1 D016 18 FBIT sets the multi-color mode and the 40
column select bits in the VIC Control Register (see memory map
in C64 reference manual).

5.3.4 LSHIFT : Perform a 16-bit Left Shift
(N #BITS --- N)

Shifts the 16-bit value N left the number of bits specified in ¥BITS.
Zerces are shifted in from the right. This can be used to effect a
fast unsigned multiply by a power of 2. For example, to multiply N by
256 (2**8), N 8 LSHIFT can be used. This will execute many times

faster than N 256 *,

5.3.5 MASK : Calculate 2%*N
{ N ——— 2%%N)
Given N leaves the value of 2**N (2 to the power of N) on the stack.
This utility can be used to convert a bit number into a bit mask which
can be used to set or clear a particular bit of a memory byte.

Example: HEX D016 4 MASK SBIT creates a MASK and sets the multi-
color bit in the VIC Control Register.

5.3.6 RSHIFT : Perform a 16-bit right shift

(N #BITS -—— N)

Shifts the 16-bit value N right the number of bits specified in #BITS.
Zeroes are shifted in from the left. This can be used to effect a fast
unsigned divide by a power of 2. For example, to divide N by 256
(2**8), N 8 RSHIFT can be used. This will execute many times faster

than N 256 /.

53 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.3.7 SBIT : Set Bits in Byte
(ADDR MASK ---)

Sets the bits in the byte at ADDR according to the bits set in MASK.
If a bit is set to 1 in MASK the corresponding bit of the byte at ADDR
will be set. The remaining bits will be unchanged. This word can be
used to set one or more bits of an I/0 register.

Example: HEX D016 18 FBIT sets the multi-color mode and the 40
column select bits in the VIC Control Register (see memory map
in C64 reference manual}.

5.3.8 SPLIT : Split A Cell Into Two Bytes
(N -—- BH BL)

Split the 16-bit value into its component byte values, leaving on the
stack hi byte, low byte.

Example: HEX 89AB SPLIT 1leaves 89 AB on the stack.

5.4 C64 Specific 1/0 Words & Extensions

The SUPER FORTH 64 I/0 system has been designed to provide flexibility
in dealing with I/0 devices on the C64. The system provides the
capability of re-directing I/0 to any opened device. The words EMIT,
." , PRINT# and PUT# (which provide the FORTH output) and ?TERMINAL,
GET#, KEY, CHARIN, INPUT and INPUT# (which provide input) use the C64
Kernel to perform I/O to the device which has been specified.

CMDI or words which use CMDI, such as GET# and. INPUT#, automatically
set INPLFN. CMD or words which use CMD, such as PUT# and PRINT#,
automatically set OQUTLFN.

For example, to talk to an RS-232 device instead of the C64 keyboard
and monitor, the user would open the RS-232 device and . store the
logical file number in the Standard 1/0 variables, INPLFN and OUTLFN:

10 " <ctl-f>" RS232 (opens a 300 baud RS-232 logical file)
10 CMD (directs output to logical file 10)
10 CMDI (directs input from logical file 10)

To set defaults either perform a warm start or set INPLFN and OUTLFN to
O (0 CMDI and 0 CMD will perform the function}.

To write data to a Commodore sequential file the user could open the
file, direct output to that file, and restore defaults when done. To
read from that file the user could direct input from the file, get the
input and then re-direct input for the interpreter.

54 SUPER-FORTH 64 (TM)

Implementation Specific Words

Files should not be opened with logical file number 9 since this is
reserved for system disk/cassette operation.

A word, PRINTER, is provided to open a file and direct output to a
standard Commodore 1525 printer.

5.4.1 ?TERMINAL : Query Current Input Device For Character
(-——C)

This word performs the BASIC GET function- it returns an ASCII value
from the keyboard. 1If no key has been depressed a zero is returned.

Example:

s TEST
10000 0 DO
?TERMINAL ?DUP
IF . LEAVE THEN
LOOF ;

When invoked, TEST loops, waiting for a key to be depressed. If a
key is depressed its ASCII wvalue is printed, otherwise
eventually the loop ends and nothing is printed.

5.4.2 CMD : Set File Number As Current Output Device

(LFN -—-)

This word performs a function similar to the BASIC CMD. The logical
file number LFN 1is stored in OUTLFN, the current output device
variable. Output will then be directed to the file referenced by LFN
until the value of OUTLFN is changed or the file is closed.

Example:
10 4 0 "" OPEN (OPENS CHANNEL TO PRINTER)
10 CMD (DIRECTS OUTPUT TO PRINTER)

Causes all output to be directed to the printer until the wvalue of
OUTLFN is changed.

0 CMD

re-directs output back to the screen.

55 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.4.3 CMDI : Set File Number As Current Input Device
(LFN ---)

This word performs the input version of CMD. The logical file number
LFN is stored in INPLFN, the current input device variable. Input will
then be directed from the file referenced by LFN until the value of
INPLFN is changed or the file is closed.

Example:
10 " {ctrl-f}" RS232 (OPENS 300 BAUD RS-232 CHANNEL)
10 CMDI { DIRECTS QUTPUT TO RS-232)

Causes all input to be directed from the RS232 device until the
value of INPLFN is changed.

5.4.4 EMIT : Output Character
. { ASCII-VALUE ---)
Transmit an 8-bit character value to the current output device. The

current output device is the logical file number stored in OUTLFN {see
OUTLFN for setting alternate output devices).

Example:
65 EMIT

Sends an "A" to the current output device.

5.4.5 EMIT7 : Output 7-Bit Character

This word zeros the left most bit in the character and then sends it to
EMIT. 1Its primary use is in printing out FORTH word name fields using
the word ID. . Since the high order bit in the last character - of the
name field is used as a flag to signal the end of the field, that bit
must be zeroced in order to print a correct representation of the name
field.

5.4.6 EXPECT : Get Input Line
({ ADDR N —--—-)

As defined 1in ALL ABOUT FORTH except it uses CHARIN for input, thus
allowing screen editing functions to be performed before a line is sent
to the system input buffer. Uses the logical file number stored in
INPLFN as the device to take input from (see INPLFN for setting
alternate input devices}).

b6 SUPER-FORTH 64 (TM)

Implementation Specific Words

'5.4.7 FRE : Display Amount of Free Space Available
{ —~ BYTES)
Displays to the current output device the amount of space available
from the top of the dictionary thru the value of LIMIT.
5.4.8 GET# : Get A Character From File
(LFN ——— N)
This word performs the BASIC GET# function. LFN is first stored into
the variable INPLFN, making LFN the current input file, GET# then

returns an ASCII value from the keyboard. If no key has been depressed
a zero is returned,

Example:
: TEST
10 " {ctrl-f}" RS232 (OPENS A 300 BAUD RS-232 CHANNEL)
BEGIN
10 GET# (GET CHAR FROM RS5-232)
2DUP IF 0 PUT# THEN (ECHO IT TO SCREEN)
0 GET# { GET KEYBOARD CHAR)
?DUP IF 10 PUT# THEN (SEND TO RS-232)
AGAIN ;

This example performs the function of a simple terminal program.
After using a "run-stop/restore" sequence to exit the example,
type "10 CLOSE" to close the RS-232 file.

5.4.9 INPLFN : Input Device Logical File Number
(-—~ ADDR)

Returns address of the system variable INPLFN. The logical file number
(LFN) of the current input device is stored in INPLFN. System input
words KEY and CHARIN call the Kernel routine CHKIN with the LFN stored
in INPLFN before performing input, thus enabling system input from
devices other than keyboard. To use other devices (such as RS-232),
first use OPEN to set up the LFN and open the device, then store the
LFN of the opened device in INPLFN. To reset to the system default
either store a 0 in INPLFN, CLOSE the opened input channel, or depress
RUN-STOP/RESTORE to perform a system warm start.

57 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.4.10 INPUT : Input A Number From Current Input Device
(-—-— N)

Upon execution of this word, the system pauses and waits for the user
to 1nput a number from the current input file (see INPLFN). The single
precision number is left on the stack.

Example:

TEST
CR ." ENTER NUMBER: " INPUT

CR 0DO I . LOOP ;

Invoking TEST will cause the system to prompt and wait for entry of
a number. The second part of TEST uses the entered number as
the final value of the DO loop (use small numbers if you want to

try this).

5.4.11 INPUT# : Input A Number From File

(LFN ~—— N)

Upon execution of this word LFN is stored into INPLFN as the new
current input file. The system then pauses and waits for the user to
input a number from this input file (see INPLFN). The single precision
number is left on the stack.

Example:

10 " {ctrl-£}" RS232
10 INPUT# (user enters number)
0 CMDI { RESTORE INPUT FROM KEYBOARD)

The first line of the example opens an RS-232 device as a logical
file. The next 1line sets up the RS-232 device as the current
input file, waits for a number to come from it and prints the
number, The "0 CMDI" resets the system to accept input from the

keyboard.
5.4.12 JOY1l : Joystick Constant

{ -——— $DCO1)

Returns the address of joystick 1. Fetching from this address will get
the latest value of joystick 1.

Example: JOY1 C@ gets the value of the current position of joystick
1.

58 SUPER-FORTH 64 (TM)

—

Implementation Specific Words

5.4.13 JOY2 : Joystick Constant
(——- $DCO00)

Returns the address of joystick 2. Fetching from this address will get
the latest value of joystick 2.

Example: JOY2 C@ gets the value of the current position of joystick
2.

5.4.14 KEY : Input Character
(-— CHAR)

Get a character from the current input devce. The contents of INPLFN
are used to set up the input device.

5.4.15 MODE : Source File Mode Variable
(-—— ADDR)

Variable which determines the systems block buffer mode of operation.
If MODE=0, Standard Mode is used. 1If MODE=1, File Mode is used. FILE-
MODE and F-EXIT automatically change MODE to enter and exit File Mode.

5.4.16 OQUTLFN : Output Device Logical File Number
(-—- ADDR)

Returns address of the system variable OUTLFN. The logical file number
(LFN) of the current output device is stored in OUTLFN. System output
word EMIT calls the Kernel routine CHKOUT with the LFN stored in OUTLFN
before performing output, thus enabling system output from devices
other than keyboard. To use other devices (such as R§-232), first use
OPEN to set up the LFN and open the device, then store the LFN of the
opened device in OUTLFN. To reset to the system default either store a
0 in OUTLFN, CLOSE the opened output channel, or depress RUN-
STOP/RESTORE to perform a system warm start.

5.4.17 PADDLE@ : Fetch Paddle X,Y Values

(-—-- XVALUE YVALUE)
Gets the values of the X-paddle and Y-paddle A/D outputs. XVALUE and
YVALUE range from 0 to 255.
Example: PADDLE@ . . will print the x and y values of the paddle
registers.

59 SUPER~FORTH 64 (TM)

Implementation Specific Words

5.4.18 PRINT# : Print A Number To File
{ N LFN ---)

Upon execution of this word LFN is stored into OUTLFN as the new
current output file. The value of N is then displayed on the current
output device.

Example:

10 4 0 "" OPEN
1234 10 PRINT#
0 CMD

This example opens a printer as a logical file, re-directs output to
the printer, prints the number "1234" and finally resets output
to go to the display screen.

5.4.19 PRINTER : Open a Printer File and Re-direct Output

(FLAG ---)

This word is included to enable users to easily direct output to a
1525E printer. When invoked with FLAG=ON, PRINTER opens logical file
number 127 as a printer output unit and re-directs output to the
printer. All system output will go to the printer until one of the
following occurs: 1) OFF PRINTER 1is invoked, 2) RUN-STOP/RESTORE
sequence warm starting the system, 3) 127 CLOSE is entered, closing the
printer file, 4) a command is entered which directs output to 'a non-
printer file (such as 0 CMD).

When invoked with FLAG=0OFF, PRINTER closes logical file 127 and directs
cutput to the display screen (performs a 0 CMD),

Example:
ON PRINTER (OPENS PRINTER FILE)
." TO PRINTER "
0 CMD { DIRECTS OUTPUT TO SCREEN)
." TO SCREEN "
127 CMD { DIRECTS OUTPUT TO PRINTER)
12 EMIT (SEND PAGE EJECT TO PRINTER)
0 TRIAD (PRINT THREE SCREENS)
12 EMIT (SEND PAGE EJECT)
0 10 INDEX (PRINT INDEX OF SCREENS)

OFF PRINTER

This example demonstrates various things which can be done by re-
directing output between the printer and the display screen.

60 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.4.20 PUT# : Set Output File and Send Character
(CHAR LFN ---)

LFN is first stored into the variable OUTLFN, making LFN the current
output file. PUT# then sends CHAR to the output file.

Example: See GET# for an example of a simple terminal program which
utilizes PUT#.

5.4.21 RS232 : Open An RS5-232 Channel

(LFN ADDR ---)

This word is used to open an RS-232 channel for I/0 operations to use.
LFN specifies the logical file number of the channel. ADDR specifies
the address of a string which contains command information for the
channel. Use of the immediate string word, "", will leave a proper
address on the stack. The channel is opened to device number 2 with a
secondary address of 0,

Note : In opening RS-232 files characters with the numeric values 1-
26 may be entered by depressing ctrl-a to ctrl-z.

Example:

10 " {ctrl-f}" RS232
10 CMDI 10 CMD

opens a 300 baud RS-232 channel and directs output to it and input
from it.

Opening an RS-232 channel automatically causes the allocation of 512
bytes of memory for input and output buffers. 1Initially, this area
would be 40448 ($9E00) to 40959 ($9FFF), the top of the default BASIC
memory area. This area would not be interfered with in the initial
system, since the disk buffers only extend down to 44896 (S$SAF60). If
more buffers must be allocated, however, the RS-232 area may have to be
moved. The safest way to do this would be to move the top of the
FORTH user memory down 512 bytes and move the RS-232 buffers to the top
of FORTH memory. This can be accomplished as follows:

LIMIT 512 - ' LIMIT ! CHANGE (MOVE FORTH DOWN 200 BYTES)
HEX D000 283 ! DECIMAL (SET NEW TOP OF MEMORY)

61 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.4,22 RWTS : Read/Write Track & Sector
(ADDR R/W DRIVE SECTOR TRACK #PAGES —--- ERRCOUNT)
This is the disk primitive used to interface with the 1541 disk drives.
It is used by <R/W> to implement FORTH's "virtual memory" system.
Aside from user memory, RWTS may perform reads and writes to the High
RAM areas, 53248 ($D000) - 65535 (SFFFF).
ADDR: Address operation is to be performed on
R/W: 0 = write operation, 1 = read operation.

DRIVE SECTOR TRACK: Disk address for begin operation.

PAGES: Number of disk pages (256 byte sectors) operation is to be
performed on (1 FORTH screen = 4 disk pages [1024 bytes])

ERRCOUNT: Number of errors detected during operation (the error

channel is automatically displayed on error and on the initial
disk access after the disk is first powered on).

Note: RWTS is not normally used unless track/sector 1/0
is required. For block I/0 see BLOCK and R/W.

Example:

PAD 1 0 0 18 1 RWTS
PAD 256 DUMP

Reads track 18, sector 0 (the bitmap) into memory and lists it.

5.4.23 SAVE-FORTH : Save A Compiled System

{ ===) [filename]

This word FREEZEs the system, determines memory boundaries of the
system and invokes SAVE to save the system to the last specified file
(the initial default filename 1is "SUPER FORTH 64") or the new file
specification, on the device specified by SYSDEV (see Kernel SAVE).

Examples:

SAVE-FORTH saves the system to the default filename.

SAVE-FORTH "NEW-FILENABAME" saves the system to the filename
"NEW-FILENAME" and sets "NEW-FILENAME" as new default.

62 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.4.24 SECTRKT : Sectors/Track Table
(-—-- ADDR)
Table used by T&SCALC to determine the track and sector number of a
disk sector number relative to the beginning of the disk. Since the
number of sectors per track varies on the 1541 disk, a table lookup (as

opposed to.a . simple multiplication) must be used to determine the
position of a sector on the disk.

5.4.25 SYSDEV : System Device Variable
(-—- ADDR)
Variable which contains the number of the system device. Routines
which perform file or direct sector I/0 use the device number stored
here to perform their operation to (such as saving the system,
application, etc.) SYSDEV should be set to 1 for cassette, or 8-12 for
disk I1/0.

Example: 1 SYSDEV ! sets the system device to cassette.

5.4.26 UPORT : User Port Constant
(--- $DDO1)
Returns address of the (64 User Port. This address can be used to
fetch values from or write byte into the User Port.
5.5 C64 Kernel Interface Words
The following words are used to interface to the C64 Kernel ROM
routines. Kernel. routines which are not provided can usually be easily
implemented by using SYS or SYSCALL.
Examples: The following will implement TALK and ACPTR
HEX
: TALK (DEVICE ---)
0 0 FFB4 SYSCALL ;
ACPTR (--- BYTE)

0 0 0 FFAS SYS DDROP DROP ;
DECIMAL

63 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.5.1 CHARIN : Character Input
(--- CHAR)
Word used to call the system Kernel CHARIN routine- it sets the input
device from the logical file number stored in INPLFN (set to keyboard

on cold/warm starts) and performs character input utilizing the C64
screen editing functions if device is the keyboard.

5.5.2 CLALL : Close All Files

(=)

Calls Kernel CLALL routine to close all opened files.

5.5.3 CLOSE : Close A Logical File
(LFN ---)

Calls Kernel CLOSE routine to close a previously opened logical file.

5.5.4 CLRCHN : Close I/0 Channels

(=)

Calls Kernel CLRCHN routine to close all open channels and restore the
I/0 channels to their default values. This routine is automatically
called by CLALL.

5.5.5 LOADRAM : Load A Program File Into Memory
(LOADADDR FILEADDR ---)

The program file whose name i1s in the string at FILEADDR is loaded into
the memory at LOADADDR. If LOADADDR is zero, the file is loaded into
the address in the first two bytes of the program file. This word can
be used to load machine language sub-routines which can then be called
from the SUPER FORTH system. '

Example:

HEX C000 " ML.PROGRAM" LOADRAM
0 " ML.PROGRAM" LOADRAM DECIMAL

Both of the above statements would result in the program file

"ML.PROGRAM" being loaded into the area at $C000 (assuming the
file was. originally saved from $C000). Note: Loading a file

64 SUPER-FORTH 64 (TM)

Implementation Specific Words

over the FORTH dictionary area will likely result in a crash of
the system.

5.5.6 OPEN : Open A Logical File
(LFN DEVICE SECOND ADDR —~-—)

This word is 'used to OPEN a logical file which can then be used for
input/ output operations by storing the logical file number in INPLFN
or OUTLFN. Calls SETLFS with the logical Ffile number (LFN), device
address (DEVICE) and the secondary address {SECOND), calls SETNAM with
the name of the file to be opened and finally calls the Kernel OPEN
routine to open the file. The proper ADDR value will be left on the
stack by using the immediate string word, "" to specify the file name
(see Example).

Example:
10 4 0 "" OPEN
10 CMD
." HELLO!" CR

0 CMD
10 CLOSE

could be used to open a channel and direct system output to a
serial printer.

: RS-232 10 2 0 " {CTRL-F}" OPEN 3 OUTLFN ! ;
could be used to define a word to open an RS-232 channel and direct
output to it.

5.5.7 SAVE : Save Memory to Device

(START END --~)
This interface to the Kernel save routine is used to save a span of
memory locations as a program file to a device. It is called by SAVE-
FORTH and APPLICATION to save the system. The memory is saved to the
file name stored in the string variable SAVENAME. The device to be
saved to is taken from the system variable SYSDEV.

START: Starting address in memory to be saved.

END: Ending address in memory to be saved.

65 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.5.8 SAVENAME : Name of File To Be Saved
This string variable contains the file name which is used by the SAVE
routine to save a span of memory to a program file. SAVENAME $. CR
will print out the name currently stored there. SAVENAME has room to
hold a name of up to 19 characters (replacement prefix-"@Q:" plus 16
characters max for a filename).
The following can be used to store a new text string in SAVENAME:

SAVENAME SCLR SAVENAME " NEWFILE" $CONCAT

5.5.9 SETLFS : Set Logical, First, Second
(LFN DEVICE SECOND -—-)
This word is used to set up a system logical file. The Kernel routine
SETLFS is called, passing the logical file number (LFN), the device
address (DEVICE) and the secondary address (SECOND) .
5.5.10 SETNAM : Set Name of File
(ADDR COUNT ---)

This word calls the Kernel SETNAM routine. ADDR is the address of a
text string to be passed to SETNAM. COUNT is the length of the string.

Example:
SINPUT COUNT SETNAM
would accept an input string from the keyboard, determine its
address and length and pass the parameters to the Kernel SETNAM
routine,
5.5.11 ST : Get Kernel I/O Status Byte
{ ——— STATUS)

Gets the C64 Kernel status byte. It is useful to examine the status
byte after a Kernel routine call (see programmers reference guide).

5.6 C64 Utility Words

The wvarious words in this section are ‘"utility" words, useful
definitions which were changed or not included in the original MVP-
FORTH definition. It is recommended that even the beginning user look

66 SUPER-FORTH 64 (TM)

Implementation Specific Words

through this section since many of these words are useful as "stand-
alone" words, that is, they are complete SUPER FORTH programs in
themselves and probably will not be used within other word definitions.
The following words fall into this category: A-REMOVE, APPLICATION,
CHANGE, BACKUP, DECOMPILE, DIR, DOS, DOSERR, PATCH, Tracing, and VLIST.

The remainder of the words are intended to be used within other word
definitions (they can, of course, be used interactively also). These
are: <ROT, ?DEPTH, D2*, OFF, ON, RDTIM, RECURSE, SETTIM, SWAPIN,
‘SWAPQUT, SYS, SYSCALL and WAIT.

5.6.1 <ROT : Reverse Rotate Stack
{ NI N2 N3 -—- N3 N1 N2)

This word effects a relatively common stack operation, that of a
"reverse rotate". It is equivalent to executing the sequence ROT ROT.

5.6.2 ?DEPTH : Check Stack Depth
(N ===

If stack depth is less than N (before N was entered) ABORT" is called
printing out a message specifying EMPTY STACK.

5.6.3 A-REMOVE : Remove Assembler From System

(===)

This word 1is used to remove a remote Assembler vocabulary from the
system prior to saving the system as an application. This feature lets
users mix machine language routines (written using the FORTH Assembler)
and high level FORTH routines without keeping the overhead of an
Assembler in the dictionary.

When the procedure outlined below is followed, the Assembler and any
user defined macro are loaded into memory starting at location 36864

($9000). Words compiled after the remote Assembler is loaded in are
compiled into the dictionary in the original dictionary area.

When the application screens have been loaded, A-REMOVE is invoked
prior to saving the application. The dictionary is re-linked without
the Assembler being linked in.

In order to utilize this feature follow these steps:

1) Fully debug your application, including any assembler routines
required.

2) Load the initial system WITHOUT your application screens.

67 SUPER~FORTH 64 (TM)

Implementation Specific Words

3) Enter FORGET ASSEMBLER to remove the system's assembler.

4) Place the Master Source Screens diskette (or backup copy) into
the drive and type 114 120 THRU to load the remote assembler.

5) Place a user Source Screens diskette (if any) into the drive and
load any assembler macro screens you may have- these definitions
will also be removed after assembly (if none then ignore this
step).

6) Replace the Master Source Screens diskette and type 121 TLOAD to
load the word A-REMOVE.

7) Type 50 92 THRU and 94 97 THRU to compile a system with no
assembler or editor.,

8) Replace the wuser Source Screens diskette and load your
application screens.

9) Type A-REMOVE to remove the Assembler and any macros and re-link
the system.

10) Put a newly formatted diskette in the drive (or format one)

11) Type APPLICATION '"program-name" save your application out onto
disk.

12) Load the application program to verify that it runs properly.
If not, go back to step one.

WARNING: DO NOT USE SAVE-FORTH ON A SYSTEM HAVING A REMOTE ASSEMBLER
WHICH IS STILL LINKED- THE DICTIONARY LINKS WILL NOT EXIST WHEN THE
SYSTEM IS LOADED BACK IN. THIS WILL PROBABLY RESULT IN AN
UNRECOVERABLE CRASH!!!

5.6.4 APPLICATION : Save System As An Application
{ ——) [filename)

Save a program which when loaded and run will automatically start up
the latest word defined in the system. The given filename is used and
becomes the new default. If no filename is given, the last default
filename will be used.

Note: A new, formatted diskette should be placed into the drive
prior to using this word.

The FORTH system will be rendered "invisible" through use of this word.
This is accomplished by the system blanking out the name fields of
FORTH words in the system, and re-defining the interpreter so that when
the application file is loaded and run the application word will be
immediately executed.

68 SUPER-FORTH 64 {(TM)

Implementation Specific Words

Note: This is NOT a Meta-compilation- the application system will
remain the same size as the complete FORTH system. Prior to
loading, the application can be kept to a minimum size by
FORGETting THRU and recompiling only those source screens from
the master diskette which are necessary in order to compile the

application.

This utility is given in order to allow the FORTH applications designer
to write a FORTH application and save it away to be used without
allowing access to the underlying FORTH system. In this way the
application can be distributed without copyright infringement. (The
word APPLICATION must be executed to prevent copyright infringment!)

After use of this word the system may appear to be "hung”. Upon warm
starting (see Section 1.4) the application will be left running. The
FORTH system must be reloaded in order to continue FORTH program

development.

Programs saved using APPLICATION may be ROM'd as long as they occupy
less than 16384 ($4000) bytes in memory. See the section below on E-
PROMing code. If more information is needed, contact Parsec Research.

Example:

(PUT THE MASTER DISKETTE IN THE DRIVE)
99 110 THRU (LOAD FRACTALS DEMO)

{ PUT A BLANK DISKETTE IN DRIVE)
" NO:FORTH-DEMO,D1" DOS (FORMAT DISKETTE)
APPLICATION "DEMOFILE" { SAVE DEMO AS APPLICATION)

{ TURN OFF THE MACHINE & TURN IT ON AGAIN)
LOAD "DEMOFILE",8 (LOADS IN DEMC PROGRAM)
SYS 2064 { STARTS UP DEMO)

5.6.4.1 E-PROMing APPLICATION Programs

To transfer SUPER FORTH application programs to E-PROM, two additonal
short routines are needed. The auto-start routine described 1in the
PROM-QUEEN instruction booklet, and a routine to transfer your program
from -the I/O area to the normal memory location Ffor SUPER FORTH
programs. The program listing below contains both of these routines,
and should be added to the front of your application program.

AUTO-START/TRANSFER ROUTINE.

This routine should be assembled using the PROM-QUEEN assembler
starting at $8000 and then placed on a disk as instructed in the PROM-
QUEEN manual.

;AUTO-START ROUTINE.
10 .BY OA 80 9F FF C3 C2 CD 38 30 FF

69 SUPER-FORTH 64 (TM)

Implementation Specific Words

20 LDX #$00

30 STX $D016
40 JSR SFDA3
50 JSR S$FDS50
60 JSR $FD15
70 JSR $E518

80 CLI

90 JSR $8022 ; ($8022=ADDRESS OF TRANSFER ROUTINE)
100 JMP $A000 ;END OF AUTO-START ROUTINE.

110 LDY 500 ;START OF TRANSFER ROUTINE ($8022).

120 LDA #3561 ;LO~-BYTE OF START OF FORTH PROGRAM>

130 STA $59

140 LDA #$80 ;HI-BYTE OF START OF FORTH PROGRAM.

150 STA $5A

160 LDA #$01 i LO-BYTE OF WHERE TO XFER FORTH PROGRAM
170 STA $5B ‘

180 LDA #$08 ;HI-BYTE OF WHERE TO XFER FORTH PROGRAM.

190 STA §$5C
200L00P LDA ($59),Y
210 STA ($5B),Y
220 CLC

230 LDA $59

240 ADC #s501

250 STA $59

260 LDA $5A

270 ADC #$00

280 STA $5A

290 CLC

300 LDA $5B

310 ADC #$01

320 STA $5B

330 LDA $5C

340 ADC #$00

350 STA $5C

360 LDA $5B

370 CMP #L,ENDADDRS
380 BNE LOOP

390 LDA §5C

400 CMP #H, ENDADDRS

410 BNE LOOP 7END OF TRANSFER ROUTINE.
420 JMP $0810 ;STARTING ADDRESS OF RELOCATED APPLICATION.
430 .EN

ENDADDRS=Address of 1last byte+l of vyour application program after
transfer.

After assembling the above code, and saving to disk, plug the PROM-
QUEEN into the back of your Commodore-64. Insert the autochex ROM into
the PROM-QUEEN, and turn on your computer. Using the D command, load
the auto-start/transfer routing into location $§2000. Next, 1load your
application program starting at location $2061. the two programs are
now linked and may be burned onto the E-PROM as described in the PROM-
QUEEN manual.

70 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.5 CHANGE : Change SUPER FORTH Configuration

(=)

Modify the SUPER FORTH 64 memory configuration based on the values in
LIMIT and #BUFF. LIMIT specifies the start of the USER area and the
top of the buffers area. #BUFF is wused to determine the value of
FIRST, the start of the buffers area. At least 96 ($60) Dbytes should
be left above LIMIT for the USER variables. CHANGE ends with a call to
COLD to re-write vectors in the new user area.

Example:
20 ' #BUFF ¢ (set system for 20 buffers)
48896 ' LIMIT ! (move top of system down 4k)
CHANGE

This example will change buffer allocation to 20 buffers and place
the USER area at 48896 {($BF00).

5.6.6 CASE Structure Extensions

A program control structure, CASE, has been added to SUPER FORTH 64 to
facilitate choosing one of a set of operations based on a wvalue. CASE
is an extremely useful construct for the beginning as well as the
advanced FORTH user. Once the standard FORTH structures are understood
(IF...THEN, DO. . .LOOP, BEGIN...WHILE.. .REPEAT, BEGIN...UNTIL,
BEGIN...AGAIN), the user should learn and start using the CASE
construct. For implementation details see the article in Appendix VII.

Example:

: CASE-TEST (VALUE -—-)
CR
CASE
0 OF ." CASE ZERO " CR ;
2 OF ." CASE TWO " CR ::
4 OF ." CASE FOUR " CR HH
." VALUE OQUT OF RANGE "
ENDCASE ;
2 CASE-TEST
3 CASE-TEST

This example sets up three cases, one of which will be chosen if
upon entering CASE-TEST the value on the stack is one of 0, 2 or
4. 1If the value is anything else, the words between the last ;;
and ENDCASE will be executed. Also see the example in the
article in Appendix VII.

71 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.6.1 CASE : Begin Case Structure

The starting word in a CASE program control structure. Must be "paired"-
with the word ENDCASE at the end of the CASE structure.

5.6.6.2 OF : Test PFor Particular Case

OF tests the value which is on the stack (the "select" value) against
the value associated with the OF., If the select value is equal to the
OF wvalue, then the FORTH words between OF and ;: are executed and no
other case is tested.

5.6.6.3 ;; : Specify End of Particular Case

;3 1is used to specify the end of a set of words which follow a
particular OF in a CASE structure. If this is the last ;; before the
ENDCASE word, then the words which are entered between ;; -and ENDCASE
will be executed if no OF...:; has been selected For execution.

5.6.6.4 ENDCASE : Specify End of CASE Structure

ENDCASE is used at the end of the CASE structure to specify completion
of the CASE. Any words compiled between the last ;; and ENDCASE are
executed if the select value does not match the values of any OF's.

5.6.7 Backup Utilities

Several words have been included to enable users to make partial or
complete disk backups, using either a single disk drive or two drives.
The backup utilities must be loaded from the master diskette in order
to be used.

NOTE: Owners of 4040 or other dual drives should use the
Duplicate command which is internal to the drive,
since that command will perform a complete backup
in two minutes!

In general, the following instructions apply to all backup words:

Afdor Porgoting ATIZLEIIR ard

Prior to performing a backup, type HERE . to determine where the top of
the dictionary 1is currently. The dictionary must be below 17152
($4300) in order for a complete diskette copy to perform in five parts.
If less space is available the copy will be divided into six or more
parts. The following example will set up the dictionary and buffers

and load the backup utility from the master diskette:

12 SUPER-FORTH 64 (TM)

Implementation Specific Words
Using the source code side of the disk type

FORGET ASSEMBLER { MAKE ROCM FOR 5 PART BACKUP)
112 LOAD (LOAD IN SINGLE DRIVE BACKUP)
MAX-BUFFS (SET UP MAX # OF BUFFERS)

For users with two disk drives, perform 111 LOAD instead of 112 LOAD.
If you intend to use this wutility often, it will probably pay to save
the system using SAVE-FORTH. The single drive backup will prompt the
user when source and destination diskettes should be inserted in the
drive. The backup procedure will take approximately 20 minutes.

You must use a formatted diskette to perform the backup to (see section
titled "Getting Started"). Place your diskette to be copied in the
drive and type:

BACKUP

If you are using the single drive utility you will be prompted when it
is time to place a different diskette in the drive.

Since FORTH uses sector reads and writes, this utility can be used to
copy either a FORTH format disk or a standard C64 format disk.

5.6.7.1 BACKUP : Complete Diskette Backup Utility

(===)

Utility which can be used to perform a complete backup of one diskette
to another diskette. The backup may be performed either using a single
disk drive or two drives. Since a complete diskette contains 170k
bytes and there are at most 41k bytes available for buffer space a full
disk copy must be performed in at least five parts.

5.6.7.2 COPYBUF : Copy Up to #BUFF Screens

{ FLAG END START ~--~)

This routine is used to copy screens from STARTing screen number to
ENDing screen number + 1 to a second diskette.

If FLAG is 1, the three sectors which cannot be addressed by screen
number are also copied. If FLAG is 0 they are not copied.

In general this routine will be called by PCOPY and need not be called
directly by the user. There are two versions of COPYBUF. The single
drive version 1is loaded from screen #112. The two drive version is
loaded from screen #111.

73 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.7.3 PCOPY : Perform A Partial Disk Backup
(FLAG START END ---)

This routine is used to specify the starting and ending screens to be
spanned for a partial disk backup. If FLAG is 1, the three sectors
which cannot be addressed by screen number are also copied. If FLAG is
0 they are not copied. PCOPY is invoked by BACKUP and SOURCE-BACKUP to
copy a complete diskette or Jjust the source code area of the master

diskette, respectively.

5.6.7.4 SOURCE-BACKUP : Perform A Backup Copy of Source

This word may be used to backup only the source code section of the
master diskette.

5.6.8 D2* : Double Word Mult. By Two
(D -—- D*2)

This word implements a fast double precision multiply by two by
performing a left shift of the value D.

Example:

1234. D2* D,
Results in the value 2468 being displayed.

5.6.9 DECOMPILE : Source Decompiler Utility
(===) [namefield)

This word is wused to decompile a definition from the dictionary. 1In
this way the user can determine the components of a definition without
having the source code available. DECOMPILE is set up to enable
decompiling of the called definition by using the SPACE bar to step
through its components, or decompiling the components themselves by
using RETURN to thread through the components.

Example : ~DECOMPILE SETLFS would allow the user to decompile the

SUPER FORTH 64 word SETLFS to examine its components. Multiple
depressions of the SPACE bar will perform the decompilation,

74 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.10 DIR : Display Disk Directory

{(—=)
Causes the Commodore DOS file directory to be displayed from the
diskette in the drive whose device number is in SYSDEV. The directory
itself is loaded into the PAD area.

This word incorporates the PAUSE feature: a single keystroke will pause
the directory display- another single keystroke resumes it, or a double
keystroke aborts it.

5.6.11 DOS : Send A Command To the Disk

(ADDR -—-)
This word is used to send a DOS command to the disk. It opens the
command channel, sends the command string located at ADDR to the disk
at SYSDEV and closes the command channel.

Using the immediate string word, ", will leave the proper address. All
of the commands listed on page 41 of the 1541 User's Manual may be sent
using this word.
Example:
" NO:SUPER FORTH 64,64" DOS
This example will cause the DOS "NEW" command to be sent to the
disk, causing the disk to be formatted.

5.6.12 DOSERR : Read and Print the Disk Error Channel

(=)
Displays the disk error channel. If an error has occured, performs a
disk init.

5.6.13 DUAL : Dual Drive Specifier

{ FLAG ———)

This word is used to specify to the system that a 4040 type dual drive

is being used. Flag is ON for a dual drive and OFF for a non-dual
drive. The system initially assumes a non-dual drive.

75 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.14 MAX-BUFFS : Re-configure System For Maximum Buffers
Invoking MAX-BUFFS will automatically allocate all available dictionary

space for use as buffers. This may be useful before performing a
BACKUP to to set up an editing system under File Mode.

5.6.15 OFF : Leave Constant Zero On Stack

(=== 0)

This word may be used to symbolically represent a 0 condition.

5.6.16 ON : Leave Constant One On Stack
(-=- 1)

This word may be used to symbolically represent a 1 condition.

5.6.17 PATCE : Patch Memory
(SADDR --- EADDR+1)

This word may be used to enable easy entry of patches. The wo:d is
used as follows:

<patch-addr> PATCH <cr>
Pl p2 p3 p4 p5 ... <cr>

where <patch-addr> is the starting address to patch and Pl, p2 etc. are
byte values to be entered starting at <patch-addr>. Up to 80
characters of patches may be entered for a single PATCH command. PATCH
leaves on the stack the address of the next location to be patched
(EADDR+1), so a follow-up call to PATCH will start patching where the
previous call left off. The final call should be followed by a DROP.

Example:

HEX 8000 PATCH
0123456789ABCDETFI1011 12 13 14 15 16 17
PATCH

18 19 1A 1B 1C 1D 1lE 1iF

DROP DECIMAL

This example will set locations $8000-$801F to values 0-S1F. Note,

if the patches fit on a single 80 character input line the
second PATCH call would not be needed.

76 SUPER-FORTH 64 (TM)

)

Implementation Specific Words

5.6.18 RDTIM : Read the 60 Cycle Clock
(-—- D)

Returns the value of the system 60 cycle clock as a double word value
Dl

Example:

: TEST 1000 0 DO LOOP ;
RDTIM TEST RDTIM DSWAP D- D.
The second line is used to time the number of clock ticks (1/60's of

a second) it requires to execute the TEST definition.

5.6.19 RECURSE : Call A Definition Recursively

(===

Used within a definition to invoke a recursive call, that is, a call to
the definition which is being defined. Care must be taken within the
word to allow an end to the recursion, otherwise the program will end
up in an "endless" loop which will probably result in the parameter
stack being quickly used up! This word may appear in other systems as

RECUR or MYSELF.
Example:

: FACTOR (N ---)
?DUP IF
DUP. 1- >R 1 M*/ R> RECURSE

ELSE D. THEN ;
: FACTORIAL (N ---) 1. ROT FACTOR ;
12 FACTORIAL

This example defines a simple recursive word which calculates and
displays the factorial of an integer between 1 and 12,

5.6.20 SETTIM : Set the 60 Cycle Clock

(D -)

Sets the system 60 cycle clock with the double precision value D.

Example:

TEST 1000 0 DO LOOP ;
0. SETTIM TEST RDTIM D,
The second line is used to time the number of clock ticks (1/60's of
a second) it requires to execute the TEST definition.

77 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.21 SWAPIN : Swap Kernel ROM & I/O Area In
(===
Swaps the C64 Kernel ROM and I/O Memory Map Area back in and re-enables

interrupts. Must be used after SWAPOUT is used prior to calling any
C64 Kernel routines.

Example:
HEX SWAPOUT D000 1000 FILL SWAPIN DECIMAL

would zero out the 4K RAM area underneath the I/O Memory Map Area.
Interrupts would not occur wuntil the FILL was finished and
SWAPIN was invoked.

5.6.22 SWAPOUT : Swap Kernel ROM & I/O Area Out
(===)

Disables all interrupts (including NMI) and swaps out the €64 Kernel
ROM and I/0 Memory Map Area, making available the RAM underneath for
use by the FORTH system.

Note: SWAPIN must be used before attempting to use any words which
call any C64 Kernel routines or use the I/0 registers. . If
SWAPIN is not used the FORTH system is not likely to run
correctly.

Example:
HEX SWAPOUT DOOO 1000 FILL SWAPIN DECIMAL
would zero out the 4K RAM area underneath the I/O Memory Map Area.

Interrupts would not occur wuntil the FILL was finished and
SWAPIN was invoked.

5.6.23 SYS : Call Machine Langquage Routine
{ .A .X .Y ADDR --- .A .X .Y STATUS)
Word used to interface with machine language sub-routines which are
external to the FORTH system {such as (&4 Kernel routines).
-A .X .Y are values which will be loaded into those 6510 registers
prior to performing a JSR to the routine located at ADDR. Upon return
from the routine all registers and the processor status word are
returned on the parameter stack. '

The called routine must end with a RTS to return to the system and the

78 SUPER-FORTH 64 (TM)

Implementation Specific Words

hardware stack must be left in the same condition as when the routine
was first called.

Example:
1 2 3 32768 SYS . . .
sets hardware registers .A=1, .Xx=2 and .Y=3 before calling the
machine language routine at address 32768 ($8000). Upon return

from the called routine, the values of the processor status, .Y,
-X and .A are sent to the current output device.

5.6.24 SYSCALL : Call Machine Language Routine

(A .X .Y ADDR ~—-)

An alternate to SYS which does not return anything on the stack when
the call is finished.

Example:
1 2 3 32768 SYSCALL

sets hardware registers .A=1, .X=2 and .Y=3 before calling the
machine language routine at address 32768 ($8000).

5.6.25 TRACE
{ FLAG ---)

Turns on or off the tracing variable, TFLAG based on FLAG. If FLAG 1is
ON (1), then tracing 1is set on. If FLAG is OFF (0), then tracing is
set off (see Tracing).

5.6.26 Tracing Forth Definitions

(===

These words must be loaded in to be used. The ":" command is re-
defined so that any words which are defined after loading the tracing
routines will cause the name of the command to be printed along with
the contents of the stack {see Appendix Vii).

To control tracing, a word has been defined, TRACE, which turns on or
off tracing mode. During compilation of definitions, if TFLAG is set
ON (1), the word will be compiled with the trace option. If TFLAG is
set OFF (0), the word will be compiled without the trace option. Thus,
by invoking ON TRACE or OFF TRACE before loading a definition tracing
may be selectively enabled.

79 SUPER-FORTH 64 (TM)

Implementation Specific Words

During execution if TFLAG is set ON the words which were compiled with
the trace option will be traced, that is, the following will occur:

1. The name of the traced word is displayed.
2. The contents of the stack is displayed (according to the setting

of .SS [see also .S}).
3. Tracing pauses and waits for the user to depress any key to

continue.
If TFLAG is set OFF during execution no tracing will occur.

Note: When loading the screen with the trace routines,
the message NOT UNIQUE will print out, reminding
the user that a word (in this case, :) 1is being
redefined. It is simply an informative message!

Example:
98 LOAD (LOADS TRACE WORDS IN)
OFF TRACE
: TEST1 ." --TESTl-- " CR ;
ON TRACE (TURNS TRACING ON)
: TEST2 TEST1 ." --TEST2-- " CR ;
: TEST3 TEST2 ." --TEST3-- " CR ;
OFF TRACE (TURNS TRACING OQFF)
: TEST4 2 0 DO I TEST3 LOOP ;
TEST4 DDROP { TRACING IS OFF)
ON TRACE (TURN ON TRACE DURING EXECUTION)
TEST4 DDROP (TRACING IS ON)

The above example will cause tracing of words TEST2 and TEST3, but not
TEST1 or TEST4 while tracing is set to occur.

5.6.27 VLEN : VLIST Line Length Variable

(--- ADDR)

Variable which controls the length of the VLIST line. Initially set to
40 for printing to a 40 column screen.

5.6.28 VLIST : List Vocabulary Words

(===

List the word names of the CONTEXT vocabulary starting with the most
recent definition. Use VLEN and VTAB to determine line length and
column formatting when outputting the vocabulary list.

This word incorporates a PAUSE feature, by which pressing any key will
freeze the display. Once suspended, the VLIST my be resumed by a

80 SUPER-FORTH 64 (TM)

Implementation Specific Words

single keystroke, or aborted by striking any two keys in rapid
succession.

5.6.29 VTAB : VLIST Tab Length Variable
(--- ADDR)

Variable which controls the length of tabs which denote columns during
a VLIST printout. Initially set to 13 {(three columns on a 40 column
screen).

5.6.30 WAIT : Pause N Clock Ticks
(N -—)

Causes the system to pause until N clock ticks (1/60's of a second)
have passed. Even multiples of 60 will wait an even number of seconds.

Example:
." TESTING... " 5 60 * WAIT ." THE WAIT FUNCTION" CR

This example causes the system to pause five seconds in between
printing out the messages.

5.7 Graphics Related Words

The following graphics primitives have been defined in order to give
the wuser a basis with which to write graphics routines. They are
designed to take some of the pain out of dealing with the VIC-II
graphics chip at the lowest level.

Words which start with the prefix "B-" are bitmap (hi-resolution)
graphics related words. These words should only be used in bitmap mode
because they may produce undesirable results. They can't be used in
the normal mode because the character screen is used to determine
colors in bitmap mode. Also, the 8K bitmap screen area may fall in an
undesirable place (such as in the middle of your FORTH program) if you
simply start using the bitmap words without being sure of where the
bitmap resides.

Therefore, I recommend that prior to experimenting with any of these
words you first set up the bitmap area in a known place (this is easily
accomplished using BITMAP) and set up a word to restore things to a
known useable state. Warm starting should get the system back to a
useable state.

Words which start with the prefix "S-" are sprite related words. These
words use the contents of the variable SPRITE to determine which sprite

81 SUPER-FORTH 64 (TM)

Implementation Specific Words

they should act upon, therefore SPRITE must be set up with a sprite
number (0-7) before using any of these words. The sprite referenced by
the contents of SPRITE is referred to as "the active sprite". The
words S1, S2, S3, S4, S5, S6, S7 and S8 are provided to automatically
set one of the eight sprites as the active sprite (Refer to the
Commodore 64 Programmers Reference Guide and Commodore 64 Graphics &
Sound Programming listed in Appendix VIII).

Sprites may be entered into the system in one of two ways: The Sprite
Editor word, S-EDITOR, may be used to design a sprite on the display
screen. This word automatically moves the sprite data for the newly
created sprite into the dictionary. Raw data (such as output £from an
external sprite editing program or from BASIC DATA statements) may be
entered by using the sprite defining word, S-DEF to create the
definition and load the sprite upon execution. (see S-DEF in the Data
Structures section).

The cursor color may be changed from the keyboard by depressing the
proper key sequence for chosing a. cursor color (see Commodore User's
Guide- "Printing Colors", p.56). The cursor color may be changed under

program control by EMITting the character code of the color, This can
be done directly (such as 28 EMIT to turn the cursor red) or within a
." string:
Example:
BLUE-CHARS ." {Ctrl-?}THIS IS A VERY BLUE STRING" CR ;

: DIFF-CHARS ." {ctrl-3}BUT THIS {ctrl-6}STRING CHANGES" CR ;

BLUE-CHARS (DISPLAY BLUE STRING)

DIFF-CHARS (DISPLAY RED & GREEN STRING)

{ckey-4} (RETURNS TO DEFAULT CURSOR)

The following is a graphics example intended to provide the user with a
basic wunderstanding of graphics command usage. Refer te the
appropriate sections for details of particular words.

first "prepare" the system for hi-res usage. The following example
provides a complete step-by-step description of a simple hi-res pattern
routine. It may be entered as a defined word, or interactively so that
you can see the effect of each word as it is entered.

First we will define some generally useful words for working in the hi=-
res (or bitmap) graphics mode. Comments (WORDS IN PARENTHESIS, LIKE
THESE) need not be entered if you are working interactively at the
display. If you set up source screens however, {see section on Editing
to do this) I highly recommend including them.

82 SUPER-FORTH 64 (TM)

)

Implementation Specific Words

{ SET UP A WORD TO PUT US INTO BITMAP MODE)

: GRAPHICS (--=—)
7 BITMAP (SWITCH VIDEO TO BANK 2 UPPER [$E000])
22 D-SPLIT (SET UP SPLIT GRAPHICS SCREEN)
PAGE (CLEAR TEXT SCREEN)
0 22 D-POSITION ; (POSITION CURSOR IN TEXT AREA)
(SET UP A WORD TO GET US BACK TO NORMAL)
: NORMAL (——-)
MED.GRAY BORDER (MAKE BORDER GRAY)
OFF D-SPLIT ; (SWITCH US BACK TO NORMAL SCREEN)

GRAPHICS and NORMAL allow us to switch back and forth easily between
the bitmap area which we want to use and our normal viewing area.
Using a "split-screen" method, when we invoke GRAPHICS the screen will
be partitioned into two areas: The hi-res graphics area will lie
between lines 0 and 21. The text area will lie between lines 22 and
24. Using this method, we can enter commands interactively in the text
area and watch them execute in the graphics area.

Okay, we're ready to start, but first type GRAPHICS from the keyboard.
On the screen we see a nice clean bitmap area, right? Wrong. There is
probably an interesting stripped pattern on the display in place of all
our nice FORTH words.The problem is that more SUPER-FORTH words must be
used to initialize the bitmap area before we can work with it. Lets
create another definition which will initialize the graphics screen
properly for us:

: B-INIT
GRAPHICS (MAKE SURE WE ARE IN BITMAP AREA)
RED CYAN B-COLOR-FILL (INITIALIZE BITMAP COLORS)
BLUE BORDER (SEE THE PRETTY BLUE)

0 B-FILL (CLEAR BITMAP AREA)
B-DRAW ; (SPECIFY DRAW MODE)

Now type: B-INIT. This initializes the bitmap area.

I use B-INIT in the graphics examples under the descriptions of each
word to insure that you are 1in bitmap mode before executing. I've
chosen RED and CYAN as the bitmap colors, and BLUE for the border, but
you can choose your own colors.

B-FILL fills each bitmap character position with a byte wvalue. Try 63
B-FILL, You will see a striped pattern. If you are not in bitmap mode
you must be sure to use GRAPHICS first to 1insure that you are in the
correct bitmap area, ctherwise B-FILL is likely to fill the first 8000
bytes in memory, and guess what's there? That's right- your SUPER-
FORTH system! Performing hi-res graphics commands on your system is a
sure way to crash it (crash is a term sometimes used to describe a
computer system which acts like it has run into a brick wall at 300
m.p.h.). However, I digress...

83 SUPER~-FORTH 64 (TM)

Implementation Specific Words

B-DRAW specifies to the graphics system that we want to "draw" on the
screen (as opposed to ‘"erasing" things from the screen). After
entering 0 B-FILL we have a nice, clean CYAN colored screen again.
First one more definitions to help clarify the drawing:

{ PUT X & ¥ COORD. OF THE SCREEN CENTER ON STACK)
: CENTER 160 100 ;

Since we will be working around the center of the screen, CENTER will
help us to remember what we are doing.

We will now proceed to plot several curves and lines which will impress
your friends, neighbors and make you the envy of your BASIC programmer
acquaintances. You can :enter the following command lines as a
definition and sit back and watch it draw, but I think it's more
interesting typing them in interactively while in graphics mode to see
the effects of each line:

SHOULD GET A DOT IN CENTER OF SCREEN)
CIRCLE OF RADIUS 80 AROUND CENTER)
SMALL HORIZ. ELLIPSE)

LARGE HORIZ. ELLIPSE)

LARGE VERTICAL ELLIPSE)

DEFINE CENTER OF ARC AT LOWER LEFT)
ARCS "HOLDING UP" CIRCLE)

DEFINE CENTER OF ARC AT LOWER RIGHT)

CENTER B-PLOT

CENTER 80 CIRCLE
CENTER 20 4 ELLIPSE
CENTER 80 16 ELLIPSE
CENTER 20 60 ELLIPSE
0 199 M-ORIGIN

152 76 270 360 ARC
319 199 M-ORIGIN

152 76 180 270 ARC

0 0 B-PLOT

CENTER B-LINE

319 0 B-LINE

START LINE AT UPPER LEFT CORNER)
LINE TO CENTER)
LINE TO UPPER RIGHT CORNER)

Just for fun, let's get a sprite involved in this. We have two
sprites defined for the DEMO program, s$0 we can just borrow one of them
for this example:

MUST BE NORMAL TO USE DISK)
LOADS IN SPRITE SCREEN)

GRAPHICS RETURNS TO GRAPHICS SCREEN)
49152 DRAGON1 MOVE SPRITE TO BANK 3, SPRITE 0)

NORMAL (
{
i
S1 0 S-POINTER (SPECIFY SPRITE POINTER 0 FOR SPRITE S1)
(
{
{
(
{

91 LOAD

ON S-ENABLE ENABLE THE SPRITE)
170 70 S-POSITION MAKE IT VISIBLE)

ON S-XEXP EXPAND THE CRITTER HORIZONTALLY)

YELLOW S—COLOR TURN IT YELLOW)

ON S-MULTI A MULTI-COLCRED DRAGON!)
By experimenting with repetitively calling the graphics words, while
changing the values, interesting patterns may be discovered. Here is
one such pattern. It is simply a series of concentric circles being
drawn:

84 SUPER-FORTH 64 (TM)

Implementation Specific Words

: SHIELD
60 1 DO
160 100 I CIRCLE
LOOP ;

B-INIT
SHIELD
NORMAL

Well, thats the basic idea. I recommend just experimenting around,
interactively changing things for a while to get the hang of the
various graphics words. . Also, go through the examples given with each
graphics word definition. If you're curious you might want to take a
look at the screens that implement DEMO and see if you can follow how
the animation is done (if you can follow the recursive algorithm you
can explain it to me). Refer to Appendix I for other program examples.

5.7.1 'BANK : Get Address of 16K Bank
(——— ADDR)

Leaves the address of the 16k bank which the VIC-II chip has access to
(this will be one of the following : 0, 16384, 32768, 49152). When the
system first comes up the VIC-II chip is set to look at the lowest 16k
of RAM (0-16383).

Example: 'BANK . <cr> will print out the current address of the 16k
bank.

5.7.2 'BITMAP : Get Address of Bitmap Area
(-—- ADDR)

Leaves the address of the 8k Bitmap area which is used when the VIC-II
chip is put into high resolution graphics (bitmap) mode (this will be
one of the following : 0, 8192, 16384, 24576, 32768, 40960, 49152,
57344). Also see BITMAP.

Example: 'BITMAP . <cr> will print out the current address of the
high resolution bitmap area.
5.7.3 'CHARBASE : Get Address of Character Memory
(~—— ADDR)

Leaves the base address of the Character Memory area which the VIC-II
chip looks at to get its character set information. There are 32
possible areas where the character set may reside, from 0 to 63488 in
2k (2048 byte) intervals. 1Initially, the character memory is set to
4096 (or 6144 depending on which character set is being used).:

85 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example: 'CHARBASE ., <cr> will print out the current address of the
character memory area.

5.7.4 'SCREEN : Get Address of Screen Memory
(-—— ADDR)

Leaves the base address of the Screen Memory area which the VIC-II chip
loocks at to perform character mappings for output to the screen in
character mode, or gets color information from in bitmap (hi-res) mode.
There are 64 possible areas in which Screen Memory may reside, from 0
to 64512 in 1k (1024 byte) intervals.

Example: 'SCREEN . <cr> will print out the current address of the
screen memory area.

(HR VR START END ---)

This word invokes M-PLOT to draw an arc (part of an ellipse) on a hi-
res screen. The arc is defined in terms of the ellipse which it is a
part of: the center coordinates are taken from the values of M-X and M-
Y. HR is the horizontal radius, VR is the vertical radius. START,END
are the start and end points of the arc in degrees where 0, 90, 180,
270 degrees would point east, south, west and north in compass points.

Example:

B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
200 110 M-ORIGIN (DEFINES CENTER OF ARC)

90 90 150 300 ARC (DRAW ARC)

NORMAL (SEE INTRO)

This example draws a 150 degree arc from 150 to 300 degrees of an
ellipse whose X and Y radii are both 90 and whose center is at
200,110.

5.7.6 B-CLINE : Plot A Color Line On the Bitmap
(X-NEW Y-NEW ---)

Plots a color line in bitmap mode. The line is plotted from the last
plotted point to the coordinates specified by X-NEW and Y-NEW, where X-
NEW ranges from 0 to 319 and Y-NEW ranges from 0 to 199.

The color of the line 1is set by the Turtle Graphics word, PENCOLOR.
Draw/erase mode determines whether the points are turned on or off
{line drawn or erased). To erase a drawn line the erasing 1line must
follow the same path as the original drawn line.

86 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.7 B-CPLOT : Plot A Color Point On the Bitmap
(XY -~)

Plots a point in the bitmap area. The color of the point is set by the
Turtle Graphics word PENCOLOR. See B-PLOT for details.

5.7.8 B-COLOR : Select Bitmap Character Colors
(POS HI-COLOR LO-COLOR =---)

Set the high and low nibble colors for a particular character position
in the bitmap character color memory (screen memory) area. POS is the
screen position the colors will control (0-999), HI-COLOR is the color
which will be used for bits which are on (1) in the character position,
LO-COLOR is the color which will be used for bits which are off (0) in
the character position.

Example:
B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
40 CYAN RED B-COLOR
NORMAL (SEE INTRO)

This example will set the first character position on line 2
(character 40) so that bits in that position that are off will
be red and bits which are on will be CYAN.

5.7.9 B-COLOR-FILL : Fill Bitmap Color Area
(HI-COLOR LO-COLOR —---)

Sets the Screen Memory area (which is used to determine color usage in
bitmap mode) to the given colors for all 1000 background locations.
The upper 4-bits of all Screen Memory locations is set to the value of
HI-COLOR. The lower 4-bits of all Screen Memory locations is set to
the value of LO-COLOR. A particular bits screen color will be set to
HI-COLOR if the bit is turned on (a 1 value) or LO-COLOR if the bit is
turned off (a 0 value).

Example:
B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
160 100 40 CIRCLE
NORMAL (SEE INTRO)

This example will fill the bitmap screen with red where bits are on
and yellow where bits are off.

87 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.10 B-DRAW : Set the System to Draw Mode

(=)

Stores a 1 into B-PEN, designating draw mode (turn on bits when
plotting). B-PEN is examined by B-PLOT to determine whether the point
to be plotted should be turned on (draw mode) or turned off (erase

mode). B-DRAW need only be invoked once for each set of points which
will be drawn. It need only be invoked again after B-ERASE has been
invoked.

3.7.11 B-ERASE : Set the System to Erase Mode

(=)

Stores a 0 into B-PEN, designating erase mode (turn off bits when
plotting). B-PEN is examined by B-PLOT to determine whether the point
to be plotted should be turned on (draw mode) or turned off (erase
mode). B-ERASE need only be invoked once for each set of points which
will be erased. It need only be invoked again after B-DRAW has been
invoked.

5.7.12 B-FILL : Fill Bitmap with Byte Pattern

{ VALUE -—-)

Fills the complete Bitmap area, character by character, with the byte
VALUE. Any value can be used, but generally it is expected that either
0 (which will set the bitmap area to all zeroes) or 255 (which will set
the bitmap area to all ones) will be used. Other values will cause the
bitmap to assume various striped patterns. '

Note : Even with the Bitmap completely cleared or set there may
appear to be random color patterns in the area unless B-COLOR-
FILL is used to specify the colors of character positions within
the area.

WARNING: The bitmap area must have been set up using BITMAP and
bitmap graphics should be turned on prior to using this word.

Example:
B-INIT (SEE GRAPHICS INTO FOR DEFINTION |
255 B-FILL { TURNS ON ALL BITS)
15 B-FILL (EVEN STRIPED PATTERN)
1 B-FILL { UNEVEN STRIPED PATTERN)
0 B-FILL { TURNS OFF ALL BITS)
NORMAL (SEE INTRO)

88 SUPER-FORTH 64 ({TM)

Implementation Specific Words

5.7.13 B-GRAPHICS : Turn Bitmap Graphics On/Off
(FLAG -~-)

If FLAG is ON (1) the C64 is set to Bitmap Graphics mode. The Bitmap
area should be set up by using BITMAP prior to attempting to actually
change any values in the area. If FLAG is OFF (0) the C64 is set to
Normal Graphics mode. BITMAP will probably have to be used to reset to
area 0 where the screen normally resides.

Example:
7 BITMAP ON B-GRAPHICS

will put the C64 into bitmap graphics mode and set the bitmap area
to area 7 (57344 [SE000]).

0 BITMAP OFF B-GRAPHICS

will reset the C64 to its normal screen mode.

5.7.14 B-LINE : Plot A Line On the Bitmap
(X-NEW Y-NEW ---)

This word is used to plot a line in bitmap mode. The line is plotted
starting from the last plotted point (set by B-PLOT or words such as B-
LINE, ARC, CIRCLE or ELLIPSE, which use B-PLOT) to the coordinates
specified by X-NEW and Y-NEW, where X-NEW ranges from 0 to 319 and Y-
NEW ranges from 0 to 199. Draw/erase mode determines whether the
points are turned on or off (line drawn or erased). To erase a drawn
line the erasing line must follow the same path as the original drawn
line,

WARNING: The bitmap area must have been set up using BITMAP and
bitmap graphics should be turned on prior to using this word.

Example: Draw a line from the origin to the center of the screen and
then erase it:

B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
B-DRAW (INVOKE DRAW MODE)

0 0 B-PLOT (PLOT ORIGIN POINT)

160 100 B-LINE (DRAW A LINE TO THE CENTER)

B~-ERASE (INVOKE ERASE MODE)

0 0 B-PLOT (ERASE POINT AT THE ORIGIN)

160 100 B-LINE (ERASE LINE TO THE CENTER)

NORMAL { SEE INTRO)

89 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.15 B-PEN : Draw/Erase Mode Variable
(-——— ADDR)

This variable is used by the graphics system to determine the mode of
hi-res drawing to be invoked by B-PLOT. If B-PEN is ON (1) DRAW mode
will be invoked. TIf B-PEN is OFF (0) ERASE mode will be invoked.

B-PEN is not normally directly invoked by the user since B-DRAW and B-
ERASE have been provided to set the value of B-PEN

Example:
B-DRAW 1 B-PEN ! ;

is the definition of the SUPER FORTH 64 word which puts the system
into DRAW mode.

5.7.16 B-PLOT : Plot a Point In the Bitmap
(X ¥ =)

This word is used to plot a point in the Bitmap area. If B-PEN ‘is ON
(see B-DRAW) the bit for the point is set to a 1 and the color of the
screen becomes the HI-COLOR for the character position which the point
resides in. If B-PEN 1is OFF (see B-ERASE) the bit is set to a 0 and
LO-COLOR is used to color the screen at that point.

X and Y are the coordinates of the point on a 320 by 200 grid where
point 0,0 is at the uppermost left-hand corner of the screen. X ranges
from 0 to 319. Y ranges from 0 to 199. Values for X and Y are
returned by invoking words B-X and B-Y. B-PLOT performs a bounds check
on ¥ and Y. B-X and B-Y are always updated, but the point is only
plotted if X falls within 0 to 319 and Y falls within 0 to 199.

If MULTI-COLOR mode has been set then every two points along the X-axis
will be used to determine which of four colors the two points will be
(see the Commodore Reference Manual for determining colors in Multi-
color mode).

The kernel is swapped out when plotting a point. Thus, bitmap 7 ($E000
- SFFFF can be utilized for bitmap graphics. This area does not
interfere with the dictionary area and is recommended for use.

Note: 1If bitmap area 7 1is to be wused, the default screen area
($C400) may interfere with the disk buffer area. Therefore, it
is recommended that The top of memory be moved below the screen
area. The following code will effect the change:

HEX C380 ' LIMIT ! CHANGE

30 SUPER-FORTH 64 (TM)

Implementation Specific Words

WARNING: The bitmap area must have been set up using BITMAP and
bitmap graphics should be turned on prior to using this word.

Example:
(TURN ON CENTER AND ORIGIN POINTS)
B~-INIT { SEE GRAPHICS INTRO FOR DEFINITION)
B-DRAW (SET DRAW MODE)
160 100 B-PLOT (PLOT POINT AT CENTER OF SCREEN)
0 0 B-PLOT (PLOT "ORIGIN"- UPPER LEFT CORNER POINT)
(TURN OFF CENTER AND ORIGIN POINTS)
B-ERASE (SET ERASE MODE)
160 100 B-PLOT (PLOT POINT AT CENTER OF SCREEN)
0 0 B-PLOT (PLOT "ORIGIN")
NORMAL { SEE INTRO)

5.7.17 B-X : Return X Coordinate Value

{ ——— VALUE)

This word returns the value of the X coordinate which is passed to B-
PLOT whenever a point is plotted. In this way other routines can
perform calculations based on the last plotted point.

5.7.18 B-Y : Return Y Coordinate Value

{ ——— VALUE)

This word returns the value of the Y coordinate which is passed to B-
PLOT whenever a point is plotted. In this way other routines can
perform calculations based on the last plotted point.

5.7.19 BANK : Set VIC-II Bank

(BANK# ---)

Sets up which 16k bank of memory the VIC-IT chip will look at for its
Bitmap, Screen and Character Memory areas. Bank addresses are as
follows:

Bank Decimal Hex
0 0 0000
1 16384 4000
2 32768 8000
3 49152 C000

This word is used by other graphics routines to set up the video bank.

Example:

91 SUPER~FORTH 64 (TM)

Implementation Specific Words

2 BANK sets the 16k area to 32768
0 BANK restores the normal video setting

5.7.20 BITMAP : Set BITMAP Area
(BITMAP-AREA# —--—)

Sets up the proper registers (CIA Bank and VIC-II Control) to put the
Bitmap in one of 8 areas as follows:

Bitmap Decimal Hex
0 0000
8192 2000
16384 4000
24576 6000
32768 8000
40960 2000
49152 coo00
57344 EQO0O

SoOnNneawNNEHO

Example:
23 D-SPLIT
7 BITMAP
0 D-SPLIT
will split the screen, set the bitmap area to 57344 and restore the
normal screen.
5:7.21 BORDER : Set Border Color
{ COLOR ---)

Word used to set the screen border c¢olor. COLOR is one of the C64
colors as defined by the Commodore User's Manual (see Color Constants).

Example: RED BORDER turns the border red.

5.7.22 BKGND : Set A Background Register Color
{ [REG#] COLOR ---)
Word used to set the screen background register color. COLOR is a Cé4
color as defined by the Commodore User's Manual (see Color Constants).
REG# is 0 to 3 for the particular background register. If a single
parameter is on the stack, ' background register 0 is assumed and the
parameter is used as the COLOR value.

Example: PURPLE BKGND will set the background to purple.

92 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.23 CHARBASE : Set Character Base Area
(CHARBASE-AREA# ---)
Sets the base address of the Character Memory area which the VIC-II
chip 1looks at to get its character set information. There are 32
possible areas where the character set may reside, from 0 to 63488 in
2k (2048 byte) intervals. Initially, the character memory is set to
4096 (or 6144 depending on which character set is being used).
CHARBASE-AREA# may range from 0 to 7 to span the 16k area accessible
from a particular bank (see BANK).
5.7.24 CIRCLE : Draw A Hi-res Circle
{ X YR -—)

This word invokes B-PLOT to draw a true circle of radius R and center
at X,Y. Circle is really a special case of ELLIPSE.

WARNING: The bitmap area must have been set up using BITMAP and
bitmap graphics should be turned on prior to using this word.

Example:
B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
B-DRAW 160 100 60 CIRCLE
NORMAL (SEE INTRO)

draws a circle of radius 60 around the center of the screen.

5.7.25 Color Constants

Each color is defined as a constant to ease using the colors. These
can be used in various commands requiring a color constant as input.
The following colors and their constant values (see Commodore User's
Manual) are defined:

BLACK 0 PURPLE 4 CRANGE 8 MED,GRAY 12
WHITE 1 GREEN 5 BROWN S LT.GREEN 13
RED 2 BLUE 6 LT.RED 10 LT.BLUE 14
CYAN 3 YELLOW 7 DK.GRAY 11 LT.GRAY 15

Either the constant name or its value may be used. Since naming the
constant causes its value to be compiled into the definition, execution
speed is not affected by using one or the other.
Example:
SINIT PURPLE BKGND 7 BORDER ;

83 SUPER-FORTH 64 (TM)

Implementation Specific Words

would define a word called SINIT which when invoked would set the
screen background to purple and the screen border to yellow.

5.7.26 COLOR-MEM : Address of Color Memory Area
(~—— ADDR)

A constant which leaves the address of the

color memory area on the
stack.

Example: COLOR-MEM U. will print 55296.

5.7.27 ELLIPSE : Plot A Hi-res Ellipse

(XY HR VR —~-)

This word invokes ARC to plot an elliptical shape on a hi-res screen.
X and Y define the center of the ellipse and are stored in C-X and C-Y

before calling ARC. HR and VR define the horizontal and vertical radii
respectively.

WARNING: The bitmap area must have been set up using BITMAP and
bitmap graphics should be turned on prior to using this word.

5.7.28 B-MFLAG : Turn Mirror Function On/Off
(-—- ADDR)

Variable containing the flag which determines whether M-PLOT should
mirror the point which it is plotting. If B~MFLAG contains a TRUE (1)
value, mirroring is on. If FALSE (0), mirroring is of€.

Example:
ON B-MFLAG !

Turns on the mirror function.

5.7.29 M-ORIGIN : Set the Mirror Origin
(XY ——-)

Sets M-X and M-Y to return X and Y

respectively when called by
mirroring routines.

94 SUPER-FORTH 64 {(TM)

Implementation Specific Words

5.7.30 M-PLOT : Plot A Four Point Mirror Image
(XY -—)
If B-MFLAG is true, then X and Y are offsets from a center coordinate

defined by the values of M-X and M-Y. The following four points are
plotted on the bitmap area:

M-X + X M-Y - Y
M-X - X M-Y + ¥
M-X - X M-Y - ¥
M-X + X M-Y + Y

In this way, fast mirror images may be plotted.

If B~MFLAG is false, then R-PLOT is called directly. ELLIPSE uses M-
PLOT to plot four quadrants simultaneously.

Example:
B-INIT { SEE GRAPHICS INTRO FOR DEFINITION)
ON B-MFLAG ! { SET MIRROR MODE)

160 100 M-ORIGIN

20 40 M-PLOT (MIRROR A POINT)

40 20 M-PLOT { DO ANOTHER)

¢ TEST 100 0 DO I I M-PLOT LOCP ;

TEST { "X" MARKS THE SPOT)
OFF B-MFLAG ! { TURN OFF MIRROR)
NORMAL (SEE INTRO)

5.7.31 M-X : X Coordinate of Mirror Center
{ ——= X-COORD)
Returns the value of the X coordinate of the point which is used by M-
PLOT as a relative origin for plotting four mirrored points arocund it
{see M-ORIGIN),
5.7.32 M-Y : Y Coordinate of Mirror Center
{ --— Y-COORD)
Returns the value of the Y coordinate of the point which is used by M-

PLOT as a relative origin for plotting four mirrored points around it
(see M-ORIGIN).

95 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.33 MULTI-COLOR : Set/Clear Multi-color Mode
(FLAG ---)

Sets/clears multi-color graphics mode based on the value of £flag. An
ON (1) value sets multi-color. An OFF (0) value clears multi-color.

Example:

ON MULTI-COLOR
Turns multi-color mode on.

5.7.34 R-PLOT : Plot A Point Relative To Center

(XY --=)

Plots a point relative to the center coordinates, M-X,M-Y. M-X is
added to X and M-Y 1is added to Y before calling B-PLOT to plot the
point. This routine is used by M-PLOT in order to implement plotting
four points relative to a center point.

Example:
B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
160 100 M-ORIGIN
20 40 R-PLOT
NORMAL (SEE INTRO)
5.7.35 S1, S2, S3, S4, S5, S6, S7, S8 : Set Active Sprite
Sets the active sprite as one of eight sprites.

Example:

S5 280 180 S-POSITION
ON S-ENABLE"

turns on sprite 5,

5.7.36 S-B-COLLISION : Get Spr-Bkgnd Ccllision Reg.

{ ——— VALUE)

Returns the value of the Sprite to Background Collision register. This
value can be checked to determine if any sprites have collided with the
background. Use of this word automatically clears the register. Refer
to Commodore Programmers Reference guide p.144,180 for usage of the
collision registers.

96 SUPER~FORTH 64 (TM)

Implementation Specific Words

Example:
S-B-COLLISION

displays the value of the register and clears it.

5.7.37 S~COLOR : Set Sprite Color
{ COLOR ---)
Set the color value of the active sprite to COLOR.
Example:
S1 280 180 S-POSITION
ON S-ENABLE
RED S-COLOR

enables sprite 1 and makes it appear red.

5.7.38 S-DEF : Sprite Definition Structure

(——) [63 sprite byte values]
(ADDR ---)

This structure is provided as an aid in handling sprite definitions.
The 63 bytes of sprite data follow the definition of the word. These
are compiled into the dictionary. At execution time the 63 bytes are
moved to the area located at ADDR (16-bit address).

Example:

HEX

S-DEF DRAGON1
01 ¢1 00 00 81 80
00 C1 cCO 00 E1 Co
0 Fl1 EO 00 FS 80
00 FF 00 00 FF FF
00 7F FE 00 3F F8
00 3F EO 00 3F 80
00 3C 00 00 78 00
00 FO 00 01 EO0O 00
06 60 00 Ic 70 00
38 38 00 70 1C 00
A8 2A 00

8000 DRAGON1 DECIMAL

This sprite example, taken from the DEMO program, compiles the data for
a sprite named DRAGONL intoc the dictionary. When DRAGON1 is invoked
the sprite data is moved to 32768 ($8000), the 0 sprite area in BANK 2.

97 SUPER-FORTH 64 (TM)

Implementation Specific Words

The data could be entered in decimal, but HEX notation is a closer
representation of the on/off bit patterns which make up a sprite. If
your screen listing editing format allows at least 23 lines (see Editor
section) the sprite data could be entered in binary. This may give a
more visual representation of the sprite itself.

Example:
40 ' C/L ! (CHANGE FORMAT TO 40 X 25)
100 LIST

SCREEN #100
0) (BINARY DRAGON ')

1) 2 BASE ! { SET BASE TO BINARY)

2)

21)
22)
23)
24)

S-DEF DRAGON3

00000001
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000001
00000110
00011100
00111000
01110000
10101000
DECIMAL

00000001
10000001
11000001
11100001
11110001
11111001
11111111
11111111
01111111
00111111
00111111
00111111
00111100
01111000
11110000
11100000
01100000
01110000
00111000
00011100
00101010

00000000
10000000
11000000
11000000
11100000
10000000
00000000
11111111
11111110
11111000
11100000
10000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Since S-DEF requires 63 numbers to be entered in the input stream it is
expected that usage of S-DEF will be within an editing screen.

5.7.39 S-EDITOR : Sprite Editor

spritename

(=)

single color sprite editor. When
named "spritename"

This word is provided as a simple,
"S-EDITOR spritename" is typed, a dicticnary entry
is created, and a grid of dots appears on the screen.

cursor movement keys and the space bar to
A carriage return signals SUPER FORTH that
drawn in the grid is transferred both to

To create a sprite, use the
change the dots to blanks.
you are finished. The image

98 SUPER-FORTH 64 (TM)

Implementation Specific Words

the dictionary area defined by "spritename", and to sprite pointer area
13 (location 832 on the first video bank).

The actual sprite will appear in blue next to the grid. The sprite can
be turned off by typing OFF S-ENABLE.

Example:

S5-EDITOR PICTURE (AN EASEL IS DISPLAYED)

{ DRAW SPRITE THEN CR)

B-INIT { SEE GRAPHICS INTRO FOR DEFINITION)}

(PLACE THE SPRITE, "PICTURE", INTO SPRITE AREA 0 QF BANK 2)
49152 PICTURE

NORMAL { SEE INTRO)

OFF S-ENABLE { TURN SPRITE OFF)

5.7.40 S-ENABLE : Turn Sprite On/Off
{ FLAG -——)

If FLAG 1is ON (1), turn active sprite on. If FLAG is OFF (0) turn
active sprite off.

Example:
S1 280 180 S-POSITION
ON S—-ENABLE
OFF S—~-ENABLE

Positions, enables and disables sprite 1.

5.7.41 S-FSET : Set/Clear Bit in Sprite Register on Flag
{ FLAG ADDR ---)
Sets or clears a bit in register at ADDR based on the active sprite
number. If FLAG is TRUE (1) the sprite bit is set. If FLAG isg FALSE
(0) the sprite bit is cleared. This is a utility routine used by the
system to handle sprite registers in the VIC-II chip.
5.7.42 S-MULTI : Set/Clear Multi-Color Mode for A Sprite
(FLAG ---)
Sets or clears the bit for the active sprite in the Sprite Multi-color
Mode register of the VIC-II chip. If FLAG is ON (1) the sprite bit is
set. If FLAG is OFF (0) the sprite bit is cleared. S-MULTIR should be
used to set the sprite multi color registers before using this word.

Example:

99 SUPER-FORTH 64 (TM)

Implementation Specific Words

ON S-MULTI

turns on multi-color mode for the active gprite.

5.7.43 S-MULTIR : Set Multi-Color Sprite Register Color
(COLOR REG# --—-—)

Sets one of the two Sprite Multi-color register to the given COLOR.
REG# is 0 or 1.

Example:
RED 0 S-MULTIR

sets multi-color register 0 for the active sprite to red.

5.7.44 S-POINTER : Set Sprite Pointer Number
(SPRITE-ADDR ---)
Sets the SPRITE-ADDR for the active sprite. Sprite addresses range
from 0 to 255. Each sprite address covers a 64 byte range, therefore
the 256 sprite addresses will allow sprites to be defined anywhere in
the 16k bank which the VIC-II chip is looking at.
Example:
0 S-POINTER
will set the sprite pointer for the active sprite to location 0
relative to the start of the current 16k bank.
5.7.45 S-POSITION : Set Sprite Position
(XY -—)

Sets the position of the active sprite to the specified X,Y¥Y
coordinates.

Example:

S1 ON S-ENABLE
100 100 S-POSITION

will position the active sprite to sprite coordinates 100,100.

100 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.46 S-PRIORITY : Set Sprite-Background Priority
(FLAG —-—)
Sets priority of active sprite according to FLAG. If FLAG is FALSE (0)
the active sprite takes priority over the background. If FLAG is TRUE
(1) the background takes priority over the sprite.
Example:

ON S-PRIORITY

gives the active sprite priority over the background.

5.7.47 S8-S-Collision : Get Spr-Spr Collision Reg.
(-—- VALUE)
Returns the wvalue of the Sprite to Sprite Cellision register. This
value can be examined to determine which, 1if any, sprites have
collided. Use of this word automatically clears the register.
Example:

5-S-COLLISION

prints the value of the register and clears it.

5.7.48 S-XEXP : Expand Sprite In X-Direction
{ FLAG ---)
Sets up the VIC-II chip to set the active sprite to expand/normal in
the X direction depending of the given FLAG. If FLAG is TRUE (1) the
sprite will be expanded. If FLAG is FALSE (0) the sprite will be
unexpanded.
Example:
ON S—-XEXP

expands the active sprite in the X direction.

5.7.49 S-YEXP : Expand Sprite In Y-Direction
{ FLAG ---)

Sets up the VIC-II chip to set the active sprite to expand/normal in

101 SUPER-FORTH 64 (TM)

Implementation Specific Words

the Y direction depending of the given FLAG. If FLAG is TRUE (1) the
sprite will be expanded. If FLAG is FALSE (0) the sprite will be

unexpanded.
Example:
ON S-YEXP

expands the active sprite in the Y direction.

5.7.50 SCREEN : Set Screen Display Area
{ SCREEN-AREA§ ---)

Sets the Screen Memory area which the VIC-II chip looks at to perform
character mappings for output to the screen in character mode, or gets
color information from in bitmap (hi-res) mode.

SCREEN-AREA# may range from 0 to 15, putting the display screen in one
of the 16 1k (1024 byte) areas accessible by a particular 16k bank.
Initially, the screen is located at area 1 (1024).

Note: If the screen area is changed, the screen editor must be
notified of the change. The following accomplishes this:

NEW-ADDR 256 / 648 C!

5.8 Turtle Graphics

These words follow the turtle graphics definitions of the Logo

language. The "turtle" in this system is a "virtual turtle", that is,
the turtle 1is not actually displayed, but the turtle words move and
change the direction of the invisible turtle. The Turtle Graphics

words may be intermixed with other graphics words, such as B-LINE, B-
CIRCLE or the various sprite control words.

The examples for each word should be followed to get the basic idea of
how to move the turtle. A more elaborate example of how to build
turtle word definitions follows. This example demonstates how to
create a complex design based on simple definitions.
First, let us create-a definition for drawing a hexagon. A hexagon may
be created by drawing six equal sides, turning 60 degrees after drawing
a side. Thus, the definition:

: HEXSIDE 40 FORWARD 60 RIGHT :
will draw one side and prepare for the next. Executing the following:

DRAW HEXSIDE HEXSIDE HEXSIDE HEXSIDE HEXSIDE HEXSIDE

102 SUPER-FORTH 64 (TM)

Implementation Specific Words
will verify that HEXSIDE can be used to draw a hexagon. The definition
for hexagon follows directly from HEXSIDE:

: HEXAGON 6 0 DO HEXSIDE LOOP ;
and DRAW HEXAGON can be used to verify HEXAGON.
Next, we can draw a geometric figure based on rotated hexagons. If we
leave the number of degrees to rotate as a parameter, we can create

many figures from the same definition:

HEXFIGURE (#DEGREES ---

360 0 DO (ROTATE FOR 360 DEGREES)
HEXAGON (DRAW A HEXAGON)
DUP RIGHT (ROTATE BY #DEGREES)

DUOP +LOOP DROP ;
Now try the following figures:
DRAW 120 HEXFIGURE
DRAW 60 HEXFIGURE
DRAW 30 HEXFIGURE

DRAW 15 HEXFIGURE
DRAW 3 HEXFIGURE

The same procedure may be used with other types of shapes to create
different geometric figures.

5.8.1 BACK : Move Turtle Backward
(N ---)

The turtle is moved N units in the direction opposite of HEADING,
drawing if the pen is down. May be abbreviated BK.

Example:
DRAW { INITIALIZE TURTLE SCREEN)
40 BACK (DRAW LINE SOUTH)
45 LEFT (TURN TURTLE TO FACE NORTHWEST)
40 BACK (DRAW LINE SOUTHEAST)

5.8.2 BACKGROUND : Set Background Color

{ COLOR ---)

Changes the turtle screen background to COLOR, Also changes any.
drawing on screen to present turtle pen color.

103 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example:

DRAW (INITIALIZE TURTLE SCREEN)

160 100 60 CIRCLE (DRAW A CIRCLE)

YELLOW PENCOLOR { CHANGE THE PEN TOQO YELLOW)

120 FORWARD { DRAW YELLOW LINE) _

PURPLE PENCQLOR { CHANGE PEN TO PURPLE)

YELLOW BACKGROUND (CHANGE BACKGND YELLOW & DRAWING PURPLE)
5.8.3 BG : Set Background Color

(COLOR —--)

Abbreviation for BACKGROUND. May be abbreviated BG.

5.8.4 BK : Move Backward
(N ===

Abbreviation for BACK.

5.8.5 CLEARSCREEN : Clear the Graphics Area

(=)

Erases anything drawn on the turtle screen. Leaves turtle in 1its last
position. May be abbreviated CS.

Example:
DRAW (INITIALIZE TURTLE SCREEN)
160 100 50 CIRCLE (DRAW A CIRCLE)
CLEARSCREEN { ERASES THE SCREEN)
20 BACK (DRAW A LINE FROM LAST TURTLE POSITION)

5.8.6 CS : Clear the Graphics Area

(=)

Bbbreviation for CLEARSCREEN.

5.8.7 DRAW : Initialize Turtle Screen

(—)

Sets up the Cb64 to perform turtle graphics. DRAW performs the
following functions:

134 SUPER-FORTH 64 (TM)

Implementation Specific Words

- Splits the screen into hi-res/text

- Clears the bitmap area

— Sets the turtle pen red

- Sets the hi-res background color to cyan
- Moves the turtle to its "home" position
- Sets the turtle pen to "draw" mode {down)

5.8.8 FD : Move Forward
(N -—-=)

Abbreviation for FORWARD.

5.8.9 FORWARD : Move Turtle Forward
(N -=-)

The turtle is moved N units in the direction of HEADING, drawing if the
pen is down. May be abbreviated FD.

Example:
DRAW (INITIALIZE TURTLE SCREEN)
40 FORWARD (DRAW LINE 40 UNITS NORTH)
45 RIGHT (SET HEADING NORTHEAST)
40 FORWARD { DRAW LINE 40 UNITS NORTHEAST)

5.8.10 FS : Set Graphics Screen

(=)
Abbreviation for FULLSCREEN.

5.8.11 FULLSCREEN : Set Graphics Screen

(=)

Enter turtle full screen mode- the complete screen is used for turtle
graphics. Does not affect any drawing on turtle screen. May be
abbreviated FS.

Example:
DRAW (INITIALIZE TURTLE SCREEN)
134 BACK (DRAW LINE TO BOTTOM GF SCREEN)
FULLSCREEN (ENTER FULL SCREEN MODE)

105 SUPER~-FORTH 64 (TM)

Implementation Specific Words

5.8.12 HEADING : Heading Variable

(-—— ADDR)
Variable which contains the current heading of the turtle (direction in
which it is pointed) in degrees. Headings of 0, 90, 180 and 270
represent north, east, south and west, respectively. HEADING is
automatically updated by rotation commands- RT, RIGHT, LT and LEFT.

Example:
DRAW SETS UP TURTLE SCREEN)
HEADING ? DISPLAYS "0", INITIAL HEADING)

CURRENT HEADING IS 20)
CURRENT HEADING IS 25)

20 RT HEADING
5 RT HEADING

ha® BLLV)

5.8.13 HOME : Position To Center of Screen

(=)

Puts turtle in its "home" position (in the center of the hi-res
screen).

Example:
DRAW (INITIALIZE TURTLE SCREEN)
160 100 60 CIRCLE (DRAW A CIRCLE)
HOME (PUT TURTLE BACK IN CENTER)
60 BACK { DRAW LINE TO CIRCLE FROM CENTER)

5.8.14 LEFT : Turn Left
(N ---)

Causes turtle to turn counterclockwise by N degrees. May be
abbreviated LT.

Example:
DRAW (SET UP TURTLE SCREEN)
20 FORWARD (MOVE TURTLE