“SUPERFORTH 64"

for Total Control of the
Commodore 64*

© Copyright 1983 , 1964
by
Elliot B. Schneider
All Rights Reserved

Disk Enclosed

Published by
PARSEC RESEARCH
Drawer 1766
Fremont, CA 94538
{415) 651-3160

SUPER-FORTH 64™ of Parsec Rescarch
*Commodore 64™ of Commodore Computer Co.

Available at the Vintage Volts website

http://www.vintagevolts.com

Copyright Notice

COPYRIGHT (C) 1983,1984 by Elliot B. Schneider. All rights reserved.
No part of this publication or software may be reproduced in whole or
in part without the prior written consent of the Author.

This software package is available for use on a single computer only.
Unauthorized copying or transmitting of this copyrighted software on
any media is strictly prohibited by federal law. Any unauthorized
distribution of this product deprives the author of his royalties.

Although every attempt has been made to verify the accuracy of this
document, we cannot assume any liability for errors or omissions. No
warranty or other guarantee can be given as to the suitability or
accuracy of this software for a particular purpose, nor can we be
liable for damage arising from the use of same. As a condition of
purchase and/or use of this product, the purchaser or user accepts all
risk of damage or liability arising from the use of same.

SUPER-FORTH 64 is a registered trademark of Parsec Research, Inc.

This copy of SUPER-FORTH 64 has a traceble serial number embedded
within the system.

SUPER-FORTH 64 (TM)

Note:

Errata

1.3 Getting Started (p 3.)

The Naster disk has two sides to it...
a system side and a source code side., The
System side is to te Loaded First,

Whenever the instructions in the manual
requests that you list a source screen # or
Load a source screen # (ie, 10 LIST, 10 LOAD
or 10 20 THRU) then you insert the Source
Code Side of the master disk into your drive
and type the appropriate command..

To make a complete backup of the master
disk you will need 2 blank disks, one for
the system side and one for the source code
side, Follow the instructions on page 3 to
copy the system, and page 72, 73 to make a
backup copy of the source code,

Your working copy should consist of
two additional disks, one system disk and
one blank formatted disk, Your program
listings are stored on the blank formatted
disk and your compiled program becomes part
of the system disk,

To make a backup copy of the AI and Kath
Modules follow the instructions on pages 72 &

73.

TABLE OF CONTENTS

Section Page
1. Introduction To the System 1
1.1 System Support 1
1.2 About This Manual 1
1.3 Getting Started 3
1.3.1 Disk Based Systems 3
1.3.2 Cassette Based Systems 4
1.3.3 Once the System Is Running 4
1.4 Demo Program 5
1.5 Warm Starting 6
1.6 Exiting and Cold Starting 6
1.7 Resetting the System 7
1.8 FORTH and the Commodore Screen Editor 7
1.9 FORTH and Machine Language 7
1.9.1 FORTH 6510 Assembler 7
1.9.2 External Machine Language Routines 8
1.10 FORTH Editor 8
1.11 FORTH Code Storage 8
1.11.1 Standard Mode (Disk Only) 9
1.11.2 File Mode (Cassette or Disk) 10

. 1.11.3 Initial Mode Settings 10
1.12 Special Features 11
1.12.1 Saving Applications 11
1.12.2 Debugging Features 11
1.12.3 Math Routines 12
1.12.4 High RAM Access 12
1.12.5 Graphics and Sound Words 12
1.12.6 I/0 Redirection 13
1.12.7 Diskette Backup Utilities 13
1.13 Vectored FORTH System Routines 13
1.14 Vocabularies 14
2. System Memory Usage 15
2,1 System Memory Organization 15
2.2 Zero Page Usage ‘ 17
2.3 Return Stack and Input Buffer 17
2.4 FORTH Dictionary Area 17
2.5 Reducing SUPER FORTH 64 To Minimum Size 19
2.6 Disk Buffer Area 19
2.7 User Area 20
2.8 High RAM 21
2.9 Running Out of Memory 21
2.10 Stripping System For An Application 21

SUPER-FORTH 64 (TM)

« & a « s

=IO L W N

Wl W W ww

- - [] L] L] L]
= - BN R R PR N

b B b B B R s

.3

FORTH Source Disk
SUPER FORTH 64 System Diskette
Screens and Blocks
File Mode
Standard Mode
Multiple Disk Systems
4040 Drives
Disk Error Recovery

FORTH Assembler Usage
How the Assembler Works
Entering Assembly Code
Opcodes, Operands and Addressing Modes
Interfacing With FORTH
Returning to Interpreter
Code Structures
Subroutines
Macros

Implementation Specific Words
Editor Words
Configuring the Editing Screen
C : Copy A Line On A Screen
COPY : Copy Screen
EDITOR : Use Editor Vocabulary
F : Flush (Save) The Current Screen
K : Kill A Line
L : List A Screen
LIST : List A Screen
M : Move A Line On A Screen
N : Next Screen
O : Open A Line For Input
P : Previous Screen
SC : Copy Line From Different Screen
SCOPY : Copy A Group of Screens
SM : Move Line From Different Screen
W : Wipe the Current Screen Clear
X : eXtract A Line

rce Screen File Mode Words

VUi m g g s,
s e e e e

C~OnbaWwNoEo

s n s s [f1e 1 »
HHROR~-SANLBEWNHFDHFHFHFFEFREHEFRFHMEEODR-IOW & WK -

F~EDIT : Set Up To Edit File
F-EXIT : Exits File Mode

F-LOAD : Load File Into System
F-NEW : File Mode Initialization

« & a
. e+

F-SAVE : Save Source Screen File
FILE-MCDE : Invoke File Mode
FLAST : Last Screen Variable

0 FNAME : Default File Name

1 FOPEN : Open Default File

READB : Read Block Into Buffer

.2.13 WRITEB : Write Block Into File

C64 Bit/Byte Manipulation Words

MNNMNMNNNNMOMNNNN

mnmuyyunuaiyianan anaun
« s
;8]
.
-
%)

SUPER-FORTH 64 (TM)

F~-APPEND : Append A File To Block Buffers

F-NUMBER : Renumber the Block Buffer Screens

23
23
24
24
24
25
26
26

27
27
28
29
32
34
35

37

39
40
42
44
44
44
44
44
45
45
45
45
46
46
46
46
46
47
47
47
48
49
49
49
50
50
50
51
51
51
51
52
52
52

W W W W w W

(RO ROR RS NS NSRS
. a 5 = = & a [}
. n.

5.4

" e+ 8 - * @ @ L]
Ll ol Sl A A s

OO Ud g Uy U g w g Ut ad dowg g Waal

(RS RS RS N NS S, T, NS, Y, Y |

Uit o u o
L] L] n‘ L] L]

5.6

CATNIB : Concatenate Two Nibbles

CBIT : Clear Bits in Byte

FBIT : On Flag CBIT/SBIT in Byte
LSHIFT : Perform a 16-bit Left Shift
MASK : Calculate 2%**N ,
RSHIFT : Perform a 16-bit right shift
SBIT : Set Bits in Byte

SPLIT : Split A Cell Into Two Bytes

4 Specific I/O Words & Extensions

?TERMINAL : Query Current Input Device For Character
CMD : Set File Number As Current Output Device
CMDI : Set File Number As Current Input Device
EMIT : Output Character

EMIT7 : Output 7-Bit Character

EXPECT : Get Input Line

FRE : Display Amount of Free Space Available
GET# : Get A Character From File

INPLFN : Input Device Logical File Number

INPUT : Input A Number From Current Input Device
INPUT# : Input A Number From File

JOY1 : Joystick Constant

JOY2 : Joystick Constant

KEY : Input Character

MODE : Source File Mode Variable

QUTLFN : OQutput Device Logical File Number
PADDLE@ : Fetch Paddle X,Y Values

PRINT# : Print A Number To File

PRINTER : Open a Printer File and Re-direct Output
PUT# : Set Output File and Send Character

RS232 : Open An RS-232 Channel

RWTS : Read/Write Track & Sector

SAVE-FORTH : Save A Compiled System

SECTRKT : Sectors/Track Table

SYSDEV : System Device Variable

UPORT : User Port Constant

Kernel Interface Words

CHARIN : Character Input

CLALL : Close All Files

CLOSE : Close A Logical File

CLRCHN : Close I/0 Channels

LOADRAM : Load A Program File Into Memory
OPEN : Open A Logical File

SAVE : Save Memory to Device
SAVENAME : Name of File To Be Saved
SETLFS : Set Logical, First, Second
SETNAM : Set Name of File

ST : Get Kernel I/O Status Byte

Utility Words

<ROT : Reverse Rotate Stack

?DEPTH : Check Stack Depth

A-REMOVE : Remove Assembler From System
APPLICATION : Save System As An Application

.1 E-PROMing APPLICATION Programs

SUPER-FORTH 64 (TM)

52
52
53
53
53
53
54
54
54
55
55
56
56
56
56
57
57
57
58
58
58
59
59
59
59
59
60
60
61
61
62
62
63
63
63
63
64
64
64
64
64
65
65
66
66
656
66
66
67
67
67
68
69

AR NN ARRATNANRNRNN R

AR REORDEOGREOHEORLEURLRLEORE RN RE N R GRS FE NS,

B e s s & 8 » o s s e e a s e

- - *® -
HPHFHFEFHEFFMFEFFRFRWDOSIOU D WA N WDHN NN
O~ bW~ O

iy nmaaunaauonaumu;moad
R B B B BN B B B B B B R L LS IR I S |

CHANGE : Change SUPER FORTH Configuration
CASE Structure Extensions

1 CASE : Begin Case Structure

2 OF : Test For Particular Case

3 :; 1 Specify End of Particular Case

4 ENDCASE : Specify End of CASE Structure
Backup Utilities

1 BACKUP : Complete Diskette Backup Utility
2 COPYBUF : Copy Up to #BUFPF Screens

3 PCOPY : Perform A Partial Disk Backup

4 SOURCE-BACKUP : Perform A Backup Copy of Source
D2* : Double Word Mult. By Two

DECOMPILE : Source Decompiler Utility

DIR : Display Disk Directory

DOS : Send A Command To the Disk

DOSERR : Read and Print the Disk Error Channel
DUAL : Dual Drive Specifier

MAX-BUFFS : Re-configure System For Maximum Buffers
OFF : Leave Constant Zero On Stack

ON : Leave Constant One On Stack

PATCH : Patch Memory

RDTIM : Read the 60 Cycle Clock

RECURSE : Call A Definition Recursively

SETTIM : Set the 60 Cycle Clock

SWAPIN : Swap Kernel ROM & I/0 Area In

SWAPOUT : Swap Kernel ROM & I/0O Area Out

S¥S : Call Machine Language Routine

SYSCALL : Call Machine Language Routine

TRACE

Tracing Forth Definitions

VLEN : VLIST Line Length Variable

VLIST : List Vocabulary Words

VTAB : VLIST Tab Length Variable

WAIT : Pause N Clock Ticks

aphics Related Words

'BANK : Get Address of 16K Bank

'BITMAP : Get Address of Bitmap Area
'CHARBASE : Get Address of Character Memory
'SCREEN : Get Address of Screen Memory

ARC : Plot A Hi-res ARC _
B-CLINE : Plot A Color Line On the Bitmap
B-CPLOT : Plot A Color Point On the Bitmap
B-COLOR : Select Bitmap Character Colors
B-COLOR-FILL : Fill Bitmap Color Area
B-DRAW : Set the System to Draw Mode
B-ERASE : Set the System to Erase Mode
B-FILL : Fill Bitmap with Byte Pattern
B~GRAPHICS : Turn Bitmap Graphics On/Off
B-LINE : Plot A Line On the Bitmap

B-PEN : Draw/Erase Mode Variable

B-PLOT : Plot a Point In the Bitmap

B-X : Return X Coordinate Value

B-Y : Return Y Coordinate Value

SUPER-FORTH 64 (TM)

71
71
72
72
72
72
72
73
73
74
74
74
74
75
75
75
75
76
76
76
76
77
77
77
78
78
78
79
79

80
80
8l
8l
81
85
85
85
86
86
86
87
87
87
88

88

88
83

-89

90
90
91
91

5.7.19 BANK : Set VIC-II Bank 91
5.7.20 BITMAP : Set BITMAP Area 92
5.7.21 BORDER : Set Border Color 92
5.7.22 BKGND : Set A Background Register Color 92
5.7.23 CHARBASE : Set Character Base Area 93
5.7.24 CIRCLE : Draw A Hi-res Circle 93
5.7.25 Color Constants 93
5.7.26 COLOR-MEM : Address of Color Memory Area 94
5.7.27 ELLIPSE : Plot A Hi-res Ellipse 94
5.7.28 B-MFLAG : Turn Mirror Function On/Off 94
5.7.29 M-ORIGIN : Set the Mirror Origin 34
5.7.30 M-PLOT : Plot A Four Point Mirror Image 95
5.7.31 M-X : X Coordinate of Mirror Center 95
5.7.32 M-Y : Y Coordinate of Mirror Center 95
5.7.33 MULTI-COLOR : Set/Clear Multi-color Mode 96
5.7.34 R-PLOT : Plot A Point Relative To Center 96
5.7.35 S1, 52, 83, 5S4, S5, S6, S7, S8 : Set Active Sprite 36
5.7.36 S-B-COLLISION : Get Spr-Bkgnd Collision Reg. 96
5.7.37 S-COLOR : Set Sprite Color ‘ 97
5.7.38 S-DEF : Sprite Definition Structure 97
5.7.39 S-EDITOR : Sprite Editor 98
5.7.40 S-ENABLE : Turn Sprite On/Off 99
5.7.41 S-FSET : Set/Clear Bit in Sprite Register on Flag 99
5.7.42 S-MULTI : Set/Clear Multi-Color Mode for A Sprite 59
5.7.43 S~-MULTIR : Set Multi-Color Sprite Register Color 100
5.7.44 S-POINTER : Set Sprite Pointer Number 100
5.7.45 S-POSITION : Set Sprite Position 100
5.7.46 S-PRIORITY : Set Sprite-Background Priority 101
5.7.47 5-S~Collision : Get Spr-Spr Collision Reqg. 101
5.7.48 S-XEXP : Expand Sprite In X-Direction 101
5.7.49 S-YEXP : Expand Sprite In Y-Direction 101
5.7.50 SCREEN : Set Screen Display Area 102
.8 Turtle Graphics _ 102
5.8.1 BACK : Move Turtle Backward 103
5.8.2 BACKGROUND : Set Background Color 103
5.8.3 BG : Set Background Color 104
5.8.4 BK : Move Backward 104
5.8.5 CLEARSCREEN : Clear the Graphics Area 104
5.8.6 CS : Clear the Graphics Area 104
5.8.7 DRAW : Initialize Turtle Screen 104
5.8.8 FD : Move Forward 105
5.8.9 FORWARD : Move Turtle Forward - 105
5.8.10 FS : Set Graphics Screen 105
5.8.11 FULLSCREEN : Set Graphics Screen 105
5.8.12 HEADING : Heading Variable 106
5.8.13 HOME : Position To Center of Screen 106
5.8.14 LEFT : Turn Left 106
5.8.15 LT : Turn Left ' 107
5.8.16 ND : Set Text Screen 107
5.8.17 NODRAW : Set Text Screen 107
5.8.18 PC : Set Color of Pen 107
5.8.19 PENCOLOR : Set Ccolor of Pen 107
5.8.20 PENFLG : Pen Variable 108

SUPER-FORTH 64 (TM)

[¥)]
.
O

Luuvuiunuiyavyiuug L a

Cle » 5 &« & o s » o s = »

DI EMEO R RV RGO R RN R RN EL R RS R NN BT |

\D\D\O\D\D\D\D\D\D\D\DQ\D\D\D@\O\D\D\D\D\D\Q

» * & a * = s 8 = & @

WNFOWRITOVWUM & W PO

.10.10
.10.11

PD : Set Pen Down

PENDOWN : Set Pen Down

PENUP : Set Pen Up

PU : Set Pen Up

RIGHT : Turn Right

RT : Turn Right

SETH : Set Turtle Heading
SETHEADING : Set Turtle Heading
SETX : Move To New X Coordinate
SETXY : Set X,Y Coordinate

SETY : Move To New Y Coordinate
SPLITSCREEN : Set Split Graphics/Text Screen
S5 : Set Split Graphics/Text Screen

Sound Related Words

ENV3@ : Fetch Envelope Value

F-FREQ : Set Filter Frequency

MODEVOL : Set Mode/Volume

NOTE@ : Fetch Note from NOTE-VALUES
NOTE~VALUES : Table of Chromatic Note Values
OSC3@ : Fetch Oscillator 3 Value
PLAY.NOTE : Play A Chromatic Note
RESFILT : Set Resonance/Filter

SID : SID Address Variable

SID! : Store Value into SID Register
S5ID@ : Fetch Value From SID Register
SOUND.INIT : Initialize Sound System
Sound Constants

V-AD : Set Voice Attack/Decay

V-CTRL : Set Voice Control Register
V-DEFAULT : Default Settings of the SID Chip
V-FREQ : Set Voice Fregency

V-PW : Set Voice Pulse Width

V-SR : Set Voice Sustain/Release

V! : Put Value in Active Voice Register
V1l,v2,V3 : Set Active Voice

VOICE : Active Voice Variable

WAVE : Waveform Variable-

Editor Words :

DURATION : Note Duration Variable

NCALC : Calculate the Time for A Note Duration
NEXT.NOTE : Timing For Next Note For Each Voice

Notes : Play a Chromatic Note

0@ : Fetch the Current Octave Value

0! : Set New Octave Value

PLAY ,WAIT : Wait Until Ready and Play Note
SONG.INIT : Initialize Timers for Song

T@ : Fetch Transposition Value

T! : Set New Transposition vValue

TEMPO : Music Tempo Variable

String Extension Words

.11.1
11,2
.11.3

" : Create An Immediate String
“* : Create A Null String
$. : Display A String

SUPER-FORTH 64 (TM)

108 -~

108
108
109
109
109
109
109
110
110
110
110
111
111
111
112
112
112
112
112
113
114
114
114
115
115
115
116
116
116
116
117
117
117
117
118
118
118
120
121
121
122
122
122
122
123
123
123
123
124
125
125
125

5.11.4
5.11.5
5.11.6
5.11.7
5.11.8
5.11.9
5.11.190
5.11.11
5.11.12
5.11.13
5.11.14
5.11.15
5.11.16
5.11.17
5.11.18
5.11.19
5.11.20

$< : Test Strings For <
$= : Test Strings For =
$> : Test Strings For >

$CLR : Clear A String

$CMP : String Comparison

SCONCAT : Concatenate Strings)
SCONSTANT : Define String Constant
$SFIND : Locate A String Within Another String
SINPUT : Input A String

$LEFT : Concatenate Leftmost Substring
SLEN : Get Length of String

SMID : Concatenate Middle Substring
$RIGHT : Concatenate Right Substring
$VAL : Get Numeric Value of String
$VARIABLE : Create String Variable

<"> : Immediate String Run-time Routine
<$CONCAT> : Perform Concatenation

5.12 Interrupt Extension Words

5.12.1
5.12,2
5.12.3
5.12.4
5.12.5
5.12.6

I-CLEAR : Clear User Interrupt Routine Address
$7F : Interrupt Return Flag '

I-INIT : Initialize Interrupt System

I-S5ET : Set User Interrupt Routine Address
I-SYSTEM : Set I-FLAG to System Routine Exit
I-USER : Set Interrupt Return Flag to Exit

5.13 Display Screen Words

5.13.1
5.13.2
5.13.3
5.13.4
5.14 (64
5.14.1
5.14.2
5.14.3
5.14.4
5.15 Data
5.15.1 .
-5,15.2
5.16 Math
5.16.1

5.16.
5.16.
5.16.
5.16,
5.16.
5.16.
5.16.
5.16.
5.16.

5.16.2

5.16.
5.16.
5.16.
5.16.

D-CLEAR : Clear Screen From Cursor Position
D-READ : Return Position of Cursor on Screen
D-POSITION : Position Cursor On Screen
D-SPLIT : Split Screen Into Hi-res/Text

High RAM Access Words

H! : Store Value At High RAM Address
H@ : Fetch Value From High RAM Address
HC! : Store Byte At High RAM Address

HC@ : Fetch Byte From High RAM Address
Structure Words

1ARRAY : One Dimensional Array Structure
2ARRAY : Two Dimensional Array Structure
Extension Words

Floating Point Extensions

1.1 <FNUM> : Floating Number Conversion Routine
1,2 DFIX : Convert Floating to Double Integer
1.3 DFLOAT : Convert Double Integer to Floating
1.4 El : Enter Floating Number in Scientific
1.5 FCOS : Return Floating Point Cosine

1.6 FEXIT : Exit Floating Point Mode

1.7 FLOAT : Convert Integer to Floating

1.8 FSIN : Return Floating Point Sin of An Angle
1.9 FSQRT : Return Floating Square Root

Trig Extensions

2.1 <SIN>

2.2 <COS>

2.3 QSIN : Quick Sin Routine

2.4 QCOS : Quick Cosine Routine

SUPER-FORTH 64 (TM)

125
126
126
126
127
127
128
128
128
129
129
129
130
130
131
131
131
132
134
134
135
135
135
136
136
136
136
137
137
137
138
138
139
139
139
140
140
140
140
141
141
142
142
142
142
143
143
143
143
144
144
144
144

-r

5.16.2.5 SIN : Sin Routine 145

5.16.2.6 COS : Cosine Routine 145
6. MVP Standard Word Set Glossary 146
APPENDICES
I. Example Programs 171
I-1 Designing A Program- Sound Synthesizer Example 172
I-1.1 Sound Synthesizer Example 173
I-1.2 Extending SUPER FORTH- Music Tools 177
IT. SUPER-FORTH 64 User Source Screens 181
ITI. SUPER-FORTH Dictionary List 228
III-1 SUPER FORTH 64 Main Vocabulary Word Set 228
III-2 Editor Vocabulary Word Set 231
ITI-3 Assembler Vocabulary Word Set 231
IV. Various Articles of Implemented Screens 233 .
V. Recommended Books [available from Parsec] 233
V-1 FORTH Programming 233
V-2 FORTH Reference Guides 233
V-3 Commodore 64 Reference 233
V-4 Commodore 64 Graphics/Sound Related 234
V-5 Assembly Language Programming 234
VI. Error Messages 235
INDEX
=x=== 237

SUPER-FORTH 64 (TM)

Py

Introduction To the System

1. Introduction To the System

SUPER FORTH 64 is a superset of the Version 1.xx.03 MVP-FORTH system as
defined in the annotated glossary, ALL ABOUT FORTH by Glen B. Hayden.
Questions concerning definitions and implementations within the MVP.
FORTH Kernel can be resolved by referring to ALL ABOUT FORTH. ALL
ABOUT FORTH also describes the implementation of various FIG-FORTH
words which are not used or have been renamed.

SUPER FORTH 64 1is a complete implementation of the FORTH-79 Required
and Extension Word Sets. It contains extensions from FIG FORTH,
STARTING FORTH by Leo Brodie, and special extensions to take advantage
of the particular hardware in the Commodore 64 computer.

This manual contains definitions for each ALL ABOUT FORTH word used in
the SUPER FORTH 64 system. Therefore, ALL ABOUT FORTH is NOT a
required guide to definitions in this system, but will be useful to the
advanced FORTH programmer for the detailed information it contains
about each MVP FORTH word.

1.1 System Support

We have attempted to bring you a correctly working system and a manual
which is error-free. However, gquestions on system usage will arise
from time to time. We encourage you to contact Parsec Research (Drawer
1766, Fremont, CA 94538: 415-651-3160) to report any anomolies in the
system or particular problems which you may be encountering with it.
We will attempt to answer all questions as quickly as possible. We are
also interested in user feedback as to potential changes or
enhancements which would facilitate use of the system.

It is IMPORTANT to send in the registration card which is enclosed with
the system, This card will enable us to send users periodic updates
concerning the SUPER FORTH 64 system. These updates will contain
useful information, such as bug fixes, enhancements to the system and
answers to commonly asked gquestions.

1.2 About This Manual

This is a reference manual for the SUPER FORTH implementation of the
FORTH language on the Commodore 64 computer. It is NOT meant to be
used as a tutorial for learning how to program in FORTH. It is assumed
that the user either has some familiarity with the FORTH language, or
will use STARTING FORTH or a similar tutorial (see appendix for a list
of recommended books) to learn enough to use the system. It 1is also
assumed that the user has a basic operating knowledge of the Commodore
64. This can be acquired through use of the Commodore 64 User's Guide
which comes with the machine.

1 SUPER-FORTH 64 (TM)

Introduction To the System

To fully understand the Graphics and Sound capabilities of the
Commodore 64, and thus to utilize the special extensions for these
features, it is recommended that ' the user read one of the books which
deals with C64 sound and/or graphics (see appendix) and use it in
conjunction with the sections in this manual on Sound and Graphics
Extension words (Sections 5.7 and 5.8).

Since the . hexadecimal number system (base 16) is often used when
dealing with computer hardware (addresses which often seem strange in
decimal are usually even multiples of 16, 16**2 or 16**3) I have
included the hex conversion for addresses given in parenthesis after
the decimal address. Hex numbers are numbers which are prefixed with a
"$" (such as $12AB). In FORTH the base can easily be switched by using
the FORTH words HEX and DECIMAL.

2 SUPER-FORTH 64 (TM)

Introduction To the System

1.3 Getting Started

1.3.1 Disk Based Systems
To get started working with SUPER FORTH perform the following steps :

1. Turn on the computer and disk drive, and insert the SUPER FORTH
64 system diskette into the drive (use device 8 in a multi-
drive system).

2. To load the demo system, skip to section 1.4, "Demo Prdgram"; to
load a normal SUPER. FORTH system perform the following commands

LOAD "SUPER FORTH 64",8 {return}
RUN {return}

The SUPER FORTH system should now be running.
It is recommended that you make a working copy of your master SUPER
FORTH 64 system immediately and keep the master in a safe place. To
make the working copy you must first format a blank diskette (Commodore
refers to this as "NEWing" a diskette). Place a blank diskette in the
drive and type the following to format a "working copy" diskette:

" NQ:diskname,id" DOS

where "diskname" and "id" are as defined in the VIC-1541 User's Manual,
The operation will take about two minutes.

When formatting is finished type the following:
SAVE-FORTH

Your system will be saved to disk as a file named "SUPER FORTH 64".
This diskette should now be used as your working copy of SUPER FORTH.

You will need a separate formatted diskette in order to save source

code for the FORTH programs you will write. Place a blank diskette in

the drive and type the following to format a "source screens" diskette:
" NO:diskname,id" DOS

This diskette may be used as your working "source screens" diskette.

3 SUPER-FORTH 64 (TM)

Introduction To the System

1.3.2 Cassette Based Systems

To get started working with SUPER FORTH 64 perform the following steps

1. Turn on the computer and insert the SUPER FORTH 64 system
cassette into the cassette drive.

2. Perform the following commands :
LOAD "SUPER FORTH 64" {return}

Follow procedure for 1loading a program from cassette. When the
program is done loading type:

RUN {return}
The FORTH system should now be running.

It is recommended that you make a backup copy of your master SUPER
FORTH 64 system immediately and work from the backup copy. Place a new
cassette in the drive and key in the following:

SAVE~FORTH

A copy will be made to the new cassette. This should be used as your
working copy of the system.

1.3.3 Once the System Is Running

It is worthwhile (and probably a lot of fun) to go through the program
examples in the manual. Especially useful for the beginner are the
Graphics and Music Editor examples 1in sections 5.7 and 5.9. If you
want to start saving programs quickly go through the editing tutorial
in section 5.1, Editor Words. Section 4 provides a tutorial on the
FORTH Assembler. It is intended for programmers who have a general
assembler experience, but not using a FORTH assembler. By following
the examples on your C64 and seeing what they do, you will quickly
develop a "feel" for FORTH without really knowing how to program in it,

If you are a beginning FORTH programmer, use the instructional guide
STARTING FORTH (see book list in Appendix V) by Leo Brodie, Prentice
Hall, 1981, or THE COMPLETE FORTH by Alan Winfield, Wiley Press.
STARTING FORTH is a more comprehensive guide to the FORTH language and
internals, while THE COMPLETE FORTH is aimed towards users of BASIC who
wish to program in FORTH.

Note: This version of FORTH is intended to be compatible with the
vocabulary used in STARTING FORTH. However, there are a few

4 SUPER-FORTH 64 (TM)

Introduction To the System

instances where the STARTING FORTH word is in conflict with the
FORTH 79 Standard. In those cases, the 79 Standard is adhered

to.
The most notable difference is in the word, ' (tick). In this
system, ' returns the PFA of a word, in STARTING FORTH it

returns the CFA. Therefore, to follow examples in the book,
follow use of ' with CFA.

Other words which differ are S0 and ?STACK.

The FORTH source screen editor differs from that in the book. See
section 5.1 on The Editor before attempting to edit source
screens,

The really adventurous FORTH programmer may want to read ALL ABOUT
FORTH by Dr. Glen Hayden. ALL ABOUT FORTH is a complete annotated
description of this particular implementation of the FORTH Kernel. It
contains the definition of each Kernel word and a description of its

use.

If you are an experienced FORTH programmer you will probably be
interested in the wvarious extension words for writing applications
programs using SUPER FORTH. This manual describes all extension words
particular to the SUPER FORTH system.

1.4 Demo Program

Included in SUPER FORTH 64 is a demonstration program called DEMO The
source code screens are provided as examples of how the various
extensions, and FORTH itself, can be used to program the C64 (see DEMO
screens in Appendix II).

DEMO includes use of high-res graphics, sprite graphics and the SID
sound chip. It also demonstrates advanced programming techniques, such
as recursion and co-routines. '

The complete SUPER FORTH system, including the demos, is provided in
the program file "DEMO-SYSTEM". Enter the following to execute the

demo:
LOAD "DEMO",8 {return}
RUN
DEMO

After the demo completes the system is left waiting for FORTH commands.

5 SUPER~-FORTH 64 (TM)

Introduction To the System

1.5 Warm Starting

The RUN-STOP/RESTORE key sequence will cause a warm start to FORTH.
After warm starting the system will be left in the following state:
Newly entered definitions will remain available. Vectors which have
been changed will remain intact., The I/O re-direction variables
(OUTLFN and INPLFN) will be intialized to their default wvalues. The
‘parameter and return stacks will be emptied, and execution proceeds
from the interpreter,

A system warm start may be effected from the BASIC interpreter by
entering the BASIC command SYS 2067.

1.6 Exiting and Cold Starting

To exit FORTH and restore the system to its initial state use the word
BYE. This performs a system cold start. FORTH can be re-entered only
if no numbered BASIC lines have been entered in the default BASIC
program area, since that is where the FORTH dictionary resides.. 3

The default BASIC area starts at 2049 ($801). 'The FORTH dictionary
area is defined to start at 2064 - ($0810), leaving room for the BASIC
instruction 10 SYS5(2064) to be saved and loaded with the .FORTH system
file, enabling the user to start up the FORTH system by typing RUN.
Placing FORTH at 2064 also insures that a cold start will not destroy
the beginning of FORTH.

After cold start if a BASIC program is to be entered or a directory

listing is to be performed and re-entry to FORTH will be desired, the

BASIC program space must be moved so that it won't overwrite the

beginning of the FORTH dictionary. Moving BASIC to 32768 ($8000) 1is

probably safe and can be accomplished by the following BASIC commands:
POKE 44,128: POKE 32768,0: NEW

After performing the BASIC functions, reset the BASIC area by entering
the following:

POKE 44,8: NEW
To re-enter FORTH type the following:

10 SYS(2064)
RUN

6 SUPER-FORTH 64 (TM)

Introduction To the System

1.7 Resetting the System

The 6510 microprocessor (the heart of this system) has a very nice
feature built in whereby you can reset the system without losing your
program. Unfortunately, Commodore did not see fit to provide any way
for the end user (you) to utilize this feature. However, there are
expansion cards available which have a ‘"reset" button built on which
when pressed will activate the reset feature,

It is recommended, especially for the beginner, that you purchase one
of these boards, since beginners often tend to crash the system while
learning how to program in FORTH. This way, your system would be
recovered at the click of a switch instead of having to re-boot the
system from disk.

1.8 FORTH and the Commodore Screen Editor

Input in this FORTH system makes use of the Commodore screen editor.
This is the same editor used by Commodore Basic. It allows a user to
enter data anywhere on the screen by using the Commodore Screen Editing
keys to move the cursor and edit the line on which the cursor was moved

to.

When the RETURN key is depressed the editor copies the line where the
cursor was residing into an input buffer, from which FORTH get its
input a character at a time. Only the line in which the cursor was
placed (it doesn't matter where on the line the cursor resides) is
moved into the input buffer. Thus, the screen editing functions can be
used during immediate FORTH input to correct and/or re-enter FORTH
lines.

19 FORTH and Machine Language

FORTH supports both externally and internally coded machine language
routines. Internally coded routines are created using the FORTH 6510
Assembler. Externally coded routines are loaded and linked to using
various SUPER FORTH words described below.

1.9.1 FORTH 6510 Assembler

A 6510 machine language assembler for use within .the FORTH environment
ig included in this implementation. It 1s essentially the one written
by William Ragsdale and published in FORTH Dimensions Vol. III, No. 5.
This assembler also includes extensions for the FORTH constructs
BEGIN. . .AGAIN, BEGIN...WHILE...REPEAT and BEGIN...UNTIL and a
conditional specifier for the overflow status bit, VS,

A feature of this system 1is that the assembler may be made to be

7 SUPER-FORTH 64 (TM)

Introduction To the System

"remote", that is, it is not compiled into the main dictionary space.
Thus, applications may use the assembler to assemble machine code, but
need not have it in memory during execution. See the article in the
appendix for detailed operating instructions and the section on
Assembler Usage (Section 4.,) for a tutorial on usage.

1.9.2 External Machine Language Routines
External routines can be loaded and used by the SUPER FORTH system.

Before entering external routines 1into the system it must be verified
that they will not be loaded over an area which is used by the system.
Many external machine language routines are loaded into the area at
$§C000, since in the default machine confiquration this is an unused
area above BASIC. SUPER FORTH, however, allows use of all memory below
$D000. Therefore, if routines reside in the $C000 area, the top of
SUPER PORTH must be moved below it (see CHANGE).

If the routines are in the form of program files on a diskette, LOADRAM
can be used to load them into memory. Otherwise, PATCH may be. used to
"hand enter" machine code into memory.

Once the routines are in memory, ' they may be linked to using one of
various words- SYS and SYSCALL preserve the 6510's registers and allow
data to be placed in them before calling an external routine. GO calls
a routine without preserving registers. A routine must end with an RTS
instruction in order to return to SUPER FORTH.

WARNING! AN EXTERNAL ROUTINE MAY BE USING ZERO-PAGE AREAS
WHICH SUPER FORTH EXPECTS TO BE LEFT UNTQUCHED.
THIS WOULD RESULT IN A CRASH OF THE SYSTEM AND
SHOULD BE CHECKED BEFORE USING THE EXTERNAL
ROUTINE.

1.10 FORTH Editor

An Editor is included for entering SUPER FORTH source code; the edited
" code can be saved to disk or cassette. The Editor is a screen editor
which works functionally the way the Commodore Basic Editor works. It
includes words for copying screens, copying sections of screens and
moving sections of screens. See the section titled "Editor Words" for
more detailed information.

1.11 FORTH Code Storage

FORTH code exists in the system in two forms: source code and compiled
code. Source code format is used to store user readable code 1in the
form of source screens. FORTH source words can be individually entered
or modified by wusing the SUPER FORTH Editor (Note: The Editor is NOT
the STARTING FORTH editor- see "Editor Words" for details).

8 SUPER-FORTH 64 (TM)

Introduction To the System

The source code is stored using one of two modes of storage, Standard
Mode (as in "standard" FORTH I/0 systems) or File Mode. Disk users
should use Standard Mode. Cassette users MUST use File Mode. A by-
product of the implementation, however, is that File Mode MAY be used
by disk users, but 1is not recommended since Standard Mode generally
provides greater flexibility. SUPER FORTH programs which are stored in
File Mode (using F-SAVE) may, however, be mixed with BASIC files on the
same diskette.

Compiled code is generated by the FORTH system either by entering FORTH
word definitions interactively or by loading source code screens using
LOAD or F-LOAD. - A source word must be compiled into the system before
it can be executed. Once compiled, it can be invoked (called upon for
execution) interactively or can be used as part of the definition of a
new word. When a source screen is compiled it in effect becomes part
of a new FORTH system which contains all previous definitions AND the
newly compiled definitions.

VLIST can be used to display the words which have been compiled.
Compiled words may be "decompiled" by using the word DECOMPILE. 1In
this way the user can examine the definitions of words which have been
entered interactively along with compiled source screens.

SAVE-FORTH and APPLICATION are words which can be used to save the
complete compiled FORTH system as a Commodore program Ffile. All user
defined words which have been compiled will be saved along with the
SUPER FORTH 64 original system. 1In this way, user extensions can be
added, compiled and saved without having to re-compile them each time
the system needs to be loaded in.

Note: Disk users must use a FORMATTED Commodore diskette for EITHER
mode of operation.

1.11.1 Standard Mode (Disk Only)

Standard Mode provides compatibility with other MVP-FORTH systems by
utilizing the standard FORTH definition, BLOCK, to provide the typical
FORTH wvirtual disk system. Using Standard Mode, all FORTH blocks
available (the total in all drives) may be looked upon as a single fast
random access file. 1If an application requires a data base which spans
multiple disk drives, Standard Mode may be the way to go. Standard
Mode is the mode of operation described in STARTING FORTH in both the
Editor and the I/O chapters.

Users whose applications require a random access database will find
that a Standard Mode system will run faster than a Commodore relative
file system because there 1is no sector lookup to determine where a
particular sector lies. Relative files may take up to three disk
accesses to read or write a single sector. Standard Mode will make
only one disk access per sector.

9 SUPER-FORTH 64 (TM)

Introduction To the System

Standard Mode allows greater area usage of the diskette for FORTH
source code, since 680 of the 683 sectors are available for use as
source screens. It also allows minimal disk buffer allocation for
loading of a very large source program since a program is loaded by
specifying actual screen numbers. However, because these screens are
written and read using direct sector I/0 routines, source screens
created on a diskette using this mode cannot be mixed with standard
Commodore files. The Commodore directory may, in fact, have been used
to store FORTH source information (see section titled "Standard Mode")!

Standard Mode utilizes a wvirtual buffer system- the number of buffers
-defined in the system simply determines how many screens may reside in
memory before the system must flush (write out to disk) a . screen in
order to make room for a new one. This process 1is carried out
automatically by the system, so the user need not concern himself with
buffer management. Buffer management is reduced to a matter of system
efficiency- if there are more buffers available the system will have. to
perform less I/0 while the user is editing screens. Initially 8
buffers are allocated to the system.

Cassette users cannot use Standard Mode since a random access device
must be available.

1.11.2 File Mode (Cassette or Disk)

File Mode enables the user to create and edit a group of FORTH source
screens as a named file. File Mode provides the ability to wuse the
Commodore file system to keep track of groups of screens as files, but
has the limitation that all screens for a particular file name must fit
in memory (just as a complete BASIC program must fit in available
memory - see section titled "File Mode").

Using File Mode, the user loses the use of FORTH's virtual buffer
facility. The user must insure that there are enough buffers available
to completely contain a file before the editing begins or the file is

loaded in. When all. buffers are full new screens can no 1longer be

added and the file must be written out. As in Standard Mode, 8 buffers
are allocated for File Mode initially.

1.11.3 1Initial Mode Settings

Cassette users MUST use File Mode since Standard Mode assumes
availability of a disk unit. Cassette based systems will come up in
File Mode configured for cassette. 1If a cassette user wants to change
over to a disk based system, he should type B8#SYSDEV#! (this changes
the system device to disk 8) and type SAVE-FORTH to save the systenm to
disk. The saved system will come up disk based.

Disk based systems initially come wup in Standard Mode. 1If you prefer
File Mode, type F-NEW to enter File Mode and save the FORTH system by

10 SUPER~-FORTH 64 (TM)

-

Introduction To the System

typing SAVE-FORTH. The saved system will come up in File Mode. If a
disk based user wants to change over to a cassette based system
(there's always one in every crowd), he should type 1 SYSDEV ! (this

changes the system device to 1- cassette) and type SAVE-FORTH to save
the system to cassette. The saved system will come up cassette based.

1.12 Special Features

The following are special wutilities and features implemented in SUPER
FORTH 64.

1,12.1 Saving Applications

After the FORTH program designer develops an application using SUPER
FORTH 64, the word APPLICATION can be used to save the system as a
special "application" program file which can be loaded by end users.
This £file, when loaded and run, will immediately execute the
application word. The FORTH system is not wvisible toc a wuser running
the application. 1In this way the applications designer may market the
application program without infringing on the copyright of the FORTH
system (see section titled "APPLICATION" for more detailed

information).

NOTE: The word APPLICATION must be entered in order to
release you from infringing on the Author’'s
copyrights.

1.12.2 Debugging Features

Several utilities are provided to ease debugging of programs written
using SUPER FORTH 64:

A decompiler is provided which enables the user to decompile any high-

level word in the system (including FORTH Kernel words). This
Decompiler was written by Robert Dudley Ackerman and published in FORTH
Dimensions Vol. IV, No. 2. See the article in Appendix VII for a

complete description of its use.

A trace facility is provided to aid developers in their debugging of
newly defined FORTH words. This trace was adapted from the one written
by Paul van der Eijk and published in FORTH Dimensions Vol. III, No. 2.
See the article in Appendix VII and section 5.6.24 for operating
instructions.

A non-destructive stack dump, .S 1is provided to enable users to see
what is on the parameter stack without losing any data values. The
stack may be displayed from latest to oldest value, or oldest to latest
See the descriptions in the Kernel Glossary (.S, .SR and .SL)

11 SUPER-FORTH 64 (TM)

Introduction To the System

A memory dump facility, DUMP is provided to enable users to display
both the hex and ASCII values of sections of memory. See the Kernel
Glossary for a description of DUMP.

Example:
11730 32 DUMP

Dumps 32 locations starting at 11730.

1.12.3 Math Routines

A simple floating point package, fixed point sin/cos routines
(resolution down to a degree) and a fixed point square root routine
have been provided to aid in developing graphics and mathematical
applications. See the appropriate articles in Appendix VII and the
section on Math Extension Words for usage.

1.12.4 High RAM Access

Special extension words are provided to enable easy access to the 12K
of RAM which resides underneath the Kernel ROM and I/O Memory Map
areas. This is greater than 1/5 the total memory of the machine which
is normally inaccessable (see section titled "C64 High RAM Access
Words"ij!

1.12.5 Graphics and Sound Words

Extensions are provided to take much of the difficulty out of
programming graphics and sound on the Commodore 64.

The low level extensions are intended to take the user a level away
from the hardware so that he does not have to deal with the details of
chip addresses and alignment of data within hardware registers (if
you've tried programming the graphics or sound chips using BASIC you
know what I mean).

Higher level graphics words included in the system allow the user to
plot hi-res 1lines, arc, ellipses, circles and mirrored images. A
Turtle Graphics package is included as part of the high 1level word
support. There 1is a simple sprite editor included (S-EDITOR) which
will enable you to enter sprites and incorporate them into the system
directly.

Included in the set of sound words is a music editor which can be used
to compose and play back three part music. The music editor is’
implemented as an extension vocabulary to the SUPER FORTH 64 system,
therefore, music can actually by programmed using SUPER FORTH
structures!

12 SUPER-FORTH 64 (TM)

Introduction To the System

1.12.6 TI/0 Redirection

The SUPER FORTH system has the ability to redirect standard I/0 to
devices other than keyboard and screen. Thus, for example, output can
be directed to a printer or both input and ouput could be directed to
an RS-232 device (see sec 4.4).

1.12.7 Diskette Backup Utilities

A utility word, BACKUP, is provided with this FORTH system to allow
users to make backup copies of diskettes. Words are provided to
perform either partial or complete backups, using either a single disk
drive or two drives.

The copy is accomplished by using the allocated buffer space to read a
section of the "from" disk and then write that section to the "to"
disk. This process is repeated as many times as necessary to complete
the copy. In a basic FORTH system this can be accomplished in five
section read/writes. This copy performs direct sector I/0 and thus
cannot be used to copy particular files, but can copy a complete
Commodore system disk in about twenty minutes (see section titled
"Backup Utilities"}.

1.13 Vectored FORTH System Routines

Vectoring is a method which enables FORTH programmers to customize a
FORTH System Kernel without having to re-assemble the system. Certain
FORTH words are referenced by vector addresses, so by changing the
address of the vector, the system will reference a new system routine.
The following table 1lists the vectored words, their vector address
words, and the offset of the vector within the User Area {see User Area

description).

WORD VECTOR ADDRESS USER AREA OFFSET
-FIND ' ~FPIND $16
?TERMINAL ' 2TERMINAL $18
ABORT ' ABORT S1A
BLOCK ' BLOCK $1C
CR 'CR $1E
EMIT 'EMIT $20
EXPECT 'EXPECT $22
INTERPRET ' INTERPRET $24
KEY 'KEY $26
LOAD 'LOAD $28
NUMBER ' NUMBER $2A
PAGE ' PAGE $2C
R/W 'R/W $2E
T&SCALC ' T&SCALC $30
VOCABULARY ' VOCABULARY $32
WORD 'WORD $34
13 SUPER-FORTH 64 (TM)

Introduction To the System

As an example, let's say we want to change the system definition of
PAGE to emit a form feed (ASCII code 12) instead of a clear screen
character. This way, if output is to a printer, PAGE would cause the
printer to go to a new page. We could enter the following:

NEW-PAGE 12 EMIT ; (New definition of PAGE)
NEW-PAGE CFA (Puts code field adr of NEW-PAGE on stack)
PAGE ! (and stores its addr in vector for PAGE)

Using PAGE would now vector to the definition of NEW-PAGE. Cold
starting would reset PAGE to its original definition,

Other uses of re-vectored words may be to add a disk handler for a non-~
1541 type disk drive. T&SCALC and/or R/W may be rewritten to use
definitions which would handle these non-standard drives.
1.14 Vocabularies

Both the FORTH-79 and the FIG types of vocabularies are supported by
the MVP-FORTH Kernel. The system comes up assuming FORTH-79 vocabulary
structure. If the FIG vocabulary structure is preferred, VOCABULARY
can be re-vectored to point to the FIG definition instead. The
following will accomplish this:

' <VOCABULARYFIG> CFA 'VOCABULARY |
To get back to the FORTH-79 vocabulary structure enter the following:

' <VOCABULARY79> CFA 'VOCABULARY !

14 SUPER-FORTH 64 (TM)

1

SyStem Memory Usage

2. System Memory Usage

Part of the FORTH start-up procedure is to swap out the system's C64
BASIC ROM, making available the 8K of RAM located at the ROM's address
space. Thus the user memory available for FORTH extensions is a
contiguous area of memory starting from the present top of FORTH to
53120 ($CF80 - where the FORTH USER variables area is located). In the
initial SUPER FORTH 64 system about 30K of RAM is available for wuse in
creating new word definitions and/or for disk buffer space. A
"stripped” system (see section 2.4, FORTH Dictionary Area) uses just
under 10K of RAM. In such a system, about 41K of RAM is initially
available new word definitions and/or disk buffer space.

2.1 System Memory Organization

Memory is partitioned into various areas both for the FORTH system and
for the Commodore Kernel. The memory map on the following page
describes the initial FORTH system.

The 8k of RAM underneath the C64 Kernel and the 4k of RAM under the I/0
Memory Map area are available to the user through use of the High RAM
word extensions.

The SUPER FORTH dictionary can be stripped partially or completely down
to the MVP Kernel area. A selection of the source screens provided can
then be re-compiled into the system and the new system saved using
SAVE-FORTH. 1In this way the user may customize his initial SUPER FORTH
system (see section 2.4).

L5 SUPER-FORTH 64 (TM)

System Memory Usage

SE000

$D00O

$CF80

SAF60

$63A4

$3394

$2CD7

$0810
$0200
$0100

$0000

C64 Kernel ROM
{8k high RAM)

C64 MEMORY MAPPED I/O AREA
(4k high RAM)

FORTH USER VARIABLES

DISK BUFFER AREA
(initially 8 buffers)

FORTH DICTIONARY
FREE SPACE

FORTH DICTIONARY
SUPER FORTH 64 HIGH LEVEL
EXTENSION DEFINITIONS
(source code provided)

FORTH DICTIONARY
SUPER FORTH 64 EXTENSION
DEFINITIONS
(reclaimable)

FORTH DICTIONARY
MVP KERNEL
DEFINITIONS

SCREEN & C64 Kernel DATA

RETURN STACK & TERMINAL INPUT BUFFER

ZERO PAGE AREA

57344

53248

53120

44896

25508

13204

11479
<--Minimum system

2064
512

256

Dashed lines are used to represent movable memory boundaries.

16

SUPER-FORTH 64

(TM)

System Memory Usage

2.2 Zero Page Usage

This section describes zero page usage of the SUPER FORTH system. The
information will generally be of use to programmers who wish to write
assembly code routines utilizing zero page memory.

The FORTH stack uses the zero page area from $78 down to $07. Since
the stack grows down from $78 the user can generally use lower zero
page locations from $07 on up. How much can be used depends on the
FORTH stack usage. If recursive words are not used then the stack will
probably not go TOO far down, but the user will have to experiment
(recursive definitions can quickly eat up both parameter and return

stack space).

The following table describes zero page usage by FORTH:

ADDRESS DESCRIPTION
$0002-$0003 IP : Interpretive Pointer
$0004-50005 UAP : User Area Pointer
$0007 Bottom of parameter stack
$0078 Top of parameter stack

$007A-$007B Address of system interrupt routine
$007C-$007D Address of user interrupt routine

$007E Address of interrupt parameter stack
$007F Interrupt return flag

$0080 W-1 : Indirect jump instruction
$0081-$0082 W : CFA address of word being interpreted
$0083 XSAVE : 6502 .X register save area

$0084 Raster split screen Iine #

$0086 N-1

$0087-5008F N to N+8 : System zero page work area

2.3 Return Stack and Input Buffer

The system hardware stack is used as the FORTH return stack. As per
normal usage it uses page one of memory ($0l00-$01FF), and grows down
from the top of page one. The FORTH Terminal Input Buffer is also
located in page one. It works its way up from the bottom of page one
at 256 ($0100).

2.4 FORTH Dictionary Area

The FORTH dictionary resides in the locations from 2064 ($0810) through
the beginning of the disk buffer area. It 1is partitioned into two
areas: the FORTH system, including any user extensions, is located at
the lower end of the dictionary area. The dictionary free space area
(that which is available for defining new FORTH words) i1s located at
the upper end of the dictionary area. As the FORTH system grows, the
free space area shrinks.

17 SUPER-FORTH 64 (TM)

System Memory Usage

Initially, the top of the dictionary free space area is location 44896
($AF60), however this may be changed by . the user (see Digk Buffer
Area). The bottom of the free space area {(which is also the top of the
FORTH system area) is at location 25508 ($63A4) in the initial system..
Parts of the system space may be reclaimed by the user, as described
below.

Included within the system definitions on disk are the MVP FORTH Kernel
words, C64 extension words (graphics, sound, etc.), the FORTH Editor, a
FORTH format Assembler, and the utilities and supplemental screens
defined in ALL ABOUT FORTH. Initially, the system occupies about 23.5K
of RAM. If not required for an application, parts or everything except
for the Kernel words may be "forgotten" by the system, thus reclaiming
the memory which had been used for those words. The order of these
"forgettable" definitions is as follows:

(Source code is not supplied for the following [1725 bytes])
CATNIB SPLIT SAVE SYS SAVENAME SAVE-FORTH

APPLICATION MASK SBIT CBIT FBIT SWAPOUT SWAPIN

'BANK 'SCREEN 'BITMAP 'CHARBASE BANK SCREEN

BITMAP CHARBASE B-X B-Y B-PEN B-ERASE B-DRAW

B-PLOT SPRITE S-POSITION SID VOICE SIDi V!

F-FREQ PADDLEA OSC3@ ENV3@

D-SPLIT D-POSITION D-READ D-CLEAR

I-INIT I-SYSTEM I-USER I-SET I-CLEAR

(Source code is supplied for the following words)

THRU '

C64 Utility words

C64 Kernel Interface words

String Extensions

File Mode Extensions

Low Level Graphics Extensions

Low Level Sound Extensions

MVP Utility words
.5 .SL .SR .SS .INDEX <ROT MAX-BUFFS BMOVE COPY SCOPY
DSWAP D- DO= D= D> D@ DCONSTANT -
DMAX DMIN DOVER DU< DVARIABLE
PAUSE INDEX ?LOADING —--> DUMP 'TITLE TITLE TRIAD
<EMIT7> ID. VTAB VLEN VLIST

MVP Supplemental word set
'S 2! 2@ 2CONSTANT 2DROP 2DUP 20VER 2SWAP 2VARIABLE
>BINARY EMPTY ERASE FLUSH H U.R {']

L.ocal ASSEMBLER

SUPER FORTH Screen Editor

DECOMPILE Utility

Math Routines- Trig, Square Root and Floating Point

C64 Data & Constants

Data Structure Examples

Hi Level Graphics, I/0 & Utilities

Music Editor

Sprite Editor

Turtle Graphics Extensions

18 SUPER-FORTH 64 (TM)

System Memory Usage

2.5 Reducing SUPER FORTH 64 To Minimum Size

Typing FORGET CATNIB would reduce the system to its minimum of about
9.5k bytes. Prior to invoking FORGET, VLIST may be used to determine
the actual order of FORTH words in the dictionary.

Note that typing FORGET CATNIB removes not only words for which the
source is supplied, but also those for which source is NOT supplied
(From CATNIB thru I-CLEAR). It is probably more useful to type FORGET
THRU which would leave a system which could be modified and rebuilt by
loading in the appropriate source screens.

If File Mode is being used, it may be appropriate to save an editing
system which consists of only the Kernel words, extensions thru File
Mode words, and the editor in order to make available the greatest
amount of buffers for editing (see section titled " Source Screen File
Mode Words"). This should not be a concern unless the source file is

quite sizable.

2.6 Disk Buffer Area

A FORTH disk buffer (including its 4 byte header) is 1028 ($0404) .bytes
long. The buffer area ends at 53120 ($CF80) and begins at 53120 minus
the number of disk buffers * 1028. The FORTH disk system requires a
minimum of two disk buffers but is initialized with eight buffers for
ease of editing. Thus, in the initial configuration the start of the
disk buffers area is 53120 - 8*1028 = 44896 (SAF60).

$BUFF is a constant which returns the number of buffers the system is
set up to wuse., If it is determined that a different number is
required, the following FORTH line may be used to change the system to
use a different number of buffers :

new-number ' #BUFF ! CHANGE

Example:
16 ' #BUFF ! CHANGE
will change the number of disk buffers to 16.
This may be done to increase the number of buffers (for editing a large
number of screens for instance) or decrease the number of buffers to
gain full dictionary usage of memory. A word, MAX-BUFFS 1is provided

which automatically calculates the maximum amount of buffer space
available and re-configures the system for it

19 SUPER-FORTH 64 (TM)

System Memory Usage

2.7 User Area

The FORTH User Area variables and vectors are located starting at 53120
($CFB0). These are typically not used directly by the FORTH user, but
through invocation of a user variable name. Unused User Area positions
($52 ~ $7E) may be assigned through use of the USER defining word (HEX
52 USER name - 7E USER name).

The User Area (and the start of the disk buffers area) may be moved by
changing the value of the constant LIMIT and invoking the word CHANGE.
The system will cold start (losing unflushed buffers) and use the new
User Area for 1its system variables. This procedure is wuseful for
freeing up the 4K block of $C000-$CFFF which may be used by independent
machine language routines or I/O peripherals.

Example: We want to move the User Area to 48896 ($BF00), freeing up
the area from 49152 ($C000) to 53247 (SCFFF). Perform the

following:
48896 ' LIMIT ! (SETS NEW USER AREA ADDR.)
CHANGE { RE-CONFIGURES SUPER FORTH }

Entering the following will switch back to the default area:

53120 ' LIMIT ! CHANGE

The position and order of the User Area data is as follows:

HEX Offset Description
$00 - Last name addr
$02 - Delete character (not used)
s04 UAP - Pointer to start of user area ($SCF80)
$06 SP0 - Pointer to top of stack
$08 RO - Pointer to top of return stack
$O0A TIB - Pointer to terminal input buffer
$0C WIDTH - Name field max. width (31)
$OE WARNING - Warning flag (not FIG usage)
$10 FENCE - Fence against forgetting Kernel
$12 DP - Dictionary Pointer
$14 VOC-LINK - Vocabulary link
$16 - $35 : Vector addresses (see vector table)
836 >IN - Input stream character offset
$38 BASE - -Current number base
$3A BLK - Current block being LOADed
$3C CONTEXT - Current CONTEXT vocabulary link
$3E CSP - Check stack position variable
$40 CURRENT - Current DEFINITIONS vocabulary link
$42 DPL - Decimal Point Location (digits to right)
$44 FLD - Field length for numeric output conversion
$46 HLD - Holds latest char during numeric conversion

20 SUPER-FORTH 64 (TM)

System Memory Usage

$48 OFFSET - Block offset to determine actual block #
$4A OUT - Value incremented by EMIT

$4C R# - Number of current editing line

S4E SCR - Number of current editing screen

$50 STATE - Non-zero = compiling

$52 - $7E : Available to user

28 High RAM

The area from 53248 ($D000) through the end of memory is generally
occupied by the I/0 Memory Map area and Commodore Kernel ROM. However,
"hidden" in these areas is RAM which the user can access using special
extension words in this FORTH system. The special extensions are
listed in the section titled "C64 High RAM Access Words". The
extension words take care of inhibiting interrupts, swapping the RAM in
performing the operation, and returning the system to its usable state.

2.9 Running Out of Memory

The following lists some steps which may be taken when the system seems
to be running low on memory.

1. Reduce the number of disk buffers in use, if possible. Each
buffer uses over 1K of RAM. Initially, there are 8 buffers

allocated. The system may be reduced to having only two buffers
(see CHANGE).

2. Make use of the 12K of RAM available by placing large arrays and
data structures in that space. Use the High RAM Access words to
maintain the data.

3. Strip unused words from the system and re~compile only those
necessary for a particular application (see next section).
2.10 Stripping System For An Application
To strip a system perform the following steps:
1. Determine which words are necessary to compile an application.

2. Create a "Load Script Screen" which contains the commands
required to build the system.

3. LOAD the Load Scfipt. If there are 1load errors do the
following: load the EDITOR screens, correct the errors, and re-
do this step.

An example Load Script is provided on screen #122. This Script was
used to create the "DEMO4TH" program file on your master disk. Note

21 SUPER-FORTH 64 (TM)

System Memory Usage

the initial "FORGET D-READ". Since the Interrupt words and two Display
words are not required, we may FORGET some words preceding THRU. Note
also that IMMEDIATE words (such as RECURSE) may be compiled into the
Transient Assembler area, since their definitions are only needed

during compilation.

The following was entered in order to use the Load Script and save the
stripped system as a program file:

(PLACE MASTER SCREENS DISKETTE IN DRIVE)
122 LOAD (CREATE STRIPPED SYSTEM)

(REPLACE SCREENS DISKETTE WITH FORMATTED PROGRAM DISKETTE)
APPLICATION "DEMO4TH"

22 SUPER-FORTH 64 (TM)

FORTH Source Disk

3. FORTH Source Disk

FORTH differs from BASIC in numerous ways. One of these is the way
that code is stored and executed., While using BASIC, the code is

stored in what 1is essentially a source code format. The BASIC
interpreter reads the program source code and "interprets" it into an
executable machine form. Whenever it is time for a particular BASIC

statement to be executed it must be re-interpreted. This is probably
the major reason why BASIC runs so slowly (blank spaces and remarks
also must be interpreted).

FORTH systems, however, pre-compile their source code 1into a more
readily executable form. In interactive mode, for example, definitions
are compiled upon execution of ";". This is why a decompiler (see
DECOMPILE) must be used to re-construct the FORTH definition if the
source code is not available. A result of this compilation is that the
source code need not reside in memory after it has been compiled.

Source code must be read in and compiled before execution. This is
generally accomplished using the FORTH word LOAD. As mentioned in the
introduction on disks, this system provides two distinct modes for
storing and retrieving source code. Cassette users MUST use File Mode,
since Standard Mode assumes availability of a random access device
{such as a disk).

3.1 SUPER FORTH 64 System Diskette

Along with the FORTH system itself, the " system diskette comes with
various FORTH source screens. These screens have already been compiled
into the SUPER FORTH system. They are provided to allow flexibility
for the advanced FORTH user who may wish to customize his system, and
as an educational tool for the beginner who desires examples of FORTH
programs and routines (see Appendix II).

Specifically, the Graphics/Sound Demc program is an example of how high
resolution graphics, sprites, and the SID sound chip may be controlled
by the FORTH programmer. The C64 Constants screens define many useful

constants relating to the hardware registers on the C64. The Data
Structures screens present examples of how to define data structures
using FORTH. Single and two dimensional array structures, a string

constant structure and a structure for initializing sprite areas are
defined. '

See the source screens index 1in the appendix for a complete 1list of
what source screens are provided.

After starting up SUPER FORTH 64, insert the master diskette into the
drive (if it is not there already). Perform the following commands:

23 SUPER-FORTH 64 (TM)

FORTH Source Disk

1 LIST
2 LIST

will list screens 1 and 2 on the display. These screens contains a
directory of the source screens on the master diskette.

You may have noticed that the SUPER FORTH 64 system diskette contains
both Standard Mode screens AND a Commodore program file (namely SUPER
FORTH 64)! I highly recommend NOT trying to mix these Fformats unless
you really have a good idea about where things will end up.

3.2 Screens and Blocks

FORTE systems historically use their own type of disk format. A
standard FORTH disk is divided up into 1024 byte blocks (when listing
or editing "blocks" are also referred to as "screens") and each block
is referenced by its block number,.

3.3 File Mode

A FORTH source file consists of a group of FORTH screens which can be
saved and loaded as a named file. For editing purposes, the screens
are numbered sequentially starting at 1. Screen numbers are used only
as reference to allow editing various parts of the file.

An extension set of FORTH words is used to operate in this mode. See
File Mode extension words, section 5.2, for a complete description of
File Mode word usage.

3.4 Standard Mode

To enter Standard Mode from File Mode use F-EXIT. In Standard Mode
FORTH system knows nothing about the Commodore file system, therefore
FORTH style blocks should not be mixed with Commodore style files when
using this mode. In particular, the FORTH system itself is saved as a
Commodore program file, therefore, when saving a new version of FORTH
make sure that a Commodore diskette and NOT a FORTH screens diskette is
in the drive!

The advantage, for the FORTH programmer, is that the former disk
directory track 1is now available for use, allowing full use of
virtually all sectors on a diskette with the following exceptions:

There are 683 sectors on a standard Commodore disk, however sector 0 of
track 18 must not be written over by the programmer (specifically,
there is a byte which specifies that the diskette has been formatted on
a 1541 disk drive. If that byte is changed the diskette is still
readable, but it can no longer be updated on a 1541 drive. T know of
no method of changing this byte back short of re-formatting the

24 SUPER-FORTH 64 (TM)

FORTH Source Disk

diskette [which will wipe it clean] therefore I strongly recommend not
changing that byte). Since there are 4 sectors per FORTH screen, the
diskette is divided up into 170 FORTH screens, numbered 0 to 169.

The astute wuser will have noticed that 680 sectors are allocated as
FORTH screens, leaving three unused by the FORTH disk system. The
FORTH word T&SCALC performs the calculations to skip those sectors, sgo
the user need not worry about them. The three sectors are- track 17
sector 20, track 18 sector 0, and track 18 sector 1. The primitive
disk word RWTS (normally not called directly by the user) allows access
to all sectors on the disk, so the brave {and foolish) can still manage
to destroy their disk despite system protection. This direct access by
the system is necessary, however to perform a complete diskette to
diskette BACKUP.

3.5 Multiple Disk Systems

FORTH can accommodate up to five disk drives, Commodore device numbers
8 through 12. Initially, the system is set up to use device 8 as the
system drive (for file saves). The system device number can be changed
by storing a new device number in the FORTH variable SYSDEV (see
section 5.4.25). The FORTH system uses the names DRO, DR1, DR2, DR3
and DR4 to refer to the drives.

Initially, the system comes up assuming a single drive. If more than
one drive is 1in use, CONFIGURE (see Glossary, Section 6.) must be
entered to set the system to the correct number (if desired, the system
may then be saved with the new confiquration parameters set up,
eliminating the need for reconfiguring each time the system is brought
up). On Warm/Cold Starts or after using CONFIGURE, DRO is selected.

FORTH screens are specified as a relative offset to block 0 of the
currently selected drive. Thus, if DRO is selected, the following
table could be used to reference screens on any drive relative to drive
G:

Relative to DRO Relative to Self
FORTH # Device # First Last First Last
DRO 8 0 169 0 169
DR1 9 170 339 0 169
DR2 10 340 509 0 169
DR3 11 510 679 0 169
DR4 12 680 849 0 169

The "Relative to Self" column is used if the block to be accessed is on
the currently selected drive.

Example: Two ways of listing the same screen are as follows:
DRO 200 LIST (LIST BLOCK 30 ON DR1)
DR1 30 LIST (LIST BLOCK 30 ON DR1)

25 SUPER-FORTH 64 (TM)

FORTH Source Disk

3.6 4040 Drives

If you own a 4040 drive, configure your system to use two drives (see
"CONFIGURE") and type ON DUAL. Your dual drive will now work with
SUPER FORTH.

3.7 Disk Error Recovery

If a disk operation should result in an error during "Standard Mode"
operation, the SUPER FORTH disk system will automatically display to
disk error channel so the user can immediately ascertain what the
problem is. On errors the system re-initializes the disk (DOS command
"I") for the user.

If an error has occurred in reading the disk, there may be erroneous
information in the disk buffers. EMPTY-BUFFERS should be used to clear

out the buffers.

If repeated "NO CHANNEL" error messages appear, try entering the
following:

9 CLOSE (CLOSES THE DISK CHANNEL)
CLRCHN { CLEARS I/0 CHANNELS)
" I" DOS (INITIALIZES THE DISK)

Note that turning a drive on after the system has come up results in
an error message and the drive should be initialized
interactively.

26 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

4. FORTH Assembler Usage

This system includes the Bill Ragsdale 6510 (ne 6502) FORTH Assembler.
The original article describing the Assembler is included in the
Appendix. The article contains all information necessary for an
experienced FORTH programmer to use the Assembler, however, programmers
who are experienced in "typical" assemblers and NOT FORTH may look at
the article and say "This is crazy!". This section is intended to ease
the user into the world of the FORTH Assembler. The article should be
used as reference while going through this introduction. After
finishing the introduction the article should be re-read and the
examples within it tried out on the machine.

The FORTH Assembler is part of an integrated applications development
system (SUPER FORTH 64). It enables users to develop programs
completely in high level FORTH and then, if desired, speed up the
program by using the FORTH assembler to re-write only the words which
are necessary to have running in machine language.

Another feature of the SUPER FORTH 64 system is that unlike other FORTH
systems which provide assemblers which must reside in the dictionary in
order to use them, the SUPER FORTH 64 Assembler may be removed from the
dictionary after the application program is loaded, before using
APPLICATION to save it to disk. This reduces the size of the program
which must be loaded in by the end-user, or the amount of ROM memory to
be used if the application is to be ROM'd. See the word A-REMOVE for
instructions on removing the assembler.

It is highly recommended that beginning machine language programmers
obtain one of the many 6502 machine language introductions which can be
found in bookstores which carry computer books. It is also recommended
that beginning programmers do not attempt to understand the Assembler
before understanding how to use FORTH in general.

4.1 How the Assembler Works

First, some background on assembling in FORTH. In a typical assembler
environment - you enter code using an editor, assemble the module
producing an object module, load the object module in and call it. IFf
you wish to link the machine code with a high level language, there is
usually a somewhat clumsy interface (if at all) with the machine
language routine.

In the FORTH environment you enter code either interactively or editing
to a screen. Just as in entering regular FORTH definitions, each
method works the same way, but in one case you enter code directly
(interactive) and in the other you edit a screen which contains the
code to be loaded into the system later.

27 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

As assembly code 1is entered it is compiled into the dictionary. The
same mechanism is used as when compiling definitions. The difference
is that when compiling definitions, addresses of other FORTH words are
compiled into the dictionary. When using the Assembler, actual machine
language is compiled into the dictionary. CODE and END-CODE replace :
and ; for delimiting a FORTH module.

4.2 Entering Assembly Code

The first thing you need to know in order to use the Assembler is how
to enter code. Two words are used to control the interaction of
assembly code with high level FORTH code: CODE and END-CODE. As
described in the preceding section, CODE and END-CODE delimit an
assembly module, The length of the module may be arbitrary, but it
must be delimited by CODE and END-CODE.

CODE performs various tasks for the assembly coder. First, it calls in
the ASSEMBLER vocabulary. Thus, the wuser need not concern himself
about "entering" the Assembler- he simply uses CODE in the beginning of
the routine. CODE expects a routine name following it, such as:

CODE FOOBAR

CODE uses CREATE to create a header for a definition which will be
called FOOBAR (in this example). It performs virtually the same
functions as :, but whereas : leaves the run-time routine DOCOLON as
its code field address, CODE leaves the start of the assembler module
as 1its code field. You really needn't concern yourself with the
technical aspects at the moment, just understand that an assembler
module must start with CODE.

END-CODE, as you might guess, is used to end an assembly code
definition. It restores whatever vocabulary was in effect when CODE
was called (usually FORTH) and performs some verification that things
are in order. If things are not in order a message will be displayed.

Example:
CODE FOOBAR (CREATE HEADER)
NEXT JMP, (LINK TO FORTH INTERPRETER)
END-CODE (END OF CODE)

The example defines an assembly routine named FOOBAR with a minimum
amount of code defined within it.

The word, FOOBAR, could be called from the keyboard or from within
another FORTH routine. The second 1line NEXT JMP, is required to link
to the system and will be explained in a bit. Try executing FOOBAR,
It may not do much, but it's your first assembly code linked with the
FORTH system. '

28 SUPER~FORTH 64 (TM)

FORTH Assembler Usage

4.3 Opcodes, Operands and Addressing Modes

One of the immediately recognizable confusions arises from the FORTH
Assemblers use of Reverse Notation in specifying the operands and
opcodes. The confusion gets worse in the more complicated addressing
modes. The typical assembler has the following fields which may be
entered (ignoring the comments field):

LABEL OPCODE OFERAND

where OPERAND itself 1is wusually of various forms depending on the
addressing mode used. The FORTH Assembler expects code in the
following form:

OPERAND OPCODE,

where again the OPERAND is broken down into various addressing modes to
be discussed later in this section. There is no LABEL field. This is
because labels are not required in this assembler, since code labels
are used as places to branch to and branches will be generated by
special control structures.,

The OPCODE...OPERAND fields are reversed, and opcodes are always ended
with a comma. Thus, as in the previous example, where a typical
assembler would say:

JMP NEXT
to specify an unconditional jump to the routine NEXT, our FORTH
Assembler requires

NEXT JMP,

here are some examples of typical vs. FORTH assembler for one mode and
simple address mode opcodes:

Typical FORTH

BRK BRK,

PHA PHA,

LDA ADDR ADDR LDA, (ABSOLUTE ADDRESSING)
INC A A INC, (ACCUMULATOR ADDRESSING)

The article 1lists three reasons for having a comma following the
opcode, none of which I particularly subscribe to. I heartily
encourage experimentation with the Assembler source code (source
screens have been provided~ 1If an easier to use implementation is come
up with I'm sure the 6502 based FORTH world would be very grateful.
Please let us know the results if any).

29 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

Simple addressing modes, such as an absolute addresses, pose little
problem (as seen in the above example). Complex operands, however, can
start to look very unfamiliar when coded in the FORTH assembletr.

The immediate mode address mode reverses the value and the #. Also, a
space’ must be left between them. It is worth knowing that the value is
left on the stack for processing. Therefore, FORTH words may be used
to compute an immediate value. This is equivalent to calculating an
immediate expression with a typical assembler, but since ALL FORTH
WORDS are available to perform calculations with, the FORTH Assembler
probably is much more flexible:

TYPICAL FORTH

OPCODE #VALUE VALUE # OPCODE,

LDA #3 3 # LDA,

LDX #>DTA.ADDR DTA,.ADDR 255 AND # LDX,

LDY #<DTA.ADDR DTA.ADDR 8 RSHIFT # LDY,

LDA #ROUT.NFA ' ROUT NFA # LDA,

aADC #8660 60 SIN # ADC,
The first example 1is the more typical use of immediate mode, that is
specifying a simple value. Examples two and three describe ways of
specifying the low and high bytes of a data address (DTA.ADDR leaves
its PFA on the stack when executed). Example 4 describes a way of

loading the name field address of a FORTH routine: ' ROUT leaves the
PFA of ROUT on the stack and NFA converts it to the name field address.
Example 5 1is included just to give you an idea of some of the
interesting (strange?) things that can be done by using other FORTH
words. Here, we want the integer sine of 60 degrees added to the
accumulator.

Okay, at this point we know enough to construct simple programs. The
next example will increment location 32768 by 5 each time it is called.
Following the code definition is a high level definition which tests
the code out. '

CODE INCR32K

CLC, (CLEAR CARRY FOR ADD)
32768 LDA, (GET DATA FROM 32768)
5 % ADC, (INCREMENT IT BY 5)
32768 STA, (PUT IT BACK)
NEXT JMP, { GO BACK TO FORTH)
END-CODE
0 32768 ! (CLEAR 32768 INITIALLY)
: TEST1 { TEST THE CODE)
20 0 DO
INCR32K 32768 ?
LOOP ;
TEST!L

Note that we can call our machine language routine from within a FORTH

30 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

definition, just as if it was another FORTH word. INCR32K can be
executed interactively from the keyboard also. Notice too that by
looking at TEST1 we would have NO IDEA that INCR32K is a machine
language routine! This is one of the niceties of FORTH- programs can
be completely written and debugged in high level and then optimized by
re-writing the time critical words in machine code WITHOUT AFFECTING
THE STRUCTURE OF THE PROGRAM. Try that in another language!

By this point you should be starting to get the idea of how addressing
modes work. If you don't understand the previous part, go over it
again before going on.

Indexed X and indexed Y are similar. The operands are actually very
close to "typical":

TYPICAL FORTH
LDA ARRAY, X ARRAY ,X LDA,
STA ARRAY,Y ARRAY ,Y STA,

Other than the OPERAND OPCODE reversal the only difference is really a
space between the operand and the index.

The final three modes are just slightly stranger than immediate
addressing:

TYPICAL FORTH
JMP (VECTOR) VECTOR) JMP,
EOR (6,X) 6 ,X) EOR,
CMP (DATA) , Y DATA),Y CMP,

As can be seen, the 1left open parenthesis is gone, the address is
separated from the address modifier by a space, and of course the
operand appears before the opcode and the modifier.

In general, the jump indirect instruction will rarely be used (and in
fact it is a good idea to avoid it on any 6502 based chips- there is a
hardware bug [excuse me, feature] involving indirect jumps whose
addresses span page boundaries- JMP ($xxFF) will produce effectively
indeterminate results. It does not matter what page xx is!).

At this point we can write programs using any instruction other than

branches. This code 1initializes variable D1 with 6325, the wvalue of
constant Cl.

31 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

6325 CONSTANT C1l
VARIABLE D1l

CODE MOVEDATA
Cl 255 AND # LDA,
D1 STA,
Cl 8 RSHIFT # LDA,
D1 1+ STA,
NEXT JMP,
END-CODE
MOVEDATA D1 ?

LO BYTE OF Cl
LO BYTE OF D1
HI BYTE OF Cl
HI BYTE OF D1

Cl 255 AND isolates the low byte of Cl, by ANDing its value with $FF
(255). Cl 8 RSHIFT isolates the high byte of Cl by performing an 8 bit
right shift on its value. D1l leaves the address of the low byte of its
data area on the stack. Dl 1+ leaves the address of the high byte of
the D1 data area on the stack.

4.4 Interfacing With FORTH

On entry to the machine language routine the 6510 registers are set up
as follows: The .A register 1is undefined and may be freely used. The
-X register points to the bottom of the parameter stack. On return it
must point to a proper parameter stack value. The .Y register is zero.
It may be freely used. The stack pointer points to one byte below the
bottom return stack item.

Certain values are set up for use by the assembly language programmer:
XSAVE may be used to save the value of the .X register. N defines a 9
byte area from N-1 through N+7 which can be used for temporary
calculations., SETUPN can be used to move values from the parameter
stack to the N area. The bottom stack value is moved to N, the second
to N+2, etc.

32 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

Example:

CODE OVERADD (N1 N2 N3 --— N1 N2 N3 N1+N4)
XSAVE STX, SAVE PARAM STACK PTR.)

3% LDA, # OF VALUES TO BE MOVED TO N)
SETUPN JSR, MOVE THEM)
CLC, CLEAR CARRRY FOR ADD)

N 2+ LDA,
N 4 + ADC,

TAY,
N 3 + LDA,
N 5 + ADC,
XSAVE LDX,

GET VALUE OF N2 LO)
ADD N1 LO)

SAVE LO BYTE)

GET N2 HI)

ADD N1 HI)

RESTORE STACK POINTER)

DEX, MAKE ROOM FOR NEW STACK VALUE)
DEX,
0 ,X STY, (PUT LO ON STACK)
1 ,X STa, (PUT HI ON STACK)
NEXT JMP, { PUSH N2 ONTO STACK)
END-CODE

400 500 600 OVERADD .S DDROP DDROP

This example is a somewhat oblique way of adding together the 2nd and
3rd numbers on the stack and 1leaving them on the bottom of the stack.
Two words, BOT and SEC are provided to ease referencing the bottom and
second to bottom values of the parameter stack. BOT is equivalent to
0,X. SEC is equivalent to 2,X. Let's re-write the OVERADD . routine to
use the values directly from the stack:

Example:
CODE OVERADD2 (N1 N2 N3 --- N1 N2 N3 N1+N2Z)
CLC,
SEC LDA, (GET VALUE OF N2 LO)
4 ,X ADC, (ADD N1 LO)
TAY, { SAVE IT)
SEC 1+ LDa, (GET N2 HI)
5 ,X ADC, (ADD N1 HI)
DEX, { MAKE ROOM ON STACK)
DEX,
BOT STY, { PUT LO ON STACK)
BOT 1+ STA, (PUT HI ON STACK)
NEXT JMP, '

END-CODE
600 700 800 OVERADDZ .S DDROP DDROP

Notice that when we decrement X twice (once for each byte) to point to
a new bottom that wusing BOT reflects this change. Now that we can
manipulate values on the stack, we can easily interface with either
high level routines or other machine language routines which use the
stack. All the outside world needs to know is what goes on the stack
and what remains after the routine is run.

33 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

4.5 Returning to Interpreter

Several return points to the FORTH interpreter are provided.

which is to link back to FORTH must perform a JMP to one of
points. The alternate return points provide easy ways of
parameter stack in the proper form:

NEXT : Has no effect on the parameter stack.

POP : Discards the bottom parameter on the stack. POP is equivalent

to INX, INX, NEXT JMP,.

POPTWO : Discards the bottom two parameters on the stack. POPTWO is
equivalent to INX, INX, INX, INX, NEXT JMP,.
PUSH : Adds a value to the parameter stack. The low byte of the

value must be on the return stack, the high byte is in the .a
register. PUSH is equivalent to DEX, DEX, 1 X STA,

X STA,.

PUT : Copies a value over the bottom parameter on the

stack.
low byte of the wvalue must be on the return stack, the high byte

A routine
the return
leaving the

PLA, 0

is in the .A register. PUT is equivalent to 1 ,X STA, PLA,

0 ,X STa,.

Let's use an alternate return point to shorten our OVERADD example even
more. Remember, the last thing we want to do is to push the new 2 byte

value onto the parameter stack:

Example:
CODE OVERADD3 (N1 N2 N3 --- N1 N2 N3 NI+N2)
CLC,
SEC LDA, GET VALUE OF N2 LO)
4 X ADC, ADD N1 LO)
PHA, SET UP FOR PUSH)

SEC 1+ LDaA,
5 ,X ADC,
PUSH JMP,
END-CODE

GET N2 HI)
ADD N1 HI)
PUSH VALUE AND RETURN)

N e p—

123 456 789 OVERADD3 .S DDROP DDROP

Well, that certainly simplifies it! How does this compare

with high

level FORTH code? I ran a test comparing OVERADD3 with the following

high level routine:

HILVL >R DDUP + R> SWAP ;

Over 10000 executions, OVERADD3 ran in 1.4167 seconds, while

HILVL ran

34 SUPER-FORTH 64 (TM)

The

FORTH Assembler Usage

in 4.7333 seconds. So OVERADD3 ran about 3 1/3 times as fast {BASIC,
by the way, takes about 30 seconds to add two numbers together).

4.6 Code Structures

Now that we can write straight line code, it would be nice if we could
use branches. ~ This assembler provides branches around code the same
way the high level FORTH does: using program constructs. The following
table lists the names of the high and low level constructs:

High Level Low Level
scond IF...ELSE...THEN mcond IF,...ELSE,...THEN,
BEGIN...scond UNTIL BEGIN, ...mcond UNTIL,
BEGIN...scond WHILE...REPEAT BEGIN,...mcond WHILE,...REPEAT,
BEGIN...AGAIN BEGIN,...AGAIN,

There are two differences to the user, the low level word all end with
a comma, and the high level words check for a stack condition (scond)
while the low level words check for a machine status condition (mcond).

The stack condition is specified by a value on the stack. If the value
is 0 the condition is considered false. Anything other than 0 is true.
The machine condition is tested by specifying a condition testing word.
The following table lists these words:

Words Condition Tested

cs Carry status flag set?

0< Negative flag set (<0)

0= Zero flag set (=0)

CS NOT Carry flag clear?

0< NOT Negative flag clear (>=0)?
VS Overflow flag set?

VS NOT Overflow flag clear?

The following example implements a routine which compares two numbers
for equality non-destructively and leaves the result on the stack.

35 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

CODE A= (N1 N2 --- N1l N2 FLAG)
BOT LDA, { GET LO BYTE N1)
SEC CMP, (= LO N2?)
0= IF,

BOT 1+ LDA, (GET HI BYTE N1)
SEC 1+ CMP, (= HI BYTE N2?)
0= IF,
INY, (SET Y=1)
THEN,
THEN,
TYA, PHA, (SET UP FOR PUSH)
0 # LDA, (ZERO HI BYTE)
PUSH JMP,
END-CODE

1435 1235 A= .S DDROP DROP
1435 1435 A= .S DDROP DROP

The machine level routine will run quicker, but look at the simplicity
of the high level routine:

: NON= DDUP = ;

4.7 Subroutines

Subroutines may be created and linked to by creating a header, entering
the assembler, entering the code and ending the subroutine with an RTS:

ASSEMBLER (MUST INVOKE MANUALLY, SINCE NOT USING "CODE")
CREATE ONE+ (B -+~ B+l) |
BOT LDY,
INY,
BOT STY,
RTS,
CODE TWO+ (B -—-- B+2)
ONE+ JSR,

ONE+ JSR,
NEXT JMP,
END-CODE

5 TWO+ .
The example implements a subroutine, ONE+ which performs a byte
increment by one, and an assembler routine, TWO+ which performst a byte
incrment of two by calling ONE+ twice.

WARNING! DO NOT CALL SUBROUTINES FROM HIGH LEVEL~ THE SYSTEM WILL.
CRASH!

36 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

4.8 Macros

A macro 1is a code definition which compiles code when it 1is called.
Macros may be created by enclosing code within a regular colon
definition. When the macro name is invoked, the code within the
definition will be generated:

LSHIFT16 (———) during assembly time
{ N -— N+1) during execution
ASSEMBLER ({ MUST BE INVOKED) .
BOT ASL, (SHIFT LO BYTE)
BOT 1+ ROL, (SHIFT CARRY INTO HI BYTE)
CODE 32MULT (N --- N*32)
LSHIFT16
LSHIFT16
LSHIFT16
LSHIFT16
LSHIFT16
NEXT JMP,
END-CODE
10 32MULT

This example defines a macro, LSHIFT16 which performs a 1 bit shift of
a two byte wvalue. Since a 1 bit 1left shift is equivalent to
multiplying by 2, we can define a routine, 32MULT which multiplies a
value by 32 by invoking LSHIFT16 5 times to generate code for 5 1 bit
left shifts.

Within the macro definition, FORTH can be used to control what actually
gets generated when the macro is invoked. For instance, an alternative
version of the LSHIFT16 macro could accept a number on the stack during
assembly time and generate that many left shifts:

: MLSHIFT16 (M ---) during assembly time
(N -—— N LSHIFT M) during execution
ASSEMBLER
0 DO
BOT ASL,
BOT 1+ ROL,
LOOP ;

CODE 32MULTB (N —— N*32)

5 MLSHIFT16 { GENERATES 5 LEFT SHIFTS)
NEXT JMP,

END-CODE

10 32MULTB

37 SUPER-FORTH 64 (TM)

FORTH Assembler Usage

Both 3ZMULT and 32MULTB have generated exactly the same code! This can
be verified by using DUMP to examine them:

' 3Z2MULT 32 DUMP
' 32MULTB 32 DUMP

Well, there you have 1it. The only thing 1left to do is start writing
some machine lanquage routines. Be warned, it is VERY EASY to crash
the system when writing in machine language! Here are some things to
be careful about:

1) Always be sure to end your code with a JMP to NEXT, PUT, PUSH,
POP or POPTWO. If the jump is missing you will crash since the
system will not know how to link back to FORTH.

2) Be sure you have preserved the .X register and restore it
properly when you are ready to exit your routine.

3) A PHA, without a corresponding PLA, (or a call to PUT or PUSH)
will crash the system since the return stack will have an
improper value in it.

4) A PLA, without a PHA, will crash because you have probably
"trashed" the systems return address.

There are probably thousands of imaginative ways to crash a system

using machine language, but the above four seem to be the ones which
turn up most often.

38 SUPER~-FORTH 64 (TM)

Implementation Specific Words

5. Implementation Specific Words

The Standard MVP FORTH Word Set is listed in Section 6. This section
details the MVP FORTH words which are specific to this implementation
of the MVP FORTH Kernel and the extension words which have been
designed to handle specific Commodore 64 functions. The combination of
these two sets of words comprise the SUPER FORTH 64 Word Set.

The implementation specific words and extensions fall into the
following categories:

1. Editor Words
2. File Mcde Words
3. C64 Primitive Words
4. C64 Specific I/0 Words and Extensions
5. Cb4 Kernel Interface Words
6. C64 System Utility Words
7. Graphics Words
8. Turtle Graphics Words
9. Sound Words
10. Music Editor Words
11. String Words
12, Interrupt Words
13. Display Screen Words
14. High RAM Access Words
15, Data Structure Words
16. Math Words

The notation used to describe FORTH words is as follows:
1) The word name and a brief description of its use.
2) A stack description of the following format:
{ input --- output) text

where "input" ‘is a 1list of the wvalues which are expected on the
stack upon entry to the word and ‘"output" is a list of values
which are left on the stack by the word at the end of its
execution. "Text", if 1included, is entered after the word's
name. Text in brackets, such as [(filename] indicates that the
text following the word is optional.

3) A déscription of the usage and operation of the word.

4) An example of usage, where appropriate.

39 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.1 Editor Words

New FORTH definitions may be saved by editing them onto a FORTH screen.
Editing within a screen remains the same with either mode (File Mode or
Standard Mode). The differences are in initial access to screens and
loading. In Standard Mode screens are accessed as described in
STARTING FORTH, that is, individually, by block number. In File Mode a
file workspace is set up either by using F-NEW to create an area for
editing a new file, or by using F-EDIT to read in a previously created
file for editing.

The editor vocabulary 1is entered either by 1listing a screen, using
LIST, or by typing the word EDITOR. A line is edited by LISTing out a
block (the LISTed block becomes the current screen) and using the
Commodore screen edit keys to enter or modify a particular line of a
screen (that line becomes the current line). The FORTH words "1)
2)...15)" are used to insert the text following them on that numbered
line. LIST can be stopped prematurely by hitting any key while the
LIST is occuring. This may be useful for editing a screen which does
not completely fit on the monitor

The FORTH editor extensions are provided to ease copying 1lines, moving
lines around, etc. The current screen number is stored in SCR. The
current line number is stored in R#.

Example: This example describes a typical Standard Mode editing
session. Most of the common editing commands will be used,
therefore it is recommended that the beginning user follow the
example referring to the appropriate section to understand the
commands which are being performed. Let's say we wish to
perform the following edits for our session:

1) Enter new text on screens #100, 101, 102 and 103.
2) Re-edit 102.

3) Enter new text on 104.

4) Re-edit 100 and 101,

5} Load in screens 100 to 104 and test definitions.

Follow this example on a formatted (NEW'd) blank diskette:

100 LIST (SETS THE EDITOR SCREEN POINTER)
W (CLEAR SCREEN 100 FOR EDITING)

{ POSITION CURSOR AND ENTER THE FOLLOWING)
0) {(EDITOR EXERCISE: SCREEN 100)

1) : TESTI1

2) ." THIS IS SCREEN 100 "

3) CR ; _

D-CLEAR (THIS SHOULD CLEAR THE BOTTOM OF SCREEN)

'L (LIST OUT 100 TO VERIFY - IF NOTHING IS ON IT
BE SURE YOU ENDED EDITING LINES WITH A CARRIAGE RETURN)

10 SUPER-FORTH 64 (TM)

Implementation Specific Words

112 C (COPIES LINE 1 TO LINE 12)

213 ¢C (COPIES LINE 2 TO LINE 13)

314 C (COPIES LINE 3 TO LINE 14)

L (LIST SCREEN TO VERIFY EDITS)

12 5 M { MOVES LINE 12 TO LINE 5 & EXTRACTS 12)
12 6 M (MOVES LINE 12- WAS PREVIOUSLY LINE 13)
12 7 M (MOVES LINE 12- WAS 14)

L (LIST SCREEN TO VERIFY EDITS)

2 XL (EXTRACT LINE 2 AND LIST SCREEN)

1 K2 KL (KILL LINES 1 AND 2 AND LIST SCREEN)
40L (OPEN LINE 4 AND LIST)

N W (THIS WRITES OUT 100, CLEARS & LISTS 101)
100 7 SC (COPIES LINES 5-7 FROM PREVIOUS SCREEN INTO)
100 6 SC (LINES 4-6)

100 5 SC (LINE 4 WAS PREVIOUSLY EDITED LINE)

L { LIST SCREEN)

F (WRITE OUT SCREEN 101)

101 102 COPY 102 LIST (COPY SCREEN 101 TO 102)
N W (WRITE OUT 102, CLEAR & LIST 103)

(POSITION CURSOR TO AND ENTER THE FOLLOWING)
0) (EDITOR EXERCISE: SCREEN 103)

1)

2) : TEST3

3) THIS LINE WILL BE REMOVED

4) ." SCREEN #1103 "

5) ." ANOTHER LINE " ;

D-CLEAR

50L (OPEN LINE 5 & LIST SCREEN)

(POSITION CURSOR TO LINE 5)
5) CR

(POSITION CURSOR TO BOTTOM OF SCREEN)
3XL { REMOVE LINE 3 & LIST SCREEN)
PL (WRITE 103 & LIST 102)

(POSITION CURSOR TO LINE 0)
0) EDITOR EXERCISE: SCREEN 102)

(POSITION CURSOR TO LINE 4)

4) : TEST2

5) ." THIS IS SCREEN 102 "

D-CLEAR (LEAVE A SPACE AFTER D-CLEAR)

104 L W (WRITE 102, LIST CLEAR & LIST 104)

{ POSITION CURSOR & ENTER TEXT)
0} (EDITOR EXERCISE: SCREEN 104)

41 SUPER-FORTH 64 (TM)

Implementation Specific Words

l) : TEST4 ." SCREEN 104 " ;
D-CLEAR
100 L { WRITE OUT 104 AND GO BACK TO 100)

2X2X2XL (MOVE TEXT DOWN TO LINE 2)

(POSITION CURSOR TO LINE 2)

2) : TESTO
D-CLEAR
N L { WRITE OUT 100 & LIST 101)

(POSITION CURSOR & ENTER TEXT)
0) (EDITOR EXERCISE: SCREEN 101)

(POSITION CURSOR & EDIT TEXT)

5) ." THIS IS SCREEN 101 "
D-CLEAR
F (WRITE OUT 101)

(IF THE PREVIOUS WAS CORRECTLY ENTERED NOTHING SHOULD)
(BE WRITTEN WHEN THE FOLLOWING COMMAND IS EXECUTED)
SAVE~-BUFFERS

(INDEX CAN BE USED TO CHECK LINE ZERC OF A SET OF SCREENS)
100 104 INDEX

100 104 THRU (LOADS DEFINITIONS INTO DICTIONARY)
{ WE COULD HAVE LOADED SCREENS INDIVIDUALLY WITH)
(100 LOAD 101 LOAD 102 LOAD 103 LOAD 104 LOAD)
VLIST (VERIFIES DEFINITIONS HAVE BEEN LOADED)
(TEST OUT NEW DEFINTIONS)

TESTO

TEST1

TEST?2

TEST3

TEST4

FORGET TESTO (FORGETS ALL TEST DEFINITIONS)

Notice that during normal editing, screens are automatically flushed
(written out to the disk) by using the editing commands N, P, L or F.
It 1is a good practice to use SAVE-BUFFERS (also called FLUSH in
STARTING FORTH) at the end of an editing session to insure that all
screens have been written out to disk.

5.1.1 Confiquring the Editing Screen
SUPER FORTH 64 provides the user the flexibility of determining his
optimal screen format and configuring the system for that format. A

screen always occupies 1024 bytes in memory, but how it is displayed is
determined by the word C/L, a word which returns the number of

42 SUPER-FORTH 64 (TM)

Implementation Specific Words

characters per listing 1line. The number of 1lines to be 1listed is
determined by the number of characters in a screen buffer {1024)
divided by C/L. The initial system is confiqured for 64 characters per
line (typing C/L . should display 64). Therefore, the initial screen
format is 16 lines by 64 characters (1024/64=16 lines).

A user may wish to change the default format for various reasons. 1If a
user never overflows his lines on the screen, for instance, he may
prefer 35 characters per line, not wasting the 29 characters per line
(positions 36 thru 64) which are always blank filled by the system. A
format of 35 characters by 29 lines may also be useful for defining
sprites using S-DEF. If the number base is changed to binary, a
pictoral representation of the sprite may be entered as data (see S-
DEF).

To change the listing format, the number of characters per line must be
placed in C/L. This can be accomplished as follows:

chars ' C/L !
The additional Editor words 16), 17) ... will have to be defined to
enable the Editor to handle the extra lines on the screen. The editing
screen which defines 0) ... 15) alsoc contains auxillary definitions for
lines 16) ... 24), but these are not compiled into the initial system.

For example, to change the listing format to 40 characters by 25 lines,
the following must be done:

DEFINE EDITOR COMMANDS FOR LINES 16 THRU 24)

(

: 16) 16 SE ; : 17) 17 SE ; : 18) 18 SE ;
: 19) 19 SE ; : 20) 20 SE ; : 21) 21 SE ;
: 22) 22 SE ; : 23) 23 SE ; : 24) 24 SE ;

(CHANGE CHARACTERS PER LINE TO 40)
40 ' C/L !t

Once the change has been made, screens which have been entered using a
different format will appear jumbled. However, once the 1line
definitions have been entered, changing format back (to list screens on
the master disk, for instance) is easy:

64 ' C/L ! (CHANGES BACK TO DEFAULT FORMAT)
(LIST OR EDIT 64 CHARACTER FORMAT SCREENS)
40 ' C/L 1 { CHANGES TO 40 CHARACTER FORMAT)

1 recommend that if you change to another format, that format be stuck
to. This will avoid screen format confusion

43 SUPER~FORTH 64 (TM)

Implementation Specific Words

5.1.2 € : Copy A Line On A Screen
(FROM§ TO§ ——-)

On the current screen copy the line at FROM# over the line at TO#. The
line at FROM# remains the same.

Example: 14 3 C will copy line 14 over line 3 on the current screen.
Line 14 will be untouched.
5.1.3 COPY : Copy Screen
(FROM# TO# ---)

Copies screen FROM# to screen TO#.

5.1.4 EDITOR : Use Editor Vocabulary

(=)

This word may be used prior to editing to insure that the EDITOR
vocabulary is invoked. The EDITOR is kept as a separate vocabulary so
that no conflict will arise with other words having the same names as
EDITOR words.

5.1.5 F : Flush (Save) The Current Screen
(===

In Standard Mode, this is used to flush (save) the current screen to
the disk if the screen has been updated since the last flush. Unlike
using SAVE-BUFFERS (or FLUSH as STARTING FORTH recommends) the flushed
screen will remain accessible without re-reading it, F performs no
action if the screen has not been updated since the last flush.
F is automatically invoked by N and P, This insures that when moving
to the next or previous screens, the information in the current screen
will be saved. F only need be wused if LIST is used to get the next
screen to update.

5.1.6 K : Kill A Line

(LINE# ---)
Kill (replace with blanks) the line at LINE# on the current screen.

Example: 10 K replaces line 10 with blanks.

44 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.1.7 L : List A Screen

(IN] ===)

LISTs the ASCII symbolic contents of a screen to the current output
device. . If there is no parameter on the stack then the current screen
is listed to the current output device. If there is a parameter on the
stack then the current screen is flushed if it has been updated and
screen N is listed to the current output device. Edits may be made
directly to the lines listed by using the CRSR keys to position the
cursor and the INST/DEL key for inserting for deleting text from the
line, Edits on a line must be ended with a carriage return (this form
of editing is the same as in BASIC).

Example:
L (LISTS CURRENT SCREEN)
20 L (FLUSHES CURRENT SCREEN AND LISTS SCREEN 20)

5.1.8 LIST : List A Screen
(N ---)
Lists the ASCII symbolic contents of screen N on the current output
device, setting N as the current screen. N is stored in the current
screen variable, SCR. Also invokes the EDITOR vocabulary if it is not
already invoked.

Example: 1 LIST lists screen 1.

5.1.9 M : Move A Line On A Screen
(FROM# TO# -—-—-)

Copies line at FROM# to line at TO# and extracts line at FROM# from the
current screen,

Example: 4 13 M will insert line 4 under line 13 and removes line 4.

5.1.10 N : Next Screen
(===)

Flushes the current screen if it has been updated (see F) and sets the
current screen to be the next sequential screen number.

Example: If the current screen is 5, N L would flush screen 5, set
the current screen to 6 and list it.

45 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.1.11 O : Open A Line For Input

(LINE}# ——)

Opens up the line at LINE# by moving from LINE# to 14 down 1 line.
Line 15 is lost and LINE# is set to blanks.

Example: 6 O will open up line 6 by moving lines 6-14 to 1lines 7-15
and blanking out line 6.

5.1.12 P : Previous Screen

(===)

Flushes the current screen if it has been updated (see F) and sets the
current screen to be the previous screen number. '

Example: If the current screen 1is 5, P L would flush the current
screen, set the current screen to 4 and list it.
5.1.13 SC : Copy Line From Different Screen

(SCR# LINE# ---)

Opens the current line in the current screen and copies LINE# from SCR#
screen into it. The current line and current screen remain the same.

Example: If the current screen is 5 and the current line is 10, 8 &
SC will move lines 10-14 to 11-15 on screen 5 and copy line 4
from screen 8 into line 10 of screen 5.
5.1.14 SCOPY : Copy A Group of Screens
(FR-START FR-END TO-START ---)
Copies the group of screens from FR-START thru FR-END to the area
starting at TO-START. This is useful for re-arranging areas of a
standard disk. The copy proceeds from low to high, so be careful of
overlapping areas!

Example: 5 10 14 SCOPY copies screens 5-10 to screens 14-19.

5.1.15 SM : Move Line From Different Screen
(SCR§f LINE# ---)

Opens the current line in the current screen, extracts LINE# from SCR#

46 SUPER-FORTH 64 (TM)

Implementation Specific Words

and copies it into the current line in the current screen. The current
line and current screen remain the same.

Example: If the current screen is 5 and the current line is 8,
typing 10 2 SM will open line 8 (moving 8-14 down one line),
copy line 2 of screen 10 into line 8 of screen 5, and remove
line 2 of screen 10.

5.1.16 W : Wipe the Current Screen Clear

(===

Sets the contents of the current screen to blanks and LISTs it. This
should always be used prior to initially editing a screen in Standard
Mode. In File Mode W 1is not necessary since the buffers are
initialized to blanks.

Example: N W will flush the current screen, set the next to current,
wipe it and list out the blank screen. This is wuseful when
initially entering a set of sequential screens.

5.1.17 X : eXtract A Line
(LINE§ ———)

Extracts (removes) the 1line at LINE# from the current screen. All
lines from LINE# until the end of the block are moved down one line.
Line 15 is blanked out.

Example: 3 X Extracts line 3 of the current screen, moving lines 4-
15 to 3-14 and blanking out line 15.

5.2 Source Screen File Mode Words

The words in this section are used to control source screen editing
when in File Mode. The parameter [filenamel is an optional filename
which may be entered in quotes after the word is entered. If
[filename] is entered it becomes the default filename, that is, the
filename which is wused to name the source file in’ following commands
-where [filename] is not entered.

Since File Mode defaults to program files to store source code, using
the system for either cassette or disk is simply a matter of specifying
the system device number in SYSDEV where cassette is device 1 and disk
is one of device numbers 8 through 12.

Example:

SYSDEV !

47 SUPER-FORTH 64 (TM)

Implementation Specific Words

will set the system to use cassette for file mode.

A File Mode type file can easily be converted to Standard Mode on disk
by using F-EDIT to read the file in, use F-NUMBER to renumber the
screens to the new Standard Mode area, F-EXIT to exit File Mode, and
SAVE-BUFFERS to save the screens out in Standard Mode. See F-NUMBER
for an example of File Mode to Standard Mode conversion.

A brief description of various File Mode words follows: F-NEW is used
to creater a new FORTH source file. After editing screens F-SAVE is
used to save the file, F-EDIT is used to read an existing source file
into memory for editing. F-APPEND will append a source file to screens
already in memory. F-LOAD loads the source file in and compiles it
into the dictionary. F-NUMBER 1is useful for re-numbering screens for
conversion to or from Standard Mode. Typing F-NEW, F-EDIT, F-SAVE and
F-LOAD automatically enter File Mode from Standard Mode.

Because the complete file must reside in memory for editing, if File
Mode is to be used extensively it is recommended that the user create a
special editing system which would make full wuse of the buffer space
available. The following code produces such a system and saves it as a
program file,

FORGET S-MULTIR
(INSERT FORTH SOURCE SCREENS DISKETTE)

25 26 THRU (LOAD MAX-BUFFS, DSWAP)

42 45 THRU (LOADS EDITOR)

MAX-BUFFS (ALLOCATES THE MAX # OF BUFFERS)}
F-NEW ' (INITIALIZES SYSTEM FOR FILE MODE)

(INSERT A BLANK, FORMATTED DISKETTE)
SAVE-FORTH "SUPER FORTH.EDIT"

Note: The new system is an "edit only" system and should not be used
to attempt loading in the edit program since only a limited
amount of dictionary space is available and many of the higher
level extensions (which may be required by the application) have
been removed.

5.2.1 F-APPEND : Append A File To Block Buffers
{ -—-——) [filename]
Assumes the block buffers have already been set up and contain
information. Uses variable FLAST to determine which block buffer to
start reading the file into and reads the file in, appending it to

screens which are already in the block buffer area. FLAST - is updated
to point to the last screen number assigned for the file.

For example:

F-EDIT "FILE1" { Reads first file into buffers)
F-APPEND "FILE2" (Appends another file to first)

48 SUPER-FORTH 64 (TM)

Implementation Specific Words

{ perform editing of screens }

F-SAVE "NEWFILE" { Saves the concatenated file)
or
" SO0:FILEl1" DOS (Scratches FILEl)

F-SAVE "FILE1" (Replaces FILEl with the new file)

5.2.2 F-EDIT : Set Up To Edit File
(———) [filename]

Sets File Mode, initializes the block buffers, sets the default
filename (if given) and reads the default file into the block buffer
area for editing. Variable FLAST is set to the number of the last
screen read in. An error condition exists if a file of the given name
does not exist. The screens numbers will go from 1 to the screen
number stored in FLAST.

Note: There must be enough buffers available to read in
the file. If not, the end of the file will not
be read in and the file must be read in again
after changing the number of buffers.

Example: F-EDIT "FILE" reads FILE into the block buffers for
editing.

5.2.3 F-EXIT : Exits File Mode

(=)

Sets up system to use "standard" mode for editing source screens. Does
not affect the block buffer contents.

5.2.4 F-LOAD : Load File Into System
(——) [filename]

Opens file of name “"filename", reads the file in and performs a LOAD of
each block as it is read in. Closes file when load is finished. P~
LOAD requires a minimum of 2 buffers. to be allocated for loading.
Therefore, if a large program is to be loaded, set the number of system
buffers to 2 to minimize buffer space.

F~LOAD must be used AFTER a file has be saved using F-SAVE, since it

reads the file in as it loads it. LOAD or THRU may be used to 1load in
screens directly from the block buffers while still in edit mode.

49 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example:

F-LOAD "filename"

5.2.5 F-NEW : File Mode Initialization

—

Initializes the system for File Mode. Calls FILE-MODE, empties and
resets block buffer pointers, initializes FLAST to 0 and initializes
SCR to 1. This word is called by F-EDIT and F-LOAD, so File Mode is
automatlcally entered by 1nvok1ng one of those words. Can be used to
insure the block buffers are initialized correctly.

5.2.6 F-NUMBER : Renumber the Block Buffer Screens

{ start ---)

F-NUMBER will renumber the used blocks of the block buffer area.
Numbering proceeds seguentially from "start". The buffers are checked
starting with the buffer at FIRST. If the buffer has been used, it is
assigned the next sequential number. "All used blocks will be marked at
UPDATEd.

This word is useful for conversion between Standard Mode and File Mode.
File Mode screens are always numbered starting from 1, therefore if
more than one File Mode file is to be put onto a Standard Mode disk,
the screens must be renumbered first. Since F-NUMBER also marks
screens as UPDATEd, SAVE-BUFFERS can be used to save the newly re-
numbered screens to a standard disk after using F-EXIT to leave File
Mode.

Example: If a File Mode file TESTFILE is 8 screens long and we wish
to convert the file to Standard Mode and place the screens at
screen 40 through 47, the following sequence may be used:

F-EDIT "TESTFILE" Reads TESTFILE into buffers)
40 F-NUMBER Renumbers screens & sets update)

{
(
P-EXIT { Leaves File Mode, enters standard)
SAVE-BUFFERS (Saves 8 screens at 40 through 47)

5.2.7 F-SAVE : Save Source Screen File
{ ~—) [filename]
Sets the default filename if given. Opens the default file and writes

the screens in the block buffers to that file. Closes the file when
done.

50 SUPER-FORTH 64 (TM)

Implementation Specific Words

If the file already exists and a replacement is desired, first scratch
the old file before saving the new one.
Examples:

F-SAVE "TESTFILE"
saves the buffers to a new file called TESTFILE.
" S0:TESTFILE" DOS F-SAVE "TESTFILE"
replaces the previous TESTFILE with the contents of the block
buffers.
5.2.8 FILE-MODE : Invoke File Mode
(——~) [filename]
This is the primitive used by other File Mode words to invoke File Mode
and set up the default filename. It invokes DRO, sets the mode to 1
and replaces <R/W> (the standard disk read/write routine) with FR/W (a
dummy read/write routine which performs no I/0 and drops all arguments
passed to it) assuring that standard block I/0 cannot occur (this can
still be over-ridden, however, by words such as INDEX and BACKUP which
use RWTS directly, bypassing the standard system.
5.2.9 FLAST : Last Screen Variable
(-——- ADDR)
Variable which contains the highest screen number accessed in File
Mode. This variable can be examined after using F-EDIT to determine
how many screens were read in.
5.2.10 FNAME : Default File Name
(--- ADDR)
String variable which is set up by FILE-MODE to contain the default
file name.
5.2,11 F-OPEN : Open Default File
(PFLAG ——~)
Primitive invoked by various File Mode words to open logical file 9 as
the file in FNAME on the current system device. If FLAG=0 the file is

opened as a "read" file. If FLAG=1 the file is opened as a "write"
file.

51 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.2.12 READB : Read Block Into Buffer
(ADDR ---)
Primitive invoked by F-APPEND and F-LOAD to read 1024 characters from
the currently opened file into the buffer at ADDR.
5.2.13 WRITEB : Write Block Into File
{ ADDR ---)
Primitive invoked by F-SAVE to write 1024 characters from the buffer at
ADDR into the currently opened file.
5.3 (€64 Bit/Byte Manipulation Words
Many of the words in this section were defined to implement particular
functions related to the Commodore 64. They are available for use by
the user.
5.3.1 CATNIB : Concatenate Two Nibbles
{ NH NL -——- BYTE)

Concatenate the two nibble (4-bit) wvalues, NH and NL into the byte (8-
bit) value BYTE.

Example: HEX 8 9 CATNIB leaves 89 on the stack.

5.3.2 CBIT : Clear Bits in Byte
{ ADDR MASK ---)

Clears the bits in the byte at ADDR according to the bits set in MASK.
If a bit is set to 1 in MASK the corresponding bit of the byte at ADDR
will be cleared. The remaining bits will be unchanged. This word can
be used to clear one or more bits of an I/0 register. '

Example: HEX DO0l6 18 CBIT clears the multi-color mode and the 40

column select bits in the VIC Control Register (see memory map
in C64 reference manual).

52 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.3.3 FBIT : On Flag CBIT/SBIT in Byte
(FLAG ADDR MASK ---)}

If FLAG is true (1) calls SBIT to set the MASKed bits in the byte at
ADDR. 1If FLAG is false (0) calls CBIT to clear the MASKed bits in the

byte at ADDR.

Example: HEX 1 D016 18 FBIT sets the multi-color mode and the 40
column select bits in the VIC Control Register (see memory map
in C64 reference manual).

5.3.4 LSHIFT : Perform a 16-bit Left Shift
(N #BITS --- N)

Shifts the 16-bit value N left the number of bits specified in ¥BITS.
Zerces are shifted in from the right. This can be used to effect a
fast unsigned multiply by a power of 2. For example, to multiply N by
256 (2**8), N 8 LSHIFT can be used. This will execute many times

faster than N 256 *,

5.3.5 MASK : Calculate 2%*N
{ N ——— 2%%N)
Given N leaves the value of 2**N (2 to the power of N) on the stack.
This utility can be used to convert a bit number into a bit mask which
can be used to set or clear a particular bit of a memory byte.

Example: HEX D016 4 MASK SBIT creates a MASK and sets the multi-
color bit in the VIC Control Register.

5.3.6 RSHIFT : Perform a 16-bit right shift

(N #BITS -—— N)

Shifts the 16-bit value N right the number of bits specified in #BITS.
Zeroes are shifted in from the left. This can be used to effect a fast
unsigned divide by a power of 2. For example, to divide N by 256
(2**8), N 8 RSHIFT can be used. This will execute many times faster

than N 256 /.

53 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.3.7 SBIT : Set Bits in Byte
(ADDR MASK ---)

Sets the bits in the byte at ADDR according to the bits set in MASK.
If a bit is set to 1 in MASK the corresponding bit of the byte at ADDR
will be set. The remaining bits will be unchanged. This word can be
used to set one or more bits of an I/0 register.

Example: HEX D016 18 FBIT sets the multi-color mode and the 40
column select bits in the VIC Control Register (see memory map
in C64 reference manual}.

5.3.8 SPLIT : Split A Cell Into Two Bytes
(N -—- BH BL)

Split the 16-bit value into its component byte values, leaving on the
stack hi byte, low byte.

Example: HEX 89AB SPLIT 1leaves 89 AB on the stack.

5.4 C64 Specific 1/0 Words & Extensions

The SUPER FORTH 64 I/0 system has been designed to provide flexibility
in dealing with I/0 devices on the C64. The system provides the
capability of re-directing I/0 to any opened device. The words EMIT,
." , PRINT# and PUT# (which provide the FORTH output) and ?TERMINAL,
GET#, KEY, CHARIN, INPUT and INPUT# (which provide input) use the C64
Kernel to perform I/O to the device which has been specified.

CMDI or words which use CMDI, such as GET# and. INPUT#, automatically
set INPLFN. CMD or words which use CMD, such as PUT# and PRINT#,
automatically set OQUTLFN.

For example, to talk to an RS-232 device instead of the C64 keyboard
and monitor, the user would open the RS-232 device and . store the
logical file number in the Standard 1/0 variables, INPLFN and OUTLFN:

10 " <ctl-f>" RS232 (opens a 300 baud RS-232 logical file)
10 CMD (directs output to logical file 10)
10 CMDI (directs input from logical file 10)

To set defaults either perform a warm start or set INPLFN and OUTLFN to
O (0 CMDI and 0 CMD will perform the function}.

To write data to a Commodore sequential file the user could open the
file, direct output to that file, and restore defaults when done. To
read from that file the user could direct input from the file, get the
input and then re-direct input for the interpreter.

54 SUPER-FORTH 64 (TM)

Implementation Specific Words

Files should not be opened with logical file number 9 since this is
reserved for system disk/cassette operation.

A word, PRINTER, is provided to open a file and direct output to a
standard Commodore 1525 printer.

5.4.1 ?TERMINAL : Query Current Input Device For Character
(-——C)

This word performs the BASIC GET function- it returns an ASCII value
from the keyboard. 1If no key has been depressed a zero is returned.

Example:

s TEST
10000 0 DO
?TERMINAL ?DUP
IF . LEAVE THEN
LOOF ;

When invoked, TEST loops, waiting for a key to be depressed. If a
key is depressed its ASCII wvalue is printed, otherwise
eventually the loop ends and nothing is printed.

5.4.2 CMD : Set File Number As Current Output Device

(LFN -—-)

This word performs a function similar to the BASIC CMD. The logical
file number LFN 1is stored in OUTLFN, the current output device
variable. Output will then be directed to the file referenced by LFN
until the value of OUTLFN is changed or the file is closed.

Example:
10 4 0 "" OPEN (OPENS CHANNEL TO PRINTER)
10 CMD (DIRECTS OUTPUT TO PRINTER)

Causes all output to be directed to the printer until the wvalue of
OUTLFN is changed.

0 CMD

re-directs output back to the screen.

55 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.4.3 CMDI : Set File Number As Current Input Device
(LFN ---)

This word performs the input version of CMD. The logical file number
LFN is stored in INPLFN, the current input device variable. Input will
then be directed from the file referenced by LFN until the value of
INPLFN is changed or the file is closed.

Example:
10 " {ctrl-f}" RS232 (OPENS 300 BAUD RS-232 CHANNEL)
10 CMDI { DIRECTS QUTPUT TO RS-232)

Causes all input to be directed from the RS232 device until the
value of INPLFN is changed.

5.4.4 EMIT : Output Character
. { ASCII-VALUE ---)
Transmit an 8-bit character value to the current output device. The

current output device is the logical file number stored in OUTLFN {see
OUTLFN for setting alternate output devices).

Example:
65 EMIT

Sends an "A" to the current output device.

5.4.5 EMIT7 : Output 7-Bit Character

This word zeros the left most bit in the character and then sends it to
EMIT. 1Its primary use is in printing out FORTH word name fields using
the word ID. . Since the high order bit in the last character - of the
name field is used as a flag to signal the end of the field, that bit
must be zeroced in order to print a correct representation of the name
field.

5.4.6 EXPECT : Get Input Line
({ ADDR N —--—-)

As defined 1in ALL ABOUT FORTH except it uses CHARIN for input, thus
allowing screen editing functions to be performed before a line is sent
to the system input buffer. Uses the logical file number stored in
INPLFN as the device to take input from (see INPLFN for setting
alternate input devices}).

b6 SUPER-FORTH 64 (TM)

Implementation Specific Words

'5.4.7 FRE : Display Amount of Free Space Available
{ —~ BYTES)
Displays to the current output device the amount of space available
from the top of the dictionary thru the value of LIMIT.
5.4.8 GET# : Get A Character From File
(LFN ——— N)
This word performs the BASIC GET# function. LFN is first stored into
the variable INPLFN, making LFN the current input file, GET# then

returns an ASCII value from the keyboard. If no key has been depressed
a zero is returned,

Example:
: TEST
10 " {ctrl-f}" RS232 (OPENS A 300 BAUD RS-232 CHANNEL)
BEGIN
10 GET# (GET CHAR FROM RS5-232)
2DUP IF 0 PUT# THEN (ECHO IT TO SCREEN)
0 GET# { GET KEYBOARD CHAR)
?DUP IF 10 PUT# THEN (SEND TO RS-232)
AGAIN ;

This example performs the function of a simple terminal program.
After using a "run-stop/restore" sequence to exit the example,
type "10 CLOSE" to close the RS-232 file.

5.4.9 INPLFN : Input Device Logical File Number
(-—~ ADDR)

Returns address of the system variable INPLFN. The logical file number
(LFN) of the current input device is stored in INPLFN. System input
words KEY and CHARIN call the Kernel routine CHKIN with the LFN stored
in INPLFN before performing input, thus enabling system input from
devices other than keyboard. To use other devices (such as RS-232),
first use OPEN to set up the LFN and open the device, then store the
LFN of the opened device in INPLFN. To reset to the system default
either store a 0 in INPLFN, CLOSE the opened input channel, or depress
RUN-STOP/RESTORE to perform a system warm start.

57 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.4.10 INPUT : Input A Number From Current Input Device
(-—-— N)

Upon execution of this word, the system pauses and waits for the user
to 1nput a number from the current input file (see INPLFN). The single
precision number is left on the stack.

Example:

TEST
CR ." ENTER NUMBER: " INPUT

CR 0DO I . LOOP ;

Invoking TEST will cause the system to prompt and wait for entry of
a number. The second part of TEST uses the entered number as
the final value of the DO loop (use small numbers if you want to

try this).

5.4.11 INPUT# : Input A Number From File

(LFN ~—— N)

Upon execution of this word LFN is stored into INPLFN as the new
current input file. The system then pauses and waits for the user to
input a number from this input file (see INPLFN). The single precision
number is left on the stack.

Example:

10 " {ctrl-£}" RS232
10 INPUT# (user enters number)
0 CMDI { RESTORE INPUT FROM KEYBOARD)

The first line of the example opens an RS-232 device as a logical
file. The next 1line sets up the RS-232 device as the current
input file, waits for a number to come from it and prints the
number, The "0 CMDI" resets the system to accept input from the

keyboard.
5.4.12 JOY1l : Joystick Constant

{ -——— $DCO1)

Returns the address of joystick 1. Fetching from this address will get
the latest value of joystick 1.

Example: JOY1 C@ gets the value of the current position of joystick
1.

58 SUPER-FORTH 64 (TM)

—

Implementation Specific Words

5.4.13 JOY2 : Joystick Constant
(——- $DCO00)

Returns the address of joystick 2. Fetching from this address will get
the latest value of joystick 2.

Example: JOY2 C@ gets the value of the current position of joystick
2.

5.4.14 KEY : Input Character
(-— CHAR)

Get a character from the current input devce. The contents of INPLFN
are used to set up the input device.

5.4.15 MODE : Source File Mode Variable
(-—— ADDR)

Variable which determines the systems block buffer mode of operation.
If MODE=0, Standard Mode is used. 1If MODE=1, File Mode is used. FILE-
MODE and F-EXIT automatically change MODE to enter and exit File Mode.

5.4.16 OQUTLFN : Output Device Logical File Number
(-—- ADDR)

Returns address of the system variable OUTLFN. The logical file number
(LFN) of the current output device is stored in OUTLFN. System output
word EMIT calls the Kernel routine CHKOUT with the LFN stored in OUTLFN
before performing output, thus enabling system output from devices
other than keyboard. To use other devices (such as R§-232), first use
OPEN to set up the LFN and open the device, then store the LFN of the
opened device in OUTLFN. To reset to the system default either store a
0 in OUTLFN, CLOSE the opened output channel, or depress RUN-
STOP/RESTORE to perform a system warm start.

5.4.17 PADDLE@ : Fetch Paddle X,Y Values

(-—-- XVALUE YVALUE)
Gets the values of the X-paddle and Y-paddle A/D outputs. XVALUE and
YVALUE range from 0 to 255.
Example: PADDLE@ . . will print the x and y values of the paddle
registers.

59 SUPER~FORTH 64 (TM)

Implementation Specific Words

5.4.18 PRINT# : Print A Number To File
{ N LFN ---)

Upon execution of this word LFN is stored into OUTLFN as the new
current output file. The value of N is then displayed on the current
output device.

Example:

10 4 0 "" OPEN
1234 10 PRINT#
0 CMD

This example opens a printer as a logical file, re-directs output to
the printer, prints the number "1234" and finally resets output
to go to the display screen.

5.4.19 PRINTER : Open a Printer File and Re-direct Output

(FLAG ---)

This word is included to enable users to easily direct output to a
1525E printer. When invoked with FLAG=ON, PRINTER opens logical file
number 127 as a printer output unit and re-directs output to the
printer. All system output will go to the printer until one of the
following occurs: 1) OFF PRINTER 1is invoked, 2) RUN-STOP/RESTORE
sequence warm starting the system, 3) 127 CLOSE is entered, closing the
printer file, 4) a command is entered which directs output to 'a non-
printer file (such as 0 CMD).

When invoked with FLAG=0OFF, PRINTER closes logical file 127 and directs
cutput to the display screen (performs a 0 CMD),

Example:
ON PRINTER (OPENS PRINTER FILE)
." TO PRINTER "
0 CMD { DIRECTS OUTPUT TO SCREEN)
." TO SCREEN "
127 CMD { DIRECTS OUTPUT TO PRINTER)
12 EMIT (SEND PAGE EJECT TO PRINTER)
0 TRIAD (PRINT THREE SCREENS)
12 EMIT (SEND PAGE EJECT)
0 10 INDEX (PRINT INDEX OF SCREENS)

OFF PRINTER

This example demonstrates various things which can be done by re-
directing output between the printer and the display screen.

60 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.4.20 PUT# : Set Output File and Send Character
(CHAR LFN ---)

LFN is first stored into the variable OUTLFN, making LFN the current
output file. PUT# then sends CHAR to the output file.

Example: See GET# for an example of a simple terminal program which
utilizes PUT#.

5.4.21 RS232 : Open An RS5-232 Channel

(LFN ADDR ---)

This word is used to open an RS-232 channel for I/0 operations to use.
LFN specifies the logical file number of the channel. ADDR specifies
the address of a string which contains command information for the
channel. Use of the immediate string word, "", will leave a proper
address on the stack. The channel is opened to device number 2 with a
secondary address of 0,

Note : In opening RS-232 files characters with the numeric values 1-
26 may be entered by depressing ctrl-a to ctrl-z.

Example:

10 " {ctrl-f}" RS232
10 CMDI 10 CMD

opens a 300 baud RS-232 channel and directs output to it and input
from it.

Opening an RS-232 channel automatically causes the allocation of 512
bytes of memory for input and output buffers. 1Initially, this area
would be 40448 ($9E00) to 40959 ($9FFF), the top of the default BASIC
memory area. This area would not be interfered with in the initial
system, since the disk buffers only extend down to 44896 (S$SAF60). If
more buffers must be allocated, however, the RS-232 area may have to be
moved. The safest way to do this would be to move the top of the
FORTH user memory down 512 bytes and move the RS-232 buffers to the top
of FORTH memory. This can be accomplished as follows:

LIMIT 512 - ' LIMIT ! CHANGE (MOVE FORTH DOWN 200 BYTES)
HEX D000 283 ! DECIMAL (SET NEW TOP OF MEMORY)

61 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.4,22 RWTS : Read/Write Track & Sector
(ADDR R/W DRIVE SECTOR TRACK #PAGES —--- ERRCOUNT)
This is the disk primitive used to interface with the 1541 disk drives.
It is used by <R/W> to implement FORTH's "virtual memory" system.
Aside from user memory, RWTS may perform reads and writes to the High
RAM areas, 53248 ($D000) - 65535 (SFFFF).
ADDR: Address operation is to be performed on
R/W: 0 = write operation, 1 = read operation.

DRIVE SECTOR TRACK: Disk address for begin operation.

PAGES: Number of disk pages (256 byte sectors) operation is to be
performed on (1 FORTH screen = 4 disk pages [1024 bytes])

ERRCOUNT: Number of errors detected during operation (the error

channel is automatically displayed on error and on the initial
disk access after the disk is first powered on).

Note: RWTS is not normally used unless track/sector 1/0
is required. For block I/0 see BLOCK and R/W.

Example:

PAD 1 0 0 18 1 RWTS
PAD 256 DUMP

Reads track 18, sector 0 (the bitmap) into memory and lists it.

5.4.23 SAVE-FORTH : Save A Compiled System

{ ===) [filename]

This word FREEZEs the system, determines memory boundaries of the
system and invokes SAVE to save the system to the last specified file
(the initial default filename 1is "SUPER FORTH 64") or the new file
specification, on the device specified by SYSDEV (see Kernel SAVE).

Examples:

SAVE-FORTH saves the system to the default filename.

SAVE-FORTH "NEW-FILENABAME" saves the system to the filename
"NEW-FILENAME" and sets "NEW-FILENAME" as new default.

62 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.4.24 SECTRKT : Sectors/Track Table
(-—-- ADDR)
Table used by T&SCALC to determine the track and sector number of a
disk sector number relative to the beginning of the disk. Since the
number of sectors per track varies on the 1541 disk, a table lookup (as

opposed to.a . simple multiplication) must be used to determine the
position of a sector on the disk.

5.4.25 SYSDEV : System Device Variable
(-—- ADDR)
Variable which contains the number of the system device. Routines
which perform file or direct sector I/0 use the device number stored
here to perform their operation to (such as saving the system,
application, etc.) SYSDEV should be set to 1 for cassette, or 8-12 for
disk I1/0.

Example: 1 SYSDEV ! sets the system device to cassette.

5.4.26 UPORT : User Port Constant
(--- $DDO1)
Returns address of the (64 User Port. This address can be used to
fetch values from or write byte into the User Port.
5.5 C64 Kernel Interface Words
The following words are used to interface to the C64 Kernel ROM
routines. Kernel. routines which are not provided can usually be easily
implemented by using SYS or SYSCALL.
Examples: The following will implement TALK and ACPTR
HEX
: TALK (DEVICE ---)
0 0 FFB4 SYSCALL ;
ACPTR (--- BYTE)

0 0 0 FFAS SYS DDROP DROP ;
DECIMAL

63 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.5.1 CHARIN : Character Input
(--- CHAR)
Word used to call the system Kernel CHARIN routine- it sets the input
device from the logical file number stored in INPLFN (set to keyboard

on cold/warm starts) and performs character input utilizing the C64
screen editing functions if device is the keyboard.

5.5.2 CLALL : Close All Files

(=)

Calls Kernel CLALL routine to close all opened files.

5.5.3 CLOSE : Close A Logical File
(LFN ---)

Calls Kernel CLOSE routine to close a previously opened logical file.

5.5.4 CLRCHN : Close I/0 Channels

(=)

Calls Kernel CLRCHN routine to close all open channels and restore the
I/0 channels to their default values. This routine is automatically
called by CLALL.

5.5.5 LOADRAM : Load A Program File Into Memory
(LOADADDR FILEADDR ---)

The program file whose name i1s in the string at FILEADDR is loaded into
the memory at LOADADDR. If LOADADDR is zero, the file is loaded into
the address in the first two bytes of the program file. This word can
be used to load machine language sub-routines which can then be called
from the SUPER FORTH system. '

Example:

HEX C000 " ML.PROGRAM" LOADRAM
0 " ML.PROGRAM" LOADRAM DECIMAL

Both of the above statements would result in the program file

"ML.PROGRAM" being loaded into the area at $C000 (assuming the
file was. originally saved from $C000). Note: Loading a file

64 SUPER-FORTH 64 (TM)

Implementation Specific Words

over the FORTH dictionary area will likely result in a crash of
the system.

5.5.6 OPEN : Open A Logical File
(LFN DEVICE SECOND ADDR —~-—)

This word is 'used to OPEN a logical file which can then be used for
input/ output operations by storing the logical file number in INPLFN
or OUTLFN. Calls SETLFS with the logical Ffile number (LFN), device
address (DEVICE) and the secondary address {SECOND), calls SETNAM with
the name of the file to be opened and finally calls the Kernel OPEN
routine to open the file. The proper ADDR value will be left on the
stack by using the immediate string word, "" to specify the file name
(see Example).

Example:
10 4 0 "" OPEN
10 CMD
." HELLO!" CR

0 CMD
10 CLOSE

could be used to open a channel and direct system output to a
serial printer.

: RS-232 10 2 0 " {CTRL-F}" OPEN 3 OUTLFN ! ;
could be used to define a word to open an RS-232 channel and direct
output to it.

5.5.7 SAVE : Save Memory to Device

(START END --~)
This interface to the Kernel save routine is used to save a span of
memory locations as a program file to a device. It is called by SAVE-
FORTH and APPLICATION to save the system. The memory is saved to the
file name stored in the string variable SAVENAME. The device to be
saved to is taken from the system variable SYSDEV.

START: Starting address in memory to be saved.

END: Ending address in memory to be saved.

65 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.5.8 SAVENAME : Name of File To Be Saved
This string variable contains the file name which is used by the SAVE
routine to save a span of memory to a program file. SAVENAME $. CR
will print out the name currently stored there. SAVENAME has room to
hold a name of up to 19 characters (replacement prefix-"@Q:" plus 16
characters max for a filename).
The following can be used to store a new text string in SAVENAME:

SAVENAME SCLR SAVENAME " NEWFILE" $CONCAT

5.5.9 SETLFS : Set Logical, First, Second
(LFN DEVICE SECOND -—-)
This word is used to set up a system logical file. The Kernel routine
SETLFS is called, passing the logical file number (LFN), the device
address (DEVICE) and the secondary address (SECOND) .
5.5.10 SETNAM : Set Name of File
(ADDR COUNT ---)

This word calls the Kernel SETNAM routine. ADDR is the address of a
text string to be passed to SETNAM. COUNT is the length of the string.

Example:
SINPUT COUNT SETNAM
would accept an input string from the keyboard, determine its
address and length and pass the parameters to the Kernel SETNAM
routine,
5.5.11 ST : Get Kernel I/O Status Byte
{ ——— STATUS)

Gets the C64 Kernel status byte. It is useful to examine the status
byte after a Kernel routine call (see programmers reference guide).

5.6 C64 Utility Words

The wvarious words in this section are ‘"utility" words, useful
definitions which were changed or not included in the original MVP-
FORTH definition. It is recommended that even the beginning user look

66 SUPER-FORTH 64 (TM)

Implementation Specific Words

through this section since many of these words are useful as "stand-
alone" words, that is, they are complete SUPER FORTH programs in
themselves and probably will not be used within other word definitions.
The following words fall into this category: A-REMOVE, APPLICATION,
CHANGE, BACKUP, DECOMPILE, DIR, DOS, DOSERR, PATCH, Tracing, and VLIST.

The remainder of the words are intended to be used within other word
definitions (they can, of course, be used interactively also). These
are: <ROT, ?DEPTH, D2*, OFF, ON, RDTIM, RECURSE, SETTIM, SWAPIN,
‘SWAPQUT, SYS, SYSCALL and WAIT.

5.6.1 <ROT : Reverse Rotate Stack
{ NI N2 N3 -—- N3 N1 N2)

This word effects a relatively common stack operation, that of a
"reverse rotate". It is equivalent to executing the sequence ROT ROT.

5.6.2 ?DEPTH : Check Stack Depth
(N ===

If stack depth is less than N (before N was entered) ABORT" is called
printing out a message specifying EMPTY STACK.

5.6.3 A-REMOVE : Remove Assembler From System

(===)

This word 1is used to remove a remote Assembler vocabulary from the
system prior to saving the system as an application. This feature lets
users mix machine language routines (written using the FORTH Assembler)
and high level FORTH routines without keeping the overhead of an
Assembler in the dictionary.

When the procedure outlined below is followed, the Assembler and any
user defined macro are loaded into memory starting at location 36864

($9000). Words compiled after the remote Assembler is loaded in are
compiled into the dictionary in the original dictionary area.

When the application screens have been loaded, A-REMOVE is invoked
prior to saving the application. The dictionary is re-linked without
the Assembler being linked in.

In order to utilize this feature follow these steps:

1) Fully debug your application, including any assembler routines
required.

2) Load the initial system WITHOUT your application screens.

67 SUPER~FORTH 64 (TM)

Implementation Specific Words

3) Enter FORGET ASSEMBLER to remove the system's assembler.

4) Place the Master Source Screens diskette (or backup copy) into
the drive and type 114 120 THRU to load the remote assembler.

5) Place a user Source Screens diskette (if any) into the drive and
load any assembler macro screens you may have- these definitions
will also be removed after assembly (if none then ignore this
step).

6) Replace the Master Source Screens diskette and type 121 TLOAD to
load the word A-REMOVE.

7) Type 50 92 THRU and 94 97 THRU to compile a system with no
assembler or editor.,

8) Replace the wuser Source Screens diskette and load your
application screens.

9) Type A-REMOVE to remove the Assembler and any macros and re-link
the system.

10) Put a newly formatted diskette in the drive (or format one)

11) Type APPLICATION '"program-name" save your application out onto
disk.

12) Load the application program to verify that it runs properly.
If not, go back to step one.

WARNING: DO NOT USE SAVE-FORTH ON A SYSTEM HAVING A REMOTE ASSEMBLER
WHICH IS STILL LINKED- THE DICTIONARY LINKS WILL NOT EXIST WHEN THE
SYSTEM IS LOADED BACK IN. THIS WILL PROBABLY RESULT IN AN
UNRECOVERABLE CRASH!!!

5.6.4 APPLICATION : Save System As An Application
{ ——) [filename)

Save a program which when loaded and run will automatically start up
the latest word defined in the system. The given filename is used and
becomes the new default. If no filename is given, the last default
filename will be used.

Note: A new, formatted diskette should be placed into the drive
prior to using this word.

The FORTH system will be rendered "invisible" through use of this word.
This is accomplished by the system blanking out the name fields of
FORTH words in the system, and re-defining the interpreter so that when
the application file is loaded and run the application word will be
immediately executed.

68 SUPER-FORTH 64 {(TM)

Implementation Specific Words

Note: This is NOT a Meta-compilation- the application system will
remain the same size as the complete FORTH system. Prior to
loading, the application can be kept to a minimum size by
FORGETting THRU and recompiling only those source screens from
the master diskette which are necessary in order to compile the

application.

This utility is given in order to allow the FORTH applications designer
to write a FORTH application and save it away to be used without
allowing access to the underlying FORTH system. In this way the
application can be distributed without copyright infringement. (The
word APPLICATION must be executed to prevent copyright infringment!)

After use of this word the system may appear to be "hung”. Upon warm
starting (see Section 1.4) the application will be left running. The
FORTH system must be reloaded in order to continue FORTH program

development.

Programs saved using APPLICATION may be ROM'd as long as they occupy
less than 16384 ($4000) bytes in memory. See the section below on E-
PROMing code. If more information is needed, contact Parsec Research.

Example:

(PUT THE MASTER DISKETTE IN THE DRIVE)
99 110 THRU (LOAD FRACTALS DEMO)

{ PUT A BLANK DISKETTE IN DRIVE)
" NO:FORTH-DEMO,D1" DOS (FORMAT DISKETTE)
APPLICATION "DEMOFILE" { SAVE DEMO AS APPLICATION)

{ TURN OFF THE MACHINE & TURN IT ON AGAIN)
LOAD "DEMOFILE",8 (LOADS IN DEMC PROGRAM)
SYS 2064 { STARTS UP DEMO)

5.6.4.1 E-PROMing APPLICATION Programs

To transfer SUPER FORTH application programs to E-PROM, two additonal
short routines are needed. The auto-start routine described 1in the
PROM-QUEEN instruction booklet, and a routine to transfer your program
from -the I/O area to the normal memory location Ffor SUPER FORTH
programs. The program listing below contains both of these routines,
and should be added to the front of your application program.

AUTO-START/TRANSFER ROUTINE.

This routine should be assembled using the PROM-QUEEN assembler
starting at $8000 and then placed on a disk as instructed in the PROM-
QUEEN manual.

;AUTO-START ROUTINE.
10 .BY OA 80 9F FF C3 C2 CD 38 30 FF

69 SUPER-FORTH 64 (TM)

Implementation Specific Words

20 LDX #$00

30 STX $D016
40 JSR SFDA3
50 JSR S$FDS50
60 JSR $FD15
70 JSR $E518

80 CLI

90 JSR $8022 ; ($8022=ADDRESS OF TRANSFER ROUTINE)
100 JMP $A000 ;END OF AUTO-START ROUTINE.

110 LDY 500 ;START OF TRANSFER ROUTINE ($8022).

120 LDA #3561 ;LO~-BYTE OF START OF FORTH PROGRAM>

130 STA $59

140 LDA #$80 ;HI-BYTE OF START OF FORTH PROGRAM.

150 STA $5A

160 LDA #$01 i LO-BYTE OF WHERE TO XFER FORTH PROGRAM
170 STA $5B ‘

180 LDA #$08 ;HI-BYTE OF WHERE TO XFER FORTH PROGRAM.

190 STA §$5C
200L00P LDA ($59),Y
210 STA ($5B),Y
220 CLC

230 LDA $59

240 ADC #s501

250 STA $59

260 LDA $5A

270 ADC #$00

280 STA $5A

290 CLC

300 LDA $5B

310 ADC #$01

320 STA $5B

330 LDA $5C

340 ADC #$00

350 STA $5C

360 LDA $5B

370 CMP #L,ENDADDRS
380 BNE LOOP

390 LDA §5C

400 CMP #H, ENDADDRS

410 BNE LOOP 7END OF TRANSFER ROUTINE.
420 JMP $0810 ;STARTING ADDRESS OF RELOCATED APPLICATION.
430 .EN

ENDADDRS=Address of 1last byte+l of vyour application program after
transfer.

After assembling the above code, and saving to disk, plug the PROM-
QUEEN into the back of your Commodore-64. Insert the autochex ROM into
the PROM-QUEEN, and turn on your computer. Using the D command, load
the auto-start/transfer routing into location $§2000. Next, 1load your
application program starting at location $2061. the two programs are
now linked and may be burned onto the E-PROM as described in the PROM-
QUEEN manual.

70 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.5 CHANGE : Change SUPER FORTH Configuration

(=)

Modify the SUPER FORTH 64 memory configuration based on the values in
LIMIT and #BUFF. LIMIT specifies the start of the USER area and the
top of the buffers area. #BUFF is wused to determine the value of
FIRST, the start of the buffers area. At least 96 ($60) Dbytes should
be left above LIMIT for the USER variables. CHANGE ends with a call to
COLD to re-write vectors in the new user area.

Example:
20 ' #BUFF ¢ (set system for 20 buffers)
48896 ' LIMIT ! (move top of system down 4k)
CHANGE

This example will change buffer allocation to 20 buffers and place
the USER area at 48896 {($BF00).

5.6.6 CASE Structure Extensions

A program control structure, CASE, has been added to SUPER FORTH 64 to
facilitate choosing one of a set of operations based on a wvalue. CASE
is an extremely useful construct for the beginning as well as the
advanced FORTH user. Once the standard FORTH structures are understood
(IF...THEN, DO. . .LOOP, BEGIN...WHILE.. .REPEAT, BEGIN...UNTIL,
BEGIN...AGAIN), the user should learn and start using the CASE
construct. For implementation details see the article in Appendix VII.

Example:

: CASE-TEST (VALUE -—-)
CR
CASE
0 OF ." CASE ZERO " CR ;
2 OF ." CASE TWO " CR ::
4 OF ." CASE FOUR " CR HH
." VALUE OQUT OF RANGE "
ENDCASE ;
2 CASE-TEST
3 CASE-TEST

This example sets up three cases, one of which will be chosen if
upon entering CASE-TEST the value on the stack is one of 0, 2 or
4. 1If the value is anything else, the words between the last ;;
and ENDCASE will be executed. Also see the example in the
article in Appendix VII.

71 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.6.1 CASE : Begin Case Structure

The starting word in a CASE program control structure. Must be "paired"-
with the word ENDCASE at the end of the CASE structure.

5.6.6.2 OF : Test PFor Particular Case

OF tests the value which is on the stack (the "select" value) against
the value associated with the OF., If the select value is equal to the
OF wvalue, then the FORTH words between OF and ;: are executed and no
other case is tested.

5.6.6.3 ;; : Specify End of Particular Case

;3 1is used to specify the end of a set of words which follow a
particular OF in a CASE structure. If this is the last ;; before the
ENDCASE word, then the words which are entered between ;; -and ENDCASE
will be executed if no OF...:; has been selected For execution.

5.6.6.4 ENDCASE : Specify End of CASE Structure

ENDCASE is used at the end of the CASE structure to specify completion
of the CASE. Any words compiled between the last ;; and ENDCASE are
executed if the select value does not match the values of any OF's.

5.6.7 Backup Utilities

Several words have been included to enable users to make partial or
complete disk backups, using either a single disk drive or two drives.
The backup utilities must be loaded from the master diskette in order
to be used.

NOTE: Owners of 4040 or other dual drives should use the
Duplicate command which is internal to the drive,
since that command will perform a complete backup
in two minutes!

In general, the following instructions apply to all backup words:

Afdor Porgoting ATIZLEIIR ard

Prior to performing a backup, type HERE . to determine where the top of
the dictionary 1is currently. The dictionary must be below 17152
($4300) in order for a complete diskette copy to perform in five parts.
If less space is available the copy will be divided into six or more
parts. The following example will set up the dictionary and buffers

and load the backup utility from the master diskette:

12 SUPER-FORTH 64 (TM)

Implementation Specific Words
Using the source code side of the disk type

FORGET ASSEMBLER { MAKE ROCM FOR 5 PART BACKUP)
112 LOAD (LOAD IN SINGLE DRIVE BACKUP)
MAX-BUFFS (SET UP MAX # OF BUFFERS)

For users with two disk drives, perform 111 LOAD instead of 112 LOAD.
If you intend to use this wutility often, it will probably pay to save
the system using SAVE-FORTH. The single drive backup will prompt the
user when source and destination diskettes should be inserted in the
drive. The backup procedure will take approximately 20 minutes.

You must use a formatted diskette to perform the backup to (see section
titled "Getting Started"). Place your diskette to be copied in the
drive and type:

BACKUP

If you are using the single drive utility you will be prompted when it
is time to place a different diskette in the drive.

Since FORTH uses sector reads and writes, this utility can be used to
copy either a FORTH format disk or a standard C64 format disk.

5.6.7.1 BACKUP : Complete Diskette Backup Utility

(===)

Utility which can be used to perform a complete backup of one diskette
to another diskette. The backup may be performed either using a single
disk drive or two drives. Since a complete diskette contains 170k
bytes and there are at most 41k bytes available for buffer space a full
disk copy must be performed in at least five parts.

5.6.7.2 COPYBUF : Copy Up to #BUFF Screens

{ FLAG END START ~--~)

This routine is used to copy screens from STARTing screen number to
ENDing screen number + 1 to a second diskette.

If FLAG is 1, the three sectors which cannot be addressed by screen
number are also copied. If FLAG is 0 they are not copied.

In general this routine will be called by PCOPY and need not be called
directly by the user. There are two versions of COPYBUF. The single
drive version 1is loaded from screen #112. The two drive version is
loaded from screen #111.

73 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.7.3 PCOPY : Perform A Partial Disk Backup
(FLAG START END ---)

This routine is used to specify the starting and ending screens to be
spanned for a partial disk backup. If FLAG is 1, the three sectors
which cannot be addressed by screen number are also copied. If FLAG is
0 they are not copied. PCOPY is invoked by BACKUP and SOURCE-BACKUP to
copy a complete diskette or Jjust the source code area of the master

diskette, respectively.

5.6.7.4 SOURCE-BACKUP : Perform A Backup Copy of Source

This word may be used to backup only the source code section of the
master diskette.

5.6.8 D2* : Double Word Mult. By Two
(D -—- D*2)

This word implements a fast double precision multiply by two by
performing a left shift of the value D.

Example:

1234. D2* D,
Results in the value 2468 being displayed.

5.6.9 DECOMPILE : Source Decompiler Utility
(===) [namefield)

This word is wused to decompile a definition from the dictionary. 1In
this way the user can determine the components of a definition without
having the source code available. DECOMPILE is set up to enable
decompiling of the called definition by using the SPACE bar to step
through its components, or decompiling the components themselves by
using RETURN to thread through the components.

Example : ~DECOMPILE SETLFS would allow the user to decompile the

SUPER FORTH 64 word SETLFS to examine its components. Multiple
depressions of the SPACE bar will perform the decompilation,

74 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.10 DIR : Display Disk Directory

{(—=)
Causes the Commodore DOS file directory to be displayed from the
diskette in the drive whose device number is in SYSDEV. The directory
itself is loaded into the PAD area.

This word incorporates the PAUSE feature: a single keystroke will pause
the directory display- another single keystroke resumes it, or a double
keystroke aborts it.

5.6.11 DOS : Send A Command To the Disk

(ADDR -—-)
This word is used to send a DOS command to the disk. It opens the
command channel, sends the command string located at ADDR to the disk
at SYSDEV and closes the command channel.

Using the immediate string word, ", will leave the proper address. All
of the commands listed on page 41 of the 1541 User's Manual may be sent
using this word.
Example:
" NO:SUPER FORTH 64,64" DOS
This example will cause the DOS "NEW" command to be sent to the
disk, causing the disk to be formatted.

5.6.12 DOSERR : Read and Print the Disk Error Channel

(=)
Displays the disk error channel. If an error has occured, performs a
disk init.

5.6.13 DUAL : Dual Drive Specifier

{ FLAG ———)

This word is used to specify to the system that a 4040 type dual drive

is being used. Flag is ON for a dual drive and OFF for a non-dual
drive. The system initially assumes a non-dual drive.

75 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.14 MAX-BUFFS : Re-configure System For Maximum Buffers
Invoking MAX-BUFFS will automatically allocate all available dictionary

space for use as buffers. This may be useful before performing a
BACKUP to to set up an editing system under File Mode.

5.6.15 OFF : Leave Constant Zero On Stack

(=== 0)

This word may be used to symbolically represent a 0 condition.

5.6.16 ON : Leave Constant One On Stack
(-=- 1)

This word may be used to symbolically represent a 1 condition.

5.6.17 PATCE : Patch Memory
(SADDR --- EADDR+1)

This word may be used to enable easy entry of patches. The wo:d is
used as follows:

<patch-addr> PATCH <cr>
Pl p2 p3 p4 p5 ... <cr>

where <patch-addr> is the starting address to patch and Pl, p2 etc. are
byte values to be entered starting at <patch-addr>. Up to 80
characters of patches may be entered for a single PATCH command. PATCH
leaves on the stack the address of the next location to be patched
(EADDR+1), so a follow-up call to PATCH will start patching where the
previous call left off. The final call should be followed by a DROP.

Example:

HEX 8000 PATCH
0123456789ABCDETFI1011 12 13 14 15 16 17
PATCH

18 19 1A 1B 1C 1D 1lE 1iF

DROP DECIMAL

This example will set locations $8000-$801F to values 0-S1F. Note,

if the patches fit on a single 80 character input line the
second PATCH call would not be needed.

76 SUPER-FORTH 64 (TM)

)

Implementation Specific Words

5.6.18 RDTIM : Read the 60 Cycle Clock
(-—- D)

Returns the value of the system 60 cycle clock as a double word value
Dl

Example:

: TEST 1000 0 DO LOOP ;
RDTIM TEST RDTIM DSWAP D- D.
The second line is used to time the number of clock ticks (1/60's of

a second) it requires to execute the TEST definition.

5.6.19 RECURSE : Call A Definition Recursively

(===

Used within a definition to invoke a recursive call, that is, a call to
the definition which is being defined. Care must be taken within the
word to allow an end to the recursion, otherwise the program will end
up in an "endless" loop which will probably result in the parameter
stack being quickly used up! This word may appear in other systems as

RECUR or MYSELF.
Example:

: FACTOR (N ---)
?DUP IF
DUP. 1- >R 1 M*/ R> RECURSE

ELSE D. THEN ;
: FACTORIAL (N ---) 1. ROT FACTOR ;
12 FACTORIAL

This example defines a simple recursive word which calculates and
displays the factorial of an integer between 1 and 12,

5.6.20 SETTIM : Set the 60 Cycle Clock

(D -)

Sets the system 60 cycle clock with the double precision value D.

Example:

TEST 1000 0 DO LOOP ;
0. SETTIM TEST RDTIM D,
The second line is used to time the number of clock ticks (1/60's of
a second) it requires to execute the TEST definition.

77 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.6.21 SWAPIN : Swap Kernel ROM & I/O Area In
(===
Swaps the C64 Kernel ROM and I/O Memory Map Area back in and re-enables

interrupts. Must be used after SWAPOUT is used prior to calling any
C64 Kernel routines.

Example:
HEX SWAPOUT D000 1000 FILL SWAPIN DECIMAL

would zero out the 4K RAM area underneath the I/O Memory Map Area.
Interrupts would not occur wuntil the FILL was finished and
SWAPIN was invoked.

5.6.22 SWAPOUT : Swap Kernel ROM & I/O Area Out
(===)

Disables all interrupts (including NMI) and swaps out the €64 Kernel
ROM and I/0 Memory Map Area, making available the RAM underneath for
use by the FORTH system.

Note: SWAPIN must be used before attempting to use any words which
call any C64 Kernel routines or use the I/0 registers. . If
SWAPIN is not used the FORTH system is not likely to run
correctly.

Example:
HEX SWAPOUT DOOO 1000 FILL SWAPIN DECIMAL
would zero out the 4K RAM area underneath the I/O Memory Map Area.

Interrupts would not occur wuntil the FILL was finished and
SWAPIN was invoked.

5.6.23 SYS : Call Machine Langquage Routine
{ .A .X .Y ADDR --- .A .X .Y STATUS)
Word used to interface with machine language sub-routines which are
external to the FORTH system {such as (&4 Kernel routines).
-A .X .Y are values which will be loaded into those 6510 registers
prior to performing a JSR to the routine located at ADDR. Upon return
from the routine all registers and the processor status word are
returned on the parameter stack. '

The called routine must end with a RTS to return to the system and the

78 SUPER-FORTH 64 (TM)

Implementation Specific Words

hardware stack must be left in the same condition as when the routine
was first called.

Example:
1 2 3 32768 SYS . . .
sets hardware registers .A=1, .Xx=2 and .Y=3 before calling the
machine language routine at address 32768 ($8000). Upon return

from the called routine, the values of the processor status, .Y,
-X and .A are sent to the current output device.

5.6.24 SYSCALL : Call Machine Language Routine

(A .X .Y ADDR ~—-)

An alternate to SYS which does not return anything on the stack when
the call is finished.

Example:
1 2 3 32768 SYSCALL

sets hardware registers .A=1, .X=2 and .Y=3 before calling the
machine language routine at address 32768 ($8000).

5.6.25 TRACE
{ FLAG ---)

Turns on or off the tracing variable, TFLAG based on FLAG. If FLAG 1is
ON (1), then tracing 1is set on. If FLAG is OFF (0), then tracing is
set off (see Tracing).

5.6.26 Tracing Forth Definitions

(===

These words must be loaded in to be used. The ":" command is re-
defined so that any words which are defined after loading the tracing
routines will cause the name of the command to be printed along with
the contents of the stack {see Appendix Vii).

To control tracing, a word has been defined, TRACE, which turns on or
off tracing mode. During compilation of definitions, if TFLAG is set
ON (1), the word will be compiled with the trace option. If TFLAG is
set OFF (0), the word will be compiled without the trace option. Thus,
by invoking ON TRACE or OFF TRACE before loading a definition tracing
may be selectively enabled.

79 SUPER-FORTH 64 (TM)

Implementation Specific Words

During execution if TFLAG is set ON the words which were compiled with
the trace option will be traced, that is, the following will occur:

1. The name of the traced word is displayed.
2. The contents of the stack is displayed (according to the setting

of .SS [see also .S}).
3. Tracing pauses and waits for the user to depress any key to

continue.
If TFLAG is set OFF during execution no tracing will occur.

Note: When loading the screen with the trace routines,
the message NOT UNIQUE will print out, reminding
the user that a word (in this case, :) 1is being
redefined. It is simply an informative message!

Example:
98 LOAD (LOADS TRACE WORDS IN)
OFF TRACE
: TEST1 ." --TESTl-- " CR ;
ON TRACE (TURNS TRACING ON)
: TEST2 TEST1 ." --TEST2-- " CR ;
: TEST3 TEST2 ." --TEST3-- " CR ;
OFF TRACE (TURNS TRACING OQFF)
: TEST4 2 0 DO I TEST3 LOOP ;
TEST4 DDROP { TRACING IS OFF)
ON TRACE (TURN ON TRACE DURING EXECUTION)
TEST4 DDROP (TRACING IS ON)

The above example will cause tracing of words TEST2 and TEST3, but not
TEST1 or TEST4 while tracing is set to occur.

5.6.27 VLEN : VLIST Line Length Variable

(--- ADDR)

Variable which controls the length of the VLIST line. Initially set to
40 for printing to a 40 column screen.

5.6.28 VLIST : List Vocabulary Words

(===

List the word names of the CONTEXT vocabulary starting with the most
recent definition. Use VLEN and VTAB to determine line length and
column formatting when outputting the vocabulary list.

This word incorporates a PAUSE feature, by which pressing any key will
freeze the display. Once suspended, the VLIST my be resumed by a

80 SUPER-FORTH 64 (TM)

Implementation Specific Words

single keystroke, or aborted by striking any two keys in rapid
succession.

5.6.29 VTAB : VLIST Tab Length Variable
(--- ADDR)

Variable which controls the length of tabs which denote columns during
a VLIST printout. Initially set to 13 {(three columns on a 40 column
screen).

5.6.30 WAIT : Pause N Clock Ticks
(N -—)

Causes the system to pause until N clock ticks (1/60's of a second)
have passed. Even multiples of 60 will wait an even number of seconds.

Example:
." TESTING... " 5 60 * WAIT ." THE WAIT FUNCTION" CR

This example causes the system to pause five seconds in between
printing out the messages.

5.7 Graphics Related Words

The following graphics primitives have been defined in order to give
the wuser a basis with which to write graphics routines. They are
designed to take some of the pain out of dealing with the VIC-II
graphics chip at the lowest level.

Words which start with the prefix "B-" are bitmap (hi-resolution)
graphics related words. These words should only be used in bitmap mode
because they may produce undesirable results. They can't be used in
the normal mode because the character screen is used to determine
colors in bitmap mode. Also, the 8K bitmap screen area may fall in an
undesirable place (such as in the middle of your FORTH program) if you
simply start using the bitmap words without being sure of where the
bitmap resides.

Therefore, I recommend that prior to experimenting with any of these
words you first set up the bitmap area in a known place (this is easily
accomplished using BITMAP) and set up a word to restore things to a
known useable state. Warm starting should get the system back to a
useable state.

Words which start with the prefix "S-" are sprite related words. These
words use the contents of the variable SPRITE to determine which sprite

81 SUPER-FORTH 64 (TM)

Implementation Specific Words

they should act upon, therefore SPRITE must be set up with a sprite
number (0-7) before using any of these words. The sprite referenced by
the contents of SPRITE is referred to as "the active sprite". The
words S1, S2, S3, S4, S5, S6, S7 and S8 are provided to automatically
set one of the eight sprites as the active sprite (Refer to the
Commodore 64 Programmers Reference Guide and Commodore 64 Graphics &
Sound Programming listed in Appendix VIII).

Sprites may be entered into the system in one of two ways: The Sprite
Editor word, S-EDITOR, may be used to design a sprite on the display
screen. This word automatically moves the sprite data for the newly
created sprite into the dictionary. Raw data (such as output £from an
external sprite editing program or from BASIC DATA statements) may be
entered by using the sprite defining word, S-DEF to create the
definition and load the sprite upon execution. (see S-DEF in the Data
Structures section).

The cursor color may be changed from the keyboard by depressing the
proper key sequence for chosing a. cursor color (see Commodore User's
Guide- "Printing Colors", p.56). The cursor color may be changed under

program control by EMITting the character code of the color, This can
be done directly (such as 28 EMIT to turn the cursor red) or within a
." string:
Example:
BLUE-CHARS ." {Ctrl-?}THIS IS A VERY BLUE STRING" CR ;

: DIFF-CHARS ." {ctrl-3}BUT THIS {ctrl-6}STRING CHANGES" CR ;

BLUE-CHARS (DISPLAY BLUE STRING)

DIFF-CHARS (DISPLAY RED & GREEN STRING)

{ckey-4} (RETURNS TO DEFAULT CURSOR)

The following is a graphics example intended to provide the user with a
basic wunderstanding of graphics command usage. Refer te the
appropriate sections for details of particular words.

first "prepare" the system for hi-res usage. The following example
provides a complete step-by-step description of a simple hi-res pattern
routine. It may be entered as a defined word, or interactively so that
you can see the effect of each word as it is entered.

First we will define some generally useful words for working in the hi=-
res (or bitmap) graphics mode. Comments (WORDS IN PARENTHESIS, LIKE
THESE) need not be entered if you are working interactively at the
display. If you set up source screens however, {see section on Editing
to do this) I highly recommend including them.

82 SUPER-FORTH 64 (TM)

)

Implementation Specific Words

{ SET UP A WORD TO PUT US INTO BITMAP MODE)

: GRAPHICS (--=—)
7 BITMAP (SWITCH VIDEO TO BANK 2 UPPER [$E000])
22 D-SPLIT (SET UP SPLIT GRAPHICS SCREEN)
PAGE (CLEAR TEXT SCREEN)
0 22 D-POSITION ; (POSITION CURSOR IN TEXT AREA)
(SET UP A WORD TO GET US BACK TO NORMAL)
: NORMAL (——-)
MED.GRAY BORDER (MAKE BORDER GRAY)
OFF D-SPLIT ; (SWITCH US BACK TO NORMAL SCREEN)

GRAPHICS and NORMAL allow us to switch back and forth easily between
the bitmap area which we want to use and our normal viewing area.
Using a "split-screen" method, when we invoke GRAPHICS the screen will
be partitioned into two areas: The hi-res graphics area will lie
between lines 0 and 21. The text area will lie between lines 22 and
24. Using this method, we can enter commands interactively in the text
area and watch them execute in the graphics area.

Okay, we're ready to start, but first type GRAPHICS from the keyboard.
On the screen we see a nice clean bitmap area, right? Wrong. There is
probably an interesting stripped pattern on the display in place of all
our nice FORTH words.The problem is that more SUPER-FORTH words must be
used to initialize the bitmap area before we can work with it. Lets
create another definition which will initialize the graphics screen
properly for us:

: B-INIT
GRAPHICS (MAKE SURE WE ARE IN BITMAP AREA)
RED CYAN B-COLOR-FILL (INITIALIZE BITMAP COLORS)
BLUE BORDER (SEE THE PRETTY BLUE)

0 B-FILL (CLEAR BITMAP AREA)
B-DRAW ; (SPECIFY DRAW MODE)

Now type: B-INIT. This initializes the bitmap area.

I use B-INIT in the graphics examples under the descriptions of each
word to insure that you are 1in bitmap mode before executing. I've
chosen RED and CYAN as the bitmap colors, and BLUE for the border, but
you can choose your own colors.

B-FILL fills each bitmap character position with a byte wvalue. Try 63
B-FILL, You will see a striped pattern. If you are not in bitmap mode
you must be sure to use GRAPHICS first to 1insure that you are in the
correct bitmap area, ctherwise B-FILL is likely to fill the first 8000
bytes in memory, and guess what's there? That's right- your SUPER-
FORTH system! Performing hi-res graphics commands on your system is a
sure way to crash it (crash is a term sometimes used to describe a
computer system which acts like it has run into a brick wall at 300
m.p.h.). However, I digress...

83 SUPER~-FORTH 64 (TM)

Implementation Specific Words

B-DRAW specifies to the graphics system that we want to "draw" on the
screen (as opposed to ‘"erasing" things from the screen). After
entering 0 B-FILL we have a nice, clean CYAN colored screen again.
First one more definitions to help clarify the drawing:

{ PUT X & ¥ COORD. OF THE SCREEN CENTER ON STACK)
: CENTER 160 100 ;

Since we will be working around the center of the screen, CENTER will
help us to remember what we are doing.

We will now proceed to plot several curves and lines which will impress
your friends, neighbors and make you the envy of your BASIC programmer
acquaintances. You can :enter the following command lines as a
definition and sit back and watch it draw, but I think it's more
interesting typing them in interactively while in graphics mode to see
the effects of each line:

SHOULD GET A DOT IN CENTER OF SCREEN)
CIRCLE OF RADIUS 80 AROUND CENTER)
SMALL HORIZ. ELLIPSE)

LARGE HORIZ. ELLIPSE)

LARGE VERTICAL ELLIPSE)

DEFINE CENTER OF ARC AT LOWER LEFT)
ARCS "HOLDING UP" CIRCLE)

DEFINE CENTER OF ARC AT LOWER RIGHT)

CENTER B-PLOT

CENTER 80 CIRCLE
CENTER 20 4 ELLIPSE
CENTER 80 16 ELLIPSE
CENTER 20 60 ELLIPSE
0 199 M-ORIGIN

152 76 270 360 ARC
319 199 M-ORIGIN

152 76 180 270 ARC

0 0 B-PLOT

CENTER B-LINE

319 0 B-LINE

START LINE AT UPPER LEFT CORNER)
LINE TO CENTER)
LINE TO UPPER RIGHT CORNER)

Just for fun, let's get a sprite involved in this. We have two
sprites defined for the DEMO program, s$0 we can just borrow one of them
for this example:

MUST BE NORMAL TO USE DISK)
LOADS IN SPRITE SCREEN)

GRAPHICS RETURNS TO GRAPHICS SCREEN)
49152 DRAGON1 MOVE SPRITE TO BANK 3, SPRITE 0)

NORMAL (
{
i
S1 0 S-POINTER (SPECIFY SPRITE POINTER 0 FOR SPRITE S1)
(
{
{
(
{

91 LOAD

ON S-ENABLE ENABLE THE SPRITE)
170 70 S-POSITION MAKE IT VISIBLE)

ON S-XEXP EXPAND THE CRITTER HORIZONTALLY)

YELLOW S—COLOR TURN IT YELLOW)

ON S-MULTI A MULTI-COLCRED DRAGON!)
By experimenting with repetitively calling the graphics words, while
changing the values, interesting patterns may be discovered. Here is
one such pattern. It is simply a series of concentric circles being
drawn:

84 SUPER-FORTH 64 (TM)

Implementation Specific Words

: SHIELD
60 1 DO
160 100 I CIRCLE
LOOP ;

B-INIT
SHIELD
NORMAL

Well, thats the basic idea. I recommend just experimenting around,
interactively changing things for a while to get the hang of the
various graphics words. . Also, go through the examples given with each
graphics word definition. If you're curious you might want to take a
look at the screens that implement DEMO and see if you can follow how
the animation is done (if you can follow the recursive algorithm you
can explain it to me). Refer to Appendix I for other program examples.

5.7.1 'BANK : Get Address of 16K Bank
(——— ADDR)

Leaves the address of the 16k bank which the VIC-II chip has access to
(this will be one of the following : 0, 16384, 32768, 49152). When the
system first comes up the VIC-II chip is set to look at the lowest 16k
of RAM (0-16383).

Example: 'BANK . <cr> will print out the current address of the 16k
bank.

5.7.2 'BITMAP : Get Address of Bitmap Area
(-—- ADDR)

Leaves the address of the 8k Bitmap area which is used when the VIC-II
chip is put into high resolution graphics (bitmap) mode (this will be
one of the following : 0, 8192, 16384, 24576, 32768, 40960, 49152,
57344). Also see BITMAP.

Example: 'BITMAP . <cr> will print out the current address of the
high resolution bitmap area.
5.7.3 'CHARBASE : Get Address of Character Memory
(~—— ADDR)

Leaves the base address of the Character Memory area which the VIC-II
chip looks at to get its character set information. There are 32
possible areas where the character set may reside, from 0 to 63488 in
2k (2048 byte) intervals. 1Initially, the character memory is set to
4096 (or 6144 depending on which character set is being used).:

85 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example: 'CHARBASE ., <cr> will print out the current address of the
character memory area.

5.7.4 'SCREEN : Get Address of Screen Memory
(-—— ADDR)

Leaves the base address of the Screen Memory area which the VIC-II chip
loocks at to perform character mappings for output to the screen in
character mode, or gets color information from in bitmap (hi-res) mode.
There are 64 possible areas in which Screen Memory may reside, from 0
to 64512 in 1k (1024 byte) intervals.

Example: 'SCREEN . <cr> will print out the current address of the
screen memory area.

(HR VR START END ---)

This word invokes M-PLOT to draw an arc (part of an ellipse) on a hi-
res screen. The arc is defined in terms of the ellipse which it is a
part of: the center coordinates are taken from the values of M-X and M-
Y. HR is the horizontal radius, VR is the vertical radius. START,END
are the start and end points of the arc in degrees where 0, 90, 180,
270 degrees would point east, south, west and north in compass points.

Example:

B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
200 110 M-ORIGIN (DEFINES CENTER OF ARC)

90 90 150 300 ARC (DRAW ARC)

NORMAL (SEE INTRO)

This example draws a 150 degree arc from 150 to 300 degrees of an
ellipse whose X and Y radii are both 90 and whose center is at
200,110.

5.7.6 B-CLINE : Plot A Color Line On the Bitmap
(X-NEW Y-NEW ---)

Plots a color line in bitmap mode. The line is plotted from the last
plotted point to the coordinates specified by X-NEW and Y-NEW, where X-
NEW ranges from 0 to 319 and Y-NEW ranges from 0 to 199.

The color of the line 1is set by the Turtle Graphics word, PENCOLOR.
Draw/erase mode determines whether the points are turned on or off
{line drawn or erased). To erase a drawn line the erasing 1line must
follow the same path as the original drawn line.

86 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.7 B-CPLOT : Plot A Color Point On the Bitmap
(XY -~)

Plots a point in the bitmap area. The color of the point is set by the
Turtle Graphics word PENCOLOR. See B-PLOT for details.

5.7.8 B-COLOR : Select Bitmap Character Colors
(POS HI-COLOR LO-COLOR =---)

Set the high and low nibble colors for a particular character position
in the bitmap character color memory (screen memory) area. POS is the
screen position the colors will control (0-999), HI-COLOR is the color
which will be used for bits which are on (1) in the character position,
LO-COLOR is the color which will be used for bits which are off (0) in
the character position.

Example:
B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
40 CYAN RED B-COLOR
NORMAL (SEE INTRO)

This example will set the first character position on line 2
(character 40) so that bits in that position that are off will
be red and bits which are on will be CYAN.

5.7.9 B-COLOR-FILL : Fill Bitmap Color Area
(HI-COLOR LO-COLOR —---)

Sets the Screen Memory area (which is used to determine color usage in
bitmap mode) to the given colors for all 1000 background locations.
The upper 4-bits of all Screen Memory locations is set to the value of
HI-COLOR. The lower 4-bits of all Screen Memory locations is set to
the value of LO-COLOR. A particular bits screen color will be set to
HI-COLOR if the bit is turned on (a 1 value) or LO-COLOR if the bit is
turned off (a 0 value).

Example:
B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
160 100 40 CIRCLE
NORMAL (SEE INTRO)

This example will fill the bitmap screen with red where bits are on
and yellow where bits are off.

87 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.10 B-DRAW : Set the System to Draw Mode

(=)

Stores a 1 into B-PEN, designating draw mode (turn on bits when
plotting). B-PEN is examined by B-PLOT to determine whether the point
to be plotted should be turned on (draw mode) or turned off (erase

mode). B-DRAW need only be invoked once for each set of points which
will be drawn. It need only be invoked again after B-ERASE has been
invoked.

3.7.11 B-ERASE : Set the System to Erase Mode

(=)

Stores a 0 into B-PEN, designating erase mode (turn off bits when
plotting). B-PEN is examined by B-PLOT to determine whether the point
to be plotted should be turned on (draw mode) or turned off (erase
mode). B-ERASE need only be invoked once for each set of points which
will be erased. It need only be invoked again after B-DRAW has been
invoked.

5.7.12 B-FILL : Fill Bitmap with Byte Pattern

{ VALUE -—-)

Fills the complete Bitmap area, character by character, with the byte
VALUE. Any value can be used, but generally it is expected that either
0 (which will set the bitmap area to all zeroes) or 255 (which will set
the bitmap area to all ones) will be used. Other values will cause the
bitmap to assume various striped patterns. '

Note : Even with the Bitmap completely cleared or set there may
appear to be random color patterns in the area unless B-COLOR-
FILL is used to specify the colors of character positions within
the area.

WARNING: The bitmap area must have been set up using BITMAP and
bitmap graphics should be turned on prior to using this word.

Example:
B-INIT (SEE GRAPHICS INTO FOR DEFINTION |
255 B-FILL { TURNS ON ALL BITS)
15 B-FILL (EVEN STRIPED PATTERN)
1 B-FILL { UNEVEN STRIPED PATTERN)
0 B-FILL { TURNS OFF ALL BITS)
NORMAL (SEE INTRO)

88 SUPER-FORTH 64 ({TM)

Implementation Specific Words

5.7.13 B-GRAPHICS : Turn Bitmap Graphics On/Off
(FLAG -~-)

If FLAG is ON (1) the C64 is set to Bitmap Graphics mode. The Bitmap
area should be set up by using BITMAP prior to attempting to actually
change any values in the area. If FLAG is OFF (0) the C64 is set to
Normal Graphics mode. BITMAP will probably have to be used to reset to
area 0 where the screen normally resides.

Example:
7 BITMAP ON B-GRAPHICS

will put the C64 into bitmap graphics mode and set the bitmap area
to area 7 (57344 [SE000]).

0 BITMAP OFF B-GRAPHICS

will reset the C64 to its normal screen mode.

5.7.14 B-LINE : Plot A Line On the Bitmap
(X-NEW Y-NEW ---)

This word is used to plot a line in bitmap mode. The line is plotted
starting from the last plotted point (set by B-PLOT or words such as B-
LINE, ARC, CIRCLE or ELLIPSE, which use B-PLOT) to the coordinates
specified by X-NEW and Y-NEW, where X-NEW ranges from 0 to 319 and Y-
NEW ranges from 0 to 199. Draw/erase mode determines whether the
points are turned on or off (line drawn or erased). To erase a drawn
line the erasing line must follow the same path as the original drawn
line,

WARNING: The bitmap area must have been set up using BITMAP and
bitmap graphics should be turned on prior to using this word.

Example: Draw a line from the origin to the center of the screen and
then erase it:

B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
B-DRAW (INVOKE DRAW MODE)

0 0 B-PLOT (PLOT ORIGIN POINT)

160 100 B-LINE (DRAW A LINE TO THE CENTER)

B~-ERASE (INVOKE ERASE MODE)

0 0 B-PLOT (ERASE POINT AT THE ORIGIN)

160 100 B-LINE (ERASE LINE TO THE CENTER)

NORMAL { SEE INTRO)

89 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.15 B-PEN : Draw/Erase Mode Variable
(-——— ADDR)

This variable is used by the graphics system to determine the mode of
hi-res drawing to be invoked by B-PLOT. If B-PEN is ON (1) DRAW mode
will be invoked. TIf B-PEN is OFF (0) ERASE mode will be invoked.

B-PEN is not normally directly invoked by the user since B-DRAW and B-
ERASE have been provided to set the value of B-PEN

Example:
B-DRAW 1 B-PEN ! ;

is the definition of the SUPER FORTH 64 word which puts the system
into DRAW mode.

5.7.16 B-PLOT : Plot a Point In the Bitmap
(X ¥ =)

This word is used to plot a point in the Bitmap area. If B-PEN ‘is ON
(see B-DRAW) the bit for the point is set to a 1 and the color of the
screen becomes the HI-COLOR for the character position which the point
resides in. If B-PEN 1is OFF (see B-ERASE) the bit is set to a 0 and
LO-COLOR is used to color the screen at that point.

X and Y are the coordinates of the point on a 320 by 200 grid where
point 0,0 is at the uppermost left-hand corner of the screen. X ranges
from 0 to 319. Y ranges from 0 to 199. Values for X and Y are
returned by invoking words B-X and B-Y. B-PLOT performs a bounds check
on ¥ and Y. B-X and B-Y are always updated, but the point is only
plotted if X falls within 0 to 319 and Y falls within 0 to 199.

If MULTI-COLOR mode has been set then every two points along the X-axis
will be used to determine which of four colors the two points will be
(see the Commodore Reference Manual for determining colors in Multi-
color mode).

The kernel is swapped out when plotting a point. Thus, bitmap 7 ($E000
- SFFFF can be utilized for bitmap graphics. This area does not
interfere with the dictionary area and is recommended for use.

Note: 1If bitmap area 7 1is to be wused, the default screen area
($C400) may interfere with the disk buffer area. Therefore, it
is recommended that The top of memory be moved below the screen
area. The following code will effect the change:

HEX C380 ' LIMIT ! CHANGE

30 SUPER-FORTH 64 (TM)

Implementation Specific Words

WARNING: The bitmap area must have been set up using BITMAP and
bitmap graphics should be turned on prior to using this word.

Example:
(TURN ON CENTER AND ORIGIN POINTS)
B~-INIT { SEE GRAPHICS INTRO FOR DEFINITION)
B-DRAW (SET DRAW MODE)
160 100 B-PLOT (PLOT POINT AT CENTER OF SCREEN)
0 0 B-PLOT (PLOT "ORIGIN"- UPPER LEFT CORNER POINT)
(TURN OFF CENTER AND ORIGIN POINTS)
B-ERASE (SET ERASE MODE)
160 100 B-PLOT (PLOT POINT AT CENTER OF SCREEN)
0 0 B-PLOT (PLOT "ORIGIN")
NORMAL { SEE INTRO)

5.7.17 B-X : Return X Coordinate Value

{ ——— VALUE)

This word returns the value of the X coordinate which is passed to B-
PLOT whenever a point is plotted. In this way other routines can
perform calculations based on the last plotted point.

5.7.18 B-Y : Return Y Coordinate Value

{ ——— VALUE)

This word returns the value of the Y coordinate which is passed to B-
PLOT whenever a point is plotted. In this way other routines can
perform calculations based on the last plotted point.

5.7.19 BANK : Set VIC-II Bank

(BANK# ---)

Sets up which 16k bank of memory the VIC-IT chip will look at for its
Bitmap, Screen and Character Memory areas. Bank addresses are as
follows:

Bank Decimal Hex
0 0 0000
1 16384 4000
2 32768 8000
3 49152 C000

This word is used by other graphics routines to set up the video bank.

Example:

91 SUPER~FORTH 64 (TM)

Implementation Specific Words

2 BANK sets the 16k area to 32768
0 BANK restores the normal video setting

5.7.20 BITMAP : Set BITMAP Area
(BITMAP-AREA# —--—)

Sets up the proper registers (CIA Bank and VIC-II Control) to put the
Bitmap in one of 8 areas as follows:

Bitmap Decimal Hex
0 0000
8192 2000
16384 4000
24576 6000
32768 8000
40960 2000
49152 coo00
57344 EQO0O

SoOnNneawNNEHO

Example:
23 D-SPLIT
7 BITMAP
0 D-SPLIT
will split the screen, set the bitmap area to 57344 and restore the
normal screen.
5:7.21 BORDER : Set Border Color
{ COLOR ---)

Word used to set the screen border c¢olor. COLOR is one of the C64
colors as defined by the Commodore User's Manual (see Color Constants).

Example: RED BORDER turns the border red.

5.7.22 BKGND : Set A Background Register Color
{ [REG#] COLOR ---)
Word used to set the screen background register color. COLOR is a Cé4
color as defined by the Commodore User's Manual (see Color Constants).
REG# is 0 to 3 for the particular background register. If a single
parameter is on the stack, ' background register 0 is assumed and the
parameter is used as the COLOR value.

Example: PURPLE BKGND will set the background to purple.

92 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.23 CHARBASE : Set Character Base Area
(CHARBASE-AREA# ---)
Sets the base address of the Character Memory area which the VIC-II
chip 1looks at to get its character set information. There are 32
possible areas where the character set may reside, from 0 to 63488 in
2k (2048 byte) intervals. Initially, the character memory is set to
4096 (or 6144 depending on which character set is being used).
CHARBASE-AREA# may range from 0 to 7 to span the 16k area accessible
from a particular bank (see BANK).
5.7.24 CIRCLE : Draw A Hi-res Circle
{ X YR -—)

This word invokes B-PLOT to draw a true circle of radius R and center
at X,Y. Circle is really a special case of ELLIPSE.

WARNING: The bitmap area must have been set up using BITMAP and
bitmap graphics should be turned on prior to using this word.

Example:
B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
B-DRAW 160 100 60 CIRCLE
NORMAL (SEE INTRO)

draws a circle of radius 60 around the center of the screen.

5.7.25 Color Constants

Each color is defined as a constant to ease using the colors. These
can be used in various commands requiring a color constant as input.
The following colors and their constant values (see Commodore User's
Manual) are defined:

BLACK 0 PURPLE 4 CRANGE 8 MED,GRAY 12
WHITE 1 GREEN 5 BROWN S LT.GREEN 13
RED 2 BLUE 6 LT.RED 10 LT.BLUE 14
CYAN 3 YELLOW 7 DK.GRAY 11 LT.GRAY 15

Either the constant name or its value may be used. Since naming the
constant causes its value to be compiled into the definition, execution
speed is not affected by using one or the other.
Example:
SINIT PURPLE BKGND 7 BORDER ;

83 SUPER-FORTH 64 (TM)

Implementation Specific Words

would define a word called SINIT which when invoked would set the
screen background to purple and the screen border to yellow.

5.7.26 COLOR-MEM : Address of Color Memory Area
(~—— ADDR)

A constant which leaves the address of the

color memory area on the
stack.

Example: COLOR-MEM U. will print 55296.

5.7.27 ELLIPSE : Plot A Hi-res Ellipse

(XY HR VR —~-)

This word invokes ARC to plot an elliptical shape on a hi-res screen.
X and Y define the center of the ellipse and are stored in C-X and C-Y

before calling ARC. HR and VR define the horizontal and vertical radii
respectively.

WARNING: The bitmap area must have been set up using BITMAP and
bitmap graphics should be turned on prior to using this word.

5.7.28 B-MFLAG : Turn Mirror Function On/Off
(-—- ADDR)

Variable containing the flag which determines whether M-PLOT should
mirror the point which it is plotting. If B~MFLAG contains a TRUE (1)
value, mirroring is on. If FALSE (0), mirroring is of€.

Example:
ON B-MFLAG !

Turns on the mirror function.

5.7.29 M-ORIGIN : Set the Mirror Origin
(XY ——-)

Sets M-X and M-Y to return X and Y

respectively when called by
mirroring routines.

94 SUPER-FORTH 64 {(TM)

Implementation Specific Words

5.7.30 M-PLOT : Plot A Four Point Mirror Image
(XY -—)
If B-MFLAG is true, then X and Y are offsets from a center coordinate

defined by the values of M-X and M-Y. The following four points are
plotted on the bitmap area:

M-X + X M-Y - Y
M-X - X M-Y + ¥
M-X - X M-Y - ¥
M-X + X M-Y + Y

In this way, fast mirror images may be plotted.

If B~MFLAG is false, then R-PLOT is called directly. ELLIPSE uses M-
PLOT to plot four quadrants simultaneously.

Example:
B-INIT { SEE GRAPHICS INTRO FOR DEFINITION)
ON B-MFLAG ! { SET MIRROR MODE)

160 100 M-ORIGIN

20 40 M-PLOT (MIRROR A POINT)

40 20 M-PLOT { DO ANOTHER)

¢ TEST 100 0 DO I I M-PLOT LOCP ;

TEST { "X" MARKS THE SPOT)
OFF B-MFLAG ! { TURN OFF MIRROR)
NORMAL (SEE INTRO)

5.7.31 M-X : X Coordinate of Mirror Center
{ ——= X-COORD)
Returns the value of the X coordinate of the point which is used by M-
PLOT as a relative origin for plotting four mirrored points arocund it
{see M-ORIGIN),
5.7.32 M-Y : Y Coordinate of Mirror Center
{ --— Y-COORD)
Returns the value of the Y coordinate of the point which is used by M-

PLOT as a relative origin for plotting four mirrored points around it
(see M-ORIGIN).

95 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.33 MULTI-COLOR : Set/Clear Multi-color Mode
(FLAG ---)

Sets/clears multi-color graphics mode based on the value of £flag. An
ON (1) value sets multi-color. An OFF (0) value clears multi-color.

Example:

ON MULTI-COLOR
Turns multi-color mode on.

5.7.34 R-PLOT : Plot A Point Relative To Center

(XY --=)

Plots a point relative to the center coordinates, M-X,M-Y. M-X is
added to X and M-Y 1is added to Y before calling B-PLOT to plot the
point. This routine is used by M-PLOT in order to implement plotting
four points relative to a center point.

Example:
B-INIT (SEE GRAPHICS INTRO FOR DEFINITION)
160 100 M-ORIGIN
20 40 R-PLOT
NORMAL (SEE INTRO)
5.7.35 S1, S2, S3, S4, S5, S6, S7, S8 : Set Active Sprite
Sets the active sprite as one of eight sprites.

Example:

S5 280 180 S-POSITION
ON S-ENABLE"

turns on sprite 5,

5.7.36 S-B-COLLISION : Get Spr-Bkgnd Ccllision Reg.

{ ——— VALUE)

Returns the value of the Sprite to Background Collision register. This
value can be checked to determine if any sprites have collided with the
background. Use of this word automatically clears the register. Refer
to Commodore Programmers Reference guide p.144,180 for usage of the
collision registers.

96 SUPER~FORTH 64 (TM)

Implementation Specific Words

Example:
S-B-COLLISION

displays the value of the register and clears it.

5.7.37 S~COLOR : Set Sprite Color
{ COLOR ---)
Set the color value of the active sprite to COLOR.
Example:
S1 280 180 S-POSITION
ON S-ENABLE
RED S-COLOR

enables sprite 1 and makes it appear red.

5.7.38 S-DEF : Sprite Definition Structure

(——) [63 sprite byte values]
(ADDR ---)

This structure is provided as an aid in handling sprite definitions.
The 63 bytes of sprite data follow the definition of the word. These
are compiled into the dictionary. At execution time the 63 bytes are
moved to the area located at ADDR (16-bit address).

Example:

HEX

S-DEF DRAGON1
01 ¢1 00 00 81 80
00 C1 cCO 00 E1 Co
0 Fl1 EO 00 FS 80
00 FF 00 00 FF FF
00 7F FE 00 3F F8
00 3F EO 00 3F 80
00 3C 00 00 78 00
00 FO 00 01 EO0O 00
06 60 00 Ic 70 00
38 38 00 70 1C 00
A8 2A 00

8000 DRAGON1 DECIMAL

This sprite example, taken from the DEMO program, compiles the data for
a sprite named DRAGONL intoc the dictionary. When DRAGON1 is invoked
the sprite data is moved to 32768 ($8000), the 0 sprite area in BANK 2.

97 SUPER-FORTH 64 (TM)

Implementation Specific Words

The data could be entered in decimal, but HEX notation is a closer
representation of the on/off bit patterns which make up a sprite. If
your screen listing editing format allows at least 23 lines (see Editor
section) the sprite data could be entered in binary. This may give a
more visual representation of the sprite itself.

Example:
40 ' C/L ! (CHANGE FORMAT TO 40 X 25)
100 LIST

SCREEN #100
0) (BINARY DRAGON ')

1) 2 BASE ! { SET BASE TO BINARY)

2)

21)
22)
23)
24)

S-DEF DRAGON3

00000001
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000001
00000110
00011100
00111000
01110000
10101000
DECIMAL

00000001
10000001
11000001
11100001
11110001
11111001
11111111
11111111
01111111
00111111
00111111
00111111
00111100
01111000
11110000
11100000
01100000
01110000
00111000
00011100
00101010

00000000
10000000
11000000
11000000
11100000
10000000
00000000
11111111
11111110
11111000
11100000
10000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Since S-DEF requires 63 numbers to be entered in the input stream it is
expected that usage of S-DEF will be within an editing screen.

5.7.39 S-EDITOR : Sprite Editor

spritename

(=)

single color sprite editor. When
named "spritename"

This word is provided as a simple,
"S-EDITOR spritename" is typed, a dicticnary entry
is created, and a grid of dots appears on the screen.

cursor movement keys and the space bar to
A carriage return signals SUPER FORTH that
drawn in the grid is transferred both to

To create a sprite, use the
change the dots to blanks.
you are finished. The image

98 SUPER-FORTH 64 (TM)

Implementation Specific Words

the dictionary area defined by "spritename", and to sprite pointer area
13 (location 832 on the first video bank).

The actual sprite will appear in blue next to the grid. The sprite can
be turned off by typing OFF S-ENABLE.

Example:

S5-EDITOR PICTURE (AN EASEL IS DISPLAYED)

{ DRAW SPRITE THEN CR)

B-INIT { SEE GRAPHICS INTRO FOR DEFINITION)}

(PLACE THE SPRITE, "PICTURE", INTO SPRITE AREA 0 QF BANK 2)
49152 PICTURE

NORMAL { SEE INTRO)

OFF S-ENABLE { TURN SPRITE OFF)

5.7.40 S-ENABLE : Turn Sprite On/Off
{ FLAG -——)

If FLAG 1is ON (1), turn active sprite on. If FLAG is OFF (0) turn
active sprite off.

Example:
S1 280 180 S-POSITION
ON S—-ENABLE
OFF S—~-ENABLE

Positions, enables and disables sprite 1.

5.7.41 S-FSET : Set/Clear Bit in Sprite Register on Flag
{ FLAG ADDR ---)
Sets or clears a bit in register at ADDR based on the active sprite
number. If FLAG is TRUE (1) the sprite bit is set. If FLAG isg FALSE
(0) the sprite bit is cleared. This is a utility routine used by the
system to handle sprite registers in the VIC-II chip.
5.7.42 S-MULTI : Set/Clear Multi-Color Mode for A Sprite
(FLAG ---)
Sets or clears the bit for the active sprite in the Sprite Multi-color
Mode register of the VIC-II chip. If FLAG is ON (1) the sprite bit is
set. If FLAG is OFF (0) the sprite bit is cleared. S-MULTIR should be
used to set the sprite multi color registers before using this word.

Example:

99 SUPER-FORTH 64 (TM)

Implementation Specific Words

ON S-MULTI

turns on multi-color mode for the active gprite.

5.7.43 S-MULTIR : Set Multi-Color Sprite Register Color
(COLOR REG# --—-—)

Sets one of the two Sprite Multi-color register to the given COLOR.
REG# is 0 or 1.

Example:
RED 0 S-MULTIR

sets multi-color register 0 for the active sprite to red.

5.7.44 S-POINTER : Set Sprite Pointer Number
(SPRITE-ADDR ---)
Sets the SPRITE-ADDR for the active sprite. Sprite addresses range
from 0 to 255. Each sprite address covers a 64 byte range, therefore
the 256 sprite addresses will allow sprites to be defined anywhere in
the 16k bank which the VIC-II chip is looking at.
Example:
0 S-POINTER
will set the sprite pointer for the active sprite to location 0
relative to the start of the current 16k bank.
5.7.45 S-POSITION : Set Sprite Position
(XY -—)

Sets the position of the active sprite to the specified X,Y¥Y
coordinates.

Example:

S1 ON S-ENABLE
100 100 S-POSITION

will position the active sprite to sprite coordinates 100,100.

100 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.7.46 S-PRIORITY : Set Sprite-Background Priority
(FLAG —-—)
Sets priority of active sprite according to FLAG. If FLAG is FALSE (0)
the active sprite takes priority over the background. If FLAG is TRUE
(1) the background takes priority over the sprite.
Example:

ON S-PRIORITY

gives the active sprite priority over the background.

5.7.47 S8-S-Collision : Get Spr-Spr Collision Reg.
(-—- VALUE)
Returns the wvalue of the Sprite to Sprite Cellision register. This
value can be examined to determine which, 1if any, sprites have
collided. Use of this word automatically clears the register.
Example:

5-S-COLLISION

prints the value of the register and clears it.

5.7.48 S-XEXP : Expand Sprite In X-Direction
{ FLAG ---)
Sets up the VIC-II chip to set the active sprite to expand/normal in
the X direction depending of the given FLAG. If FLAG is TRUE (1) the
sprite will be expanded. If FLAG is FALSE (0) the sprite will be
unexpanded.
Example:
ON S—-XEXP

expands the active sprite in the X direction.

5.7.49 S-YEXP : Expand Sprite In Y-Direction
{ FLAG ---)

Sets up the VIC-II chip to set the active sprite to expand/normal in

101 SUPER-FORTH 64 (TM)

Implementation Specific Words

the Y direction depending of the given FLAG. If FLAG is TRUE (1) the
sprite will be expanded. If FLAG is FALSE (0) the sprite will be

unexpanded.
Example:
ON S-YEXP

expands the active sprite in the Y direction.

5.7.50 SCREEN : Set Screen Display Area
{ SCREEN-AREA§ ---)

Sets the Screen Memory area which the VIC-II chip looks at to perform
character mappings for output to the screen in character mode, or gets
color information from in bitmap (hi-res) mode.

SCREEN-AREA# may range from 0 to 15, putting the display screen in one
of the 16 1k (1024 byte) areas accessible by a particular 16k bank.
Initially, the screen is located at area 1 (1024).

Note: If the screen area is changed, the screen editor must be
notified of the change. The following accomplishes this:

NEW-ADDR 256 / 648 C!

5.8 Turtle Graphics

These words follow the turtle graphics definitions of the Logo

language. The "turtle" in this system is a "virtual turtle", that is,
the turtle 1is not actually displayed, but the turtle words move and
change the direction of the invisible turtle. The Turtle Graphics

words may be intermixed with other graphics words, such as B-LINE, B-
CIRCLE or the various sprite control words.

The examples for each word should be followed to get the basic idea of
how to move the turtle. A more elaborate example of how to build
turtle word definitions follows. This example demonstates how to
create a complex design based on simple definitions.
First, let us create-a definition for drawing a hexagon. A hexagon may
be created by drawing six equal sides, turning 60 degrees after drawing
a side. Thus, the definition:

: HEXSIDE 40 FORWARD 60 RIGHT :
will draw one side and prepare for the next. Executing the following:

DRAW HEXSIDE HEXSIDE HEXSIDE HEXSIDE HEXSIDE HEXSIDE

102 SUPER-FORTH 64 (TM)

Implementation Specific Words
will verify that HEXSIDE can be used to draw a hexagon. The definition
for hexagon follows directly from HEXSIDE:

: HEXAGON 6 0 DO HEXSIDE LOOP ;
and DRAW HEXAGON can be used to verify HEXAGON.
Next, we can draw a geometric figure based on rotated hexagons. If we
leave the number of degrees to rotate as a parameter, we can create

many figures from the same definition:

HEXFIGURE (#DEGREES ---

360 0 DO (ROTATE FOR 360 DEGREES)
HEXAGON (DRAW A HEXAGON)
DUP RIGHT (ROTATE BY #DEGREES)

DUOP +LOOP DROP ;
Now try the following figures:
DRAW 120 HEXFIGURE
DRAW 60 HEXFIGURE
DRAW 30 HEXFIGURE

DRAW 15 HEXFIGURE
DRAW 3 HEXFIGURE

The same procedure may be used with other types of shapes to create
different geometric figures.

5.8.1 BACK : Move Turtle Backward
(N ---)

The turtle is moved N units in the direction opposite of HEADING,
drawing if the pen is down. May be abbreviated BK.

Example:
DRAW { INITIALIZE TURTLE SCREEN)
40 BACK (DRAW LINE SOUTH)
45 LEFT (TURN TURTLE TO FACE NORTHWEST)
40 BACK (DRAW LINE SOUTHEAST)

5.8.2 BACKGROUND : Set Background Color

{ COLOR ---)

Changes the turtle screen background to COLOR, Also changes any.
drawing on screen to present turtle pen color.

103 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example:

DRAW (INITIALIZE TURTLE SCREEN)

160 100 60 CIRCLE (DRAW A CIRCLE)

YELLOW PENCOLOR { CHANGE THE PEN TOQO YELLOW)

120 FORWARD { DRAW YELLOW LINE) _

PURPLE PENCQLOR { CHANGE PEN TO PURPLE)

YELLOW BACKGROUND (CHANGE BACKGND YELLOW & DRAWING PURPLE)
5.8.3 BG : Set Background Color

(COLOR —--)

Abbreviation for BACKGROUND. May be abbreviated BG.

5.8.4 BK : Move Backward
(N ===

Abbreviation for BACK.

5.8.5 CLEARSCREEN : Clear the Graphics Area

(=)

Erases anything drawn on the turtle screen. Leaves turtle in 1its last
position. May be abbreviated CS.

Example:
DRAW (INITIALIZE TURTLE SCREEN)
160 100 50 CIRCLE (DRAW A CIRCLE)
CLEARSCREEN { ERASES THE SCREEN)
20 BACK (DRAW A LINE FROM LAST TURTLE POSITION)

5.8.6 CS : Clear the Graphics Area

(=)

Bbbreviation for CLEARSCREEN.

5.8.7 DRAW : Initialize Turtle Screen

(—)

Sets up the Cb64 to perform turtle graphics. DRAW performs the
following functions:

134 SUPER-FORTH 64 (TM)

Implementation Specific Words

- Splits the screen into hi-res/text

- Clears the bitmap area

— Sets the turtle pen red

- Sets the hi-res background color to cyan
- Moves the turtle to its "home" position
- Sets the turtle pen to "draw" mode {down)

5.8.8 FD : Move Forward
(N -—-=)

Abbreviation for FORWARD.

5.8.9 FORWARD : Move Turtle Forward
(N -=-)

The turtle is moved N units in the direction of HEADING, drawing if the
pen is down. May be abbreviated FD.

Example:
DRAW (INITIALIZE TURTLE SCREEN)
40 FORWARD (DRAW LINE 40 UNITS NORTH)
45 RIGHT (SET HEADING NORTHEAST)
40 FORWARD { DRAW LINE 40 UNITS NORTHEAST)

5.8.10 FS : Set Graphics Screen

(=)
Abbreviation for FULLSCREEN.

5.8.11 FULLSCREEN : Set Graphics Screen

(=)

Enter turtle full screen mode- the complete screen is used for turtle
graphics. Does not affect any drawing on turtle screen. May be
abbreviated FS.

Example:
DRAW (INITIALIZE TURTLE SCREEN)
134 BACK (DRAW LINE TO BOTTOM GF SCREEN)
FULLSCREEN (ENTER FULL SCREEN MODE)

105 SUPER~-FORTH 64 (TM)

Implementation Specific Words

5.8.12 HEADING : Heading Variable

(-—— ADDR)
Variable which contains the current heading of the turtle (direction in
which it is pointed) in degrees. Headings of 0, 90, 180 and 270
represent north, east, south and west, respectively. HEADING is
automatically updated by rotation commands- RT, RIGHT, LT and LEFT.

Example:
DRAW SETS UP TURTLE SCREEN)
HEADING ? DISPLAYS "0", INITIAL HEADING)

CURRENT HEADING IS 20)
CURRENT HEADING IS 25)

20 RT HEADING
5 RT HEADING

ha® BLLV)

5.8.13 HOME : Position To Center of Screen

(=)

Puts turtle in its "home" position (in the center of the hi-res
screen).

Example:
DRAW (INITIALIZE TURTLE SCREEN)
160 100 60 CIRCLE (DRAW A CIRCLE)
HOME (PUT TURTLE BACK IN CENTER)
60 BACK { DRAW LINE TO CIRCLE FROM CENTER)

5.8.14 LEFT : Turn Left
(N ---)

Causes turtle to turn counterclockwise by N degrees. May be
abbreviated LT.

Example:
DRAW (SET UP TURTLE SCREEN)
20 FORWARD (MOVE TURTLE FORWARD)
90 LEFT (TURN LEFT 90 DEGREES)
20 FORWARD (MOVE TURTLE FORWARD)

106 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.8.15 LT : Turn Left
(N --=)

Abbreviation for LEFT.

5.8.16 TS : Set Text Screen
(===

Abbreviation for NODRAW.

5.8.17IEXTSCRE=EYN!Set Text Screen
(—)

Exit turtle screen- enter text mode. May be abbreviated ND.

Example:
DRAW { INITIALIZE TURTLE SCREEN)
80 FORWARD { DRAW A LINE)
TEXTESCREEN (RETURN TO TEXT SCREEN)

5.8.18 PC : Set Color of Pen
{ COLOR —---)

Abbreviation for PENCOLOR.

5.8.19 PENCOLOR : Set Color of Pen
{ COLOR ---)

Set the color of the turtle's "pen" to the value of COLOR. DRAW sets
the pen color to RED. May be abbreviated PC.

Example:
DRAW (INITIALIZE TURTLE SCREEN)
90 RIGHT 40 FORWARD (DRAW A RED LINE)

YELLOW PENCOLOR (CHANGE THE PEN TO YELLOW)
40 FORWARD (DRAW A YELLOW LINE)

107 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.8.20 PENFLG : Pen Variable

(——— ADDR)

Variable used to determine whether the pen is up (turtle does not draw)
or down (turtle draws foreground color). Set by PENUP and PENDOWN,

5.8.21 PD : Set Pen Down

(=)
Abbreviation for PENDOWN.

5.8.22 PENDOWN : Set Pen Down

(===

Sets the turtle pen to draw when the turtle 1is moved.

abbreviated PD.

Example:
DRAW (SETS UP TURTLE SCREEN)
20 FORWARD (DRAW LINE)
PENUP (SET PEN TO UP POSITION)
10 FORWARD (MOVE TURTLE BUT DON'T DRAW)
PENDOWN (SET PEN TO DOWN POSITION)
10 FORWARD (DRAW WHILE MOVING TURTLE)

5.8.23 PENUP : Set Pen Up

(=)

Sets the turtle pen to not draw when the turtle is moved.

abbreviated PU.

Example:
DRAW { SETS UP TURTLE SCREEN)
90 RIGHT { TURN EAST)
20 FORWARD (DRAW LINE)
PENUP (SET PEN TO UP POSITION)
10 FORWARD (MOVE TURTLE BUT DON'T DRAW)
PENDOWN (SET PEN TO DOWN POSITION)
10 FORWARD (DRAW WHILE MOVING TURTLE)

May be

May be

|08 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.8.24 PU : Set Pen Up
(==

Abbreviation for PENUP,

5.8.25 RIGHT : Turn Right

(N -)

Causes turtle to turn clockwise by N degrees. May be abbreviated RT.

DRAW (SET UP TURTLE SCREEN)
40 FORWARD { MOVE TURTLE FORWARD)
60 RIGHT (TURN RIGHT 60 DEGREES)
40 FORWARD { MOVE FORWARD)

5.8.26 RT : Turn Right
(N ---)

Abbreviation for RIGHT.

5.8.27 SETH : Set Turtle Heading
{ ANGLE --—-)

Abbreviation for SETHEADING.

5.8.28 SETHEADING : Set Turtle Heading
{ ANGLE ~--)

The ANGLE entered becomes the new HEADING of the turtle.
abbreviated SETH.

Example:
DRAW (SET UP TURTLE SCREEN)
3{) SETHEADING (POINT THE TURTLE TO 30 DEGREES)
20 FORWARD { DRAW A LINE OF 20 UNITS }

May be

109 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.8.29 SETX : Move To New X Coordinate

(XVALUE ---)

The turtle is moved horizontally to new X coordinate. A line 1is drawn
based on whether the pen is up (PENUP) or down (PENDOWN),

Example:
DRAW (SET UP TURTLE SCREEN)
20 SETX (DRAW HORIZ LINE TO X COORD. 20)

5.8.30 S8SETXY : Set X,Y Coordinate
(X ¥ -)

The turtle is moved to coordinate X,Y. Nothing is drawn.

Example:
DRAW (SET UP TURTLE SCREEN)
50 50 SETXY (MOVE TURTLE TO NEW COORDINATE)
20 FD (DRAW A LINE)

5.8.31 SETY : Move To New Y Coordinate

{ YVALUE ———)

The turtle is moved vertically to new Y coordinate. A line 1is drawn
based on whether the pen is up (PENUP) or down (PENDOWN).

Example:
DRAW (SET UP TURTLE SCREEN)
20 SETY { DRAW VERTICAL LINE TO Y COORD., 20)

5.8.32 SPLITSCREEN : Set Split Graphics/Text Screen

()

Enter turtle split screen mode. Does not affect turtle screen. May be
abbreviated SS.

110 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example:
DRAW { INITIALIZE TURTLE SCREEN)
60 FORWARD { DRAW A LINE)
YELLOW BACKGROUND (CHANGE BACKGROUND COLOR)
TEXTSCREEN ({ EXIT TURTLE SCREEN)
SPLITSCREEN (RE-ENTER TURTLE SCREEN)

5.8.33 SS : Set Split Graphics/Text Screen
(==

Abbreviation for SPLITSCREEN.

5.9 C64 Sound Related Words

As with the graphics extensions, these words are designed to ease
programming the SID (sound synthesizer) chip on the C64. The SID is a

fairly sophisticated sound generation device. In order to fully
explore 1its potential the wuser will need to learn something about
modern music synthesizers (upon which the chip is based). Refer to one

of the books on C64 Sound listed in Appendix VIII for detailed
information on sound synthesis and the SID chip.

These word descriptions assume a basic understanding of sound
terminology. The voice referenced by the contents of VOICE is referred
to as the "active voice". The definitions V1, V2 and V3 are provided
to automatically set the active voice.

‘The system has been designed to enable programming of additional SID
chips if the user should interface them to his system. If a multiple
chip system is available the wuser simple puts the base address of the
currently active chip into variable SID and the routines will use this
address to properly set up the registers in that chip.

Refer to the Appendix I for tutorial examples of sound word usage. v

5.9.1 ENV3@ : Fetch Envelope Value
{ ——— VALUE)
Returns the VALUE (0 to 255) of the oscillator envelope 3 output
register. This value can be used for envelope modulation effects by
adding it to input registers, such as voice freqency, filter frequency
or pulse width. -

Example: ENV3@ . will print the value of the envelope 3 output
register.

111 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.9.2 F-FREQ : Set Filter Frequency
(VALUE ---)
Set the filter frequency. VALUE ranges from 0 to 2047 (this is NOT a
frequency in Hz). The word makes the correct alignment adjustments
sets both the lo and high portions of the filter freqgency from VALUE.
The filter must be turned on in order to affect any voices.

Example: 800 F-FREQ sets the filter frequency value to 800.

5.9.3 MODEVOL : Set Mode/Volume
(MODE VOLUME -—-)

Sets the mode/volume register in the SID chip from the given values.
Both MODE and VOLUME range from 0 to 15. '

Example: 30FF HIGHFPASS OR 15 MODEVOL sets the mode to 12 (voice 3
off filter set to high pass) and the volume to 15.
5.9.4 NOTE@ : Fetch Note from NOTE-VALUES
(NOTE ---)
A primitive used by PLAY.NOTE to fetch a value from the NOTE~VALUES
table. NOTE ranges from 0 to 11 (C to B).
5.9.5 NOTE-VALUES : Table of Chromatic Note Values
(--— ADDR)
Table of 12 SID frequencies corresponding to the highest octave
playable by the SID chip. These values may be divided down to produce
the note in a different octave (see PLAY.NOTE).
5.9.6 0SC3@ : Fetch Oscillator 3 Value
(——- VALUE)
Returns the VALUE (0 to 255) of the oscillator 3 frequency output
register. This value can be used for frequency modulation effects by
adding it to input registers, such as voice fregency, filter frequency
or pulse width. ‘
0SC3@ can also be wused to generate random numbers by setting the
waveform of oscillator 3 to NOISE and using 0OSC3@ to read the digitized

noise output.

112 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example:

SOUND. INIT
V3 NOISE V-CTRL
65535 V-FREQ
: RANDOM-TEST
100 0 DO
0SsC3e
LOCP ;

INITIALIZE CHIP)

SET V3 FOR NOISE)

HIGHER FREQENCIES ARE BETTER)
PRINT 100 RANDOM #'S)

— —n

5.9.7 PLAY.NOTE : Play A Chromatic Note
(NOTE ---)

Plays a note from the chromatic scale. NOTE is a value from 0 to 95
corresponding to the chromatic scale as follows:

Decimal Base 12
Value Note Value
0 - 11 Co0 - BO 00 - OB

12 - 23 Cl - Bl 10 - 1B

24 - 35 c2 ~ B2 20 - 2B

36 - 47 C3 - B3 30 - 3B

48 - 63 C4 - B4 40 - 4B

60 - 71 €5 - BS 50 - 5B

72 - 83 C6 - B6 60 - 6B

B4 - 95 c7 - B7 70 - 7B

As can be seen from the table;, the values given 1in base 12 are much
more suited to playing notes than decimal- the “"twelves" digit
corresponds to the octave which the note 1is in and the ones digit
corresponds to the note within the octave as follows:

0 1 2 3 4 5 6 7 8 9 a B
C C¥# D D E F F§ G G# A A B

Thus, to .play a G5 vyou would use 57 PLAY.NOTE. This 1s one of the
handy features of FORTH- you can set the number base to suit your
needs. To set base twelve use the following: 12 BASE !. to get back
to decimal mode use DECIMAL.

The waveform to be played is taken from variable WAVE, which must be
set before using NOTE. SID control information must also have been set
up. SOUND.INIT will set default values for all three voices. Refer to
the sound example in the appendix.

Example:

113 SUPER-FORTH 64 (TM)

Implementation Specific Words

SOUND. INIT (INITIALIZE SOUND SYSTEM)
12 BASE ! { SET TO BASE 12)

48 PLAY.NOTE (PLAY A G#)

DECIMAL

This example 1initializes the sound system, sets the system number
base to 12, plays the G in octave 4, and resets the base to
decimal.

5.9.8 RESFILT : Set Resonance/Filter
(RESONANCE FLAGS ---)

Sets the resonance value and filter flags bits in the resonance/filter
SID register. Both RESONANCE and FLAGS range from 0 to 15.

Example: 13 FILT1 RESFILT sets the resonance to 13 and filtering
active for voice 1.
5.9.9 SID : SID Address Variable
(--- ADDR)
Variable in which is stored the address of the SID chip 1in current
usage. All SID register references are made as offsets into the area
addressed by this variable. Thus, by changing the SID address stored
here, a multiple SID chip system can be programmed using the same FORTH
SID words. It is initialized by SOUND.INIT to be the address of the
SID chip which comes in the C64 initially.
Example: SID @ . will print 54272 1in the initial system after
SOUND.INIT has been invoked.
5.9.10 SID! : Store Value into SID Register
(VALUE QFFSET —-—-)
Stores the byte VALUE (range 0 to 255) into the SID register OFFSET
(range 0 to 24) within the current SID area (address stored in variable
SID). This wutility, used by other sound routines, is generally not

used directly, but is available for use if desired.

Example: TRIANGLE 4 SID! sets volice 1 to a triangle waveform,

114 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.9.11 SID@ : Fetch Value From SID Register
{ OFFSET —--- VALUE)
Gets a byte value from the register OFFSET (range 0 to 24) in the SID

area referenced by the address stored in SID. This is a sound system
utility word.

5.9.12 SOUND.INIT : Initialize Sound System

(=)
Initializes the sound system for the SID chip whose address is stored
in the variable SID (initially 54272). Sets defaults for all voices
and leaves V1 as the active voice.
Example:

SOUND., INIT
48 PLAY,.NOTE

This example initializes the sound system and plays a fourth octave
c.

5.8.13 Sound Constants
The following constants are supplied (both with the system and as

supplemental screens) to ease use setting up the SID chip.

Voice Control Register Constants:

TRIANGLE 17 SYNC 3
SAWTOOTH 33 RESET 8
PULSE 65 RING 21
NOISE 129

Filter Constants:
LOWPASS 1 FILTL 1
BANDPASS 2 FILT2 2
HIGHPASS 4 FILT3 4
NOTCH 5 FILTEX 8
30FF 8

Misc:
QFF 0
ON 1

Calling the constant places 1its value on the stack. As with other
FORTH constants calling the constant by name will cause its value to be
compiled into the definition.

115 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example: TRIANGLE V-CTRL sets the active voice to a triangle
waveform.
5.9.14 V-AD : Set Voice Attack/Decay
(ATTACK DECAY --—-)

Sets the attack and decay characteristics of the active wvoice. ATTACK
and DECAY wvalues both range from 0 to 15.

‘Example: 12 5 V-AD sets a fairly long attack and a short decay for
the active voice.
5.9.15 V-CTRL : Set Voice Control Register
(MASK -—-)
Sets the control register for the active voice.
Example: TRIANGLE V-CTRL will set the control register with the

value for a gated on triangle wave (17). OFF V-CTRL will clear
the register.

5.9.16 V-DEFAULT : Default Settings of the SID Chip
(-)

This word activates default settings of the active voice. It is
provided mainly as an example of how to initialize the SID chip so that
a voice will "play" when a waveform is gated on.

Source code 1is provided (see source screens, Appendix II) and it is
expected that once the user understands the components of the word he
will probably want to use different settings of the various parameters.
Meanwhile, it is an easy way to set up the chip to play notes using
PLAY.NOTE. V-DEFAULT is invoked for all three voices by SOUND,INIT.

5.9.17 V-FREQ : Set Voice Fregency
(VALUE ---)
Sets the VALUE (ranging from 0 to 65535) into the frequency registers
of the active voice. Note, the split between hi and low byte is made
automatically. The frequency value is NOT a value 1in hertz. The

frequency range of each oscillator is between 0 and 4khz.

Example: V2 8000 V-FREQ sets the frequency of voice 2 to 8000.

116 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.9.18 V-PW : Set Voice Pulse Width

(VALUE ---)

Sets the pulse width value for the active voice. VALUE ranges from 0
to 4095. The value 1is automatically split wup and put into the two
pulse width registers.

Example: 2048 V-PW sets the pulse width for the active voice to a
square wave.
5.9.19 V-SSR : Set Voice Sustain/Release
(SUSTAIN RELEASE --~)

Sets the sustain and release characteristics of the active voice.
SUSTAIN and RELEASE values both range from 0 to 15.

Example: 15 5 V-SR sets the active voice sustain to 15 and release
to 5.
5.9.20 V! : Put Value in Active Voice Register
(VALUE OFFSET ---)
Sound system primitive which puts the given byte VALUE (0 to 255) into
the active voice register determined by adding OFFSET (0-6) to the base
address of the active voice in the SID area. This word is used by
other sound system words and is generally not directly invoked by the
user but is available for use if desired.
Example: If SID is 53272 and the active voice is V2 then the FORTH

statement: 100 2 V! would put the value 100 into the pulse width
register at 53281.

5.9.21 WV1,Vv2,V3 : Set Active Voice

(===
Sets the active voice to voice 1, voice 2 or voice 3.

Example: V3 400 V-PW sets the pulse width of voice three to 400.

117 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.9.22 VOICE : Active Voice Variable
{ -——— ADDR)

Variable which contains the number of the active voice - 1. V1, V2 or
V3 are provided to set the active voice, therefore this word is not
generally used directly.

Example: VOICE ? can be used to display the currently active voice,
where 0=V1, 1=V2 and 2=V3.

5.9.23 WAVE : Waveform Variable
(——— ADDR)

Variable used by PLAY.NOTE to determine what type of waveform to use to
play a note, It must be initialized by the user- either directly or
through use of V-DEFAULT,

5.10 Music Editor Words

Included in the system is a Music Editor. The Music Editor enables
users to enter music in up to three parts, either interactively or as
compiled FORTH definitions. The lower level sound extension words may
be intermixed with Music Editor definitions, Thus, the full
capabilities of the SID chip may be realized while using the Music
Editor.

The tempo to be wused is specified by storing a value in beats per
minute into the variable TEMPO. Prior to playing any notes of a piece
of music the song initialization word SONG.INIT must be entered to
reset the clocks for each voice. A voice is chosen by specifying one
of the voice words, V1, V2 or V3. A note is chosed by specifying what
octave it is in, what its duration will be and the name of the note (C,
C# or D, D, D# or E, etc.).

Example:
SOUND.INIT { INITIALIZE SID CHIP)
60 TEMPO ! (SET TO 60 BEATS PER MINUTE)
: MARY
SONG.INIT (INITIALIZE SONG)
04 (FOURTH OCTAVE)

1//8 EDCDEE 1/4 E
1/8 DD 1/4 D
1/8 EG 1/4 G ;

MARY

A simple one voice melody is played.

118 SUPER-FORTH 64 (TM)

Implementation Specific Words

To play multiple voices, enter the voices note in the sequence in which
it should be played. Notes for three separate voices will be heard as
being played simultaneously since separate note durations are kept for
each wvoice.

Example:

SOUND.INIT (INITIALIZE SID CHIP)

60 TEMPO | (SET TO 60 BEATS PER MINUTE)

: MARY1
SONG.INIT (INITIALIZE SONG)
04 { SET OCTAVE)
1/ VI EV2GV3B VIDV2FV3A VICV2EV V3G

VI DV2FV3A V1 EV2GV3B V1 EV2GV3B

1/4 V1 EV2 G V3 B
1/8 VI DV2FV3 A V1DV2FV3a 1/4 V1 DV2 F V3 A
1/8 V1 EV2G V3B V1 GV2BOS5 V3D
1/4 04 V1 G V2 B V3 05 D ;

MARY1

The simple melody is played in three voice harmony.

Music definitions can be "built" and programmed using FORTH. Phrases
can be repeated or transposed to other keys. In the next example I
will define a bass line then repeat it and transpose it to play a blues
bass:

SOUND. INIT
: ROOT 0 T! ; { SET ROOT)
: 4TH 5 T! ; (SET FORTH)
: 5TH 7 T! ; (SET FIFTH)
: BLUES (DEFINE 1 MEASURE)

02 1/8

CEGAA A AGE ;

C-BLUES

100 TEMPO !

V1 0 9 V-AD TRIANGLE WAVE !

SONG.INIT ROOT (START OUT IN C)

4 0 DO BLUES LOQOP 4 MEASURES IN C)

{

4TH BLUES BLUES { 2 MEASURES IN F)

ROOT BLUES BLUES (2 MEASURES IN C)

5TH BLUES { 1 MEASURE IN G)

4TH BLUES (1 MEASURE IN F)

ROOT BLUES BLUES (END IT IN C)

(O

This example displays several features of the Music Editor- it uses

program control over repeating a phrase (BLUES-RUN),
transposing, and sets sound parameters upon initialization of
the song.

119 SUPER-FORTH 64 (TM)

Implementation Specific Words

A harmonized melody can be programmed by defining an array which
specifies the scale, and calculating the harmony based on the scale.
For instance, 1let's say we want to harmonize a major scale. We can
enter the following definitions:

: SCALE-DEF { DATA STRUCTURE FOR DEFINING SCALES)
CREATE (EXPECTS B BYTES IN INPUT STREAM)
8 0 DO
BL. TEXT PAD NUMBER DROP C,
LOOP
DOES> + C@ ;

SCALE-DEF MAJOR 0 2 4 5 7 9 11 12

(PLAY A HARMONIZED CHORD GIVEN BASE NOTE)
: HARMONY (NOTE ---)

DUP V1 PLAY.WAIT (PLAY ROOT & WAIT GIVEN DURATION)
DUP 4 + V2 PLAY.WAIT (PLAY THE THIRD)
7 + V3 PLAY.WAIT ; { PLAY THE FIFTH)
{ NOW SET UP A HARMONIZED MAJOR SCALE)
: MAJ-SCALE
SONG.INIT
8 0 DO I MAJOR HARMONY LOOP ;
03 MAJ-SCALE (PLAY THIRD OCTAVE MAJOR SCALE)
04 MAJ-SCALE (PLAY FOURTH OCTAVE MAJOR SCALE)

This may appear to be an elaborate - setup, but using SCALE-DEF we can
set up any type of scale and play harmonies from it!

These examples should give you some ideas on the sorts of things which
can be accomplished using ‘the SUPER FORTH 64 Music Editor. You can
program sound effects, musical progressions, or just plain old three
part music, and the SID chip can be set to sound the same throughout a
song or re-programmed for every note in the song!

The source code for the Music Editor is provided as an example of how
to set up a system such as this using FORTH. The definitions are all
fairly simple and it is recommended hat the wuser examine the source
code both to gain an understanding of how a Music Editor is implemented
and to get ideas for extending the Music Editor even further. This is
one of the powers of FORTH- what would be a fixed utility in another
system is a growing entity under SUPER FORTH- if you want it to do
more, you MAKE it do more! A description of each of the Music Editor
words follows.

5.10.1 DURATION : Note Duration Variable

{ —-- ADDR }°
This wvariable is used to control the duration of a ncte. The duratiocn
value is set by one of the note duraticn words (see table below). How

120 SUPER-FORTH 64 (TM)

Implementation Specific Words

long in time a note plays is determined both by the note duration and
the setting of TEMPO. The word TRIPLET converts the duration value to
triplets of the last duration set by multiplying the duration value by
2/3. The last duration entered will be used for all notes until a new

duration is entered.

Musical Duration
Whole note

Dotted half note
Half note

Dotted quarter note
Quarter note

Dotted eighth note
Eighth note

Dotted sixteenth note
Sixteenth note
Thirtysecond note
Sixtyfourth note

The 60 cycle clock is used

FORTH Word

WHOLE
.1/2
1/2
.1/4
1/4
.1/8
1/8
.1/16
1/16
1/32
1/64

to determine durations, therefore, the

minimum duration of a note is 1/60 of a second.

Example:

SONG.INIT O4 1/4 CDEF 1/8 TRIPLET CDEFGABAGTFEC

This example plays four
eighth note triplets.

quarter notes followed by four sets of

5.10.2 NCALC : Calculate the Time for A Note Duration

(=)

This word calculates the time of the 60 cycle clock which would signal
the start of a new note for a particlar voice. The timer in NEXT.NOTE

for the active voice is updated.

The new time is based on the values

in DURATION and TEMPO. This word is called by PLAY.WAIT.

5.10.3 NEXT.NOTE : Timing For Next Note For Each Voice

(--- ADDR)

This array contains three double precision timers, one for each voice.
The timer for a voice is compared with the 60 cycle clock by READY to

determine whether it is time
The timers are set by NCALC.

to play a

note for a particular voice.
When NEXT.NOTE is called it returns the

address of the timing variable for the active voice.

SUPER~FORTH 64 (TM)

‘Implementation Specific Words

5.10.4 Notes : Play a Chromatic Note

These words are the main words used to play chromatic notes wusing this
Music Editor. The words are named for their musical equivalents, with
the exception that flats (Bb, Eb, etc.) are represented by the note
name suffixed with the British pound sign (B\, E\, etc.). The defined
notes are as follows:

CC# D\ DD§ E\ EF F# G\ G G¥ A\ A A B\ B
A word, TIE, has been defined to designate a note which should be
"tied" over the value in duration.
5.10.5 0@ : Fetch the Current Octave Value
(--- VALUE)
This word returns the value of the current octave. The value may be

used in computations.

5.10.6 O! : Set New QOctave Value

(=)

This .word is used by the octave setting words to set the value of the
current octave. An octave setting word (00, Ol ... O7) sets the octave
value to the PLAY.NOTE value of the first note in the octave. The
following table lists the values:

Octave Value
00 0
01 12
02 24
03 36
04 48
05 60
06 72
o7 84

5.10.7 PLAY.WAIT : Wait Until Ready and Play Note
(VALUE ---)
PLAY.WAIT waits until it is time to play the note for the active voice.
It then takes the note value which is on the stack, adds in the current

octave value and the current transposition value, plays the note, and
calls NCALC to calculate when the next note should be played.

122 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.10.8 SONG.INIT : Initialize Timers for Song

This word synchronizes the timers for all voices with the 60-cycle
clock and must be used once at the start of each piece of music which
is to be played.

Example:

SONG.INIT V1 WHOLE O3 C V2 04 1 /4 CEGE

5.10.9 T@ : Fetch Transposition Value
{ --- VALUE)
This word fetches the transposition value. It is called by PLAY.WAIT
to add the transposition value to the note value. It may be called by
the user for computations involving the transposition value (see T!).

5.10.10 T! : Set New Transposition Value

(VALUE ——)

This word sets the transposition value. This wvalue is added to each
note prior to playing the note. Thus, a phrase may be transposed in
key by changing the transposition value before it is played.

Example:
: SCALECDEFGABC ;
04 1/8
0 T! SONG.INIT SCALE { PLAYS C SCALE)
1 T! SONG.INIT SCALE { PLAYS C# SCALE)
2. T! SONG.INIT SCALE (PLAYS D SCALE)

5.10.11 TEMPO : Music Tempo Variable:
(-—— ADDR)
This variable is used to control the tempo of the music. TEMPO is set
in standard metronone "beats per minute", where a beat is the length of
time a quarter note will play. '
Example:
60 TEMPO !

sets a tempo of 60 beats per minute (one quarter note per second).

123 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.11 String Extension Words

The words in this section have been designed to enable the user to
manipulate strings wusing words which are similar to BASIC string
manipulation functions. 'All string extensions (except for immediate
strings) start with a dollar sign ("$") to enable instant recognition
as string creation or manipulation words. '

Strings in SUPER FORTH are data areas which are of the form:

length : 1 byte
characters : length bytes

A string area is allocated in the dictionary by either using the
$CONSTANT or $VARIABLE defining words. A string is created through use
of $CONSTANT (which adds a string to the dictionary) or " (which moves
a string to the PAD area for further use).

Strings are usually referenced by placing their starting address (the
address of the length byte) on the stack. Invoking a created string
data structure ' (one which has been defined using SCONSTANT or
SVARIABLE) leaves the string's starting address on the stack. The.
immediate string word " leaves the starting address of the string on
the stack.

Here is an example of building a string from various substrings using
the string manipulation words:

100 $VARIABLE WORK (SET UP A 100 BYTE STRING WORK AREA)
$CONSTANT STRING1 "TESTING"

WORK STRING1 S$CONCAT (MOVE "TESTING" INTO WORK AREA)

WORK " ONE, TWO, THREE. " $CONCAT

WORK STRING1 4 SLEFT (GET "TEST")

WORK WORK 8 4 SMID (GET " ONE")

WORK " ." S$CONCAT (ADD ".")

WORK . (PRINT OUT STRING IN WORK AREA)

TESTING ONE, TWO, THREE. TEST ONE. will print out on the screen.

The string words can be grouped into several categories: $VARIABLE
$CONSTANT and " are used to create strings or allocate room for
strings. $SCONCAT $CONCAT SLEFT $MID and $RIGHT are used to manipulate
substrings, $CMP $< $> and $= are used for string comparisons. SFIND
is used to determine the occurance of one string in another. S. SLEN
$VAL and $CLR are utility functions which enable printing, finding the
length, converting a numeric string to a 16-bit value and clearing a
string.

124 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.11.1 " : Create An Immediate String
(--- s1)
Allows user to create an immediate string (one with no permanent name
attached to it). The string is put into the PAD area and its starting
address is left on the stack. The string is entered using a quote as
the ending delimiter. Note, there must be a blank space after the
initial quote since the quote is part of the FORTH word.

This word can be used prior to any words which require a string address
to be left on the stack (such as DOS or OPEN).

Example: " THIS IS AN EXAMPLE" puts the string in the PAD leaving
its starting address on the stack.
5.11.2 "" : Create A Null String
(--- 51
Creates a "null" string (string of length 0) in the PAD area and leaves
its address on the stack. This word may be used as an argument to
another word which requires a string address on the stack, but for
which a null string is suitable.
Example:

127 4 0 "" OPEN

opens a channel to a printer.

5.11.3 $. : Display A String
(81 -—-)

Sends the string whose starting address is on the stack to the current
output device.

Example: " TESTI" $. will cause TEST! to be printed.

5.11.4 $< : Test Strings For <
{ 81 82 -——— F)
The string at address S1 is compared character by character with the
string at address S2. 1If string Sl is less than string S2 then a true

flag (1) is left on the stack, otherwise a false flag (0) is left. See
$CMP for string comparisons.

125 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example:

$CONSTANT STR1 "TEST"
$CONSTANT STR2 "ABCDE"
STR1 STR2 $<

Results in a 0 left on the stack since STR1 is not < STR2.

5.11.5 8= : Test Strings For =
(81 82 --- F)

The string at address Sl is compared character by character with the
string at address S2. If string Sl is equivalent to string S2 then a
true flag (1) is left on the stack, otherwise a false flag (0) is left.

See S$CMP for string comparisons.
Example:

SCONSTANT STR1 "TEST"
$CONSTANT STR2 "ABCDE"
STR1 STR2 $=

Results in a 0 left on the stack since STR1 is not = STR2.

5.11.6 $> : Test Strings For >
(81 82 -—— F)

The string at address S1 is compared character by character with the
string at address S2. If string S1 is greater than string 82 then a

true flag (1) is left on the stack, otherwise a false flag (0) is left.
See S$CMP for string comparisons.

Example:

SCONSTANT STR1 "TEST"
$CONSTANT STR2 "ABCDE"
STR1 STR2 $>

Results in a 1 left on the stack since STR1 is > STR2.

5.11.7 S$CLR : Clear A String
(S1 ———)

The string starting at S1 is cleared by setting its character
0. This is wuseful for clearing out
work area.

count to
string variable areas or the PAD —

126 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example: PAD SCLR clears the PAD area.

5.11.8 $CMP : String Comparison
(81 82 ——— F)

This word is used by other string comparison words ($<, $= and $>) to
perform a comparison of the two strings starting at addresses S1 and
82. String comparisons are made by taking one character at a time
(left-to-right) from each string and evaluating each character code
position from the C64 character set. If the character codes are the
same, the characters are equal. The comparison stops when the end of
either string is reached. All other things being equal, the shorter
string is considered less than the longer string. Leading or trailing
blanks ARE significant.

Upon completion of the comparison a result is left on the stack as
follows: -1 if S1 is less than S2, 0 if S1 equals S2 or 1 if S1 > S2.

Example:
$CONSTANT STR1 "TEST"
$CONSTANT STR2 "ABCDE"
STR2 STR1 $CMP

Results in a -1 left on the stack since STR2 is < STRL.

5.11.9 SCONCAT : Concatenate Strings
{ S1 s2 ---)

The string starting at S2 is appended onto the end of the string
starting at S1. 82 is left untouched.

Example:

$CONSTANT STR1 "TEST"
$CONSTANT STR2 "ABCDE"
40 SVARIABLE WORK
WORK STR1 $CONCAT
WORK STR2 S$CONCAT
WORK §S.

Results in the string "TESTABCDE" printing out.

127 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.11.10 SCONSTANT : Define String Constant

{ ——) Compile-time
{ —— 81) Execution-time

Defining word which is used to create a string constant. The string is
entered in quotes (") after its name. The length of the string is
compiled into the dictionary as a byte in front of the string itself.
After invoking the defined name, the starting address of the string is
left on the stack.

Example:

$CONSTANT STR1 "THIS IS A TEST"
STR1 $.

Results in the constant STR1 being defined and output to the
display.

5.11.11 $FIND : Locate A String Within Another String
(S1 A2 C2 --- [ADDR] FLAG)

The string whose characters start at address A2 is searched for a count
of C2 for the string whose starting address is at S1. If the string is
found, ADDR is the address of its starting character in A2 and FLAG is
TRUE (1). If the string is not found, no address is placed on the
stack and FLAG is FALSE (0).

This word can be used to set up higher level string search words
(search for Nth occurence, etc.).

Example:

$CONSTANT STR1 "THIS IS A TEST"
" IS" STR1 COUNT SFIND { LOCATES "IS" IN STR1)

Results in a 1 (TRUE FLAG value) and the address of the located
string displayed.
5.11.12 S$INPUT : Input A String
(——— 51 }
After execution of $INPUT the system will wait for a line to be entered

by the user. A carriage return signals the end of the line. The input
line is transferred to the PAD and its address is left on the stack.

128 SUPER~FORTH 64 (TM)

Implementation Specific Words

Example:

$INPUT (carriage-return) THIS IS A STRING
S.

Results in the string "THIS IS A STRING" being transferred to the
PAD and then displayed.

5.11.13 S$SLEFT : Concatenate Leftmost Substring

(S1 S2 NUM --—-)
Concatenates the leftmost NUM characters of the string starting at 82
onto the end of the string starting at S1. S2 is left untouched.

Example:
40 $VARIABLE WORK
SCONSTANT STR1 "TESTING ONE, TWO, THREE"
$CONSTANT STR2 "STILL AT IT"
WORK STR1 8 SLEFT
WORK STR2 5 SLEFT
WORK $.
Results in WORK being set to "TESTING STILL" and output to the
display.

3.11.14 S$LEN : Get Length of String
{ S1 -—— LEN)
Leaves the byte count of the string starting at S1 on the stack.

Example:

$CONSTANT STR1 "TESTING ONE, TWO, THREE "
STR1 SLEN .

Results in a 24 being output to the display.

5.11.15 $MID : Concatenate Middle Substring

(S1 S2 POS NUM ---)

string starting at the POSth

Concatenates NUM characters of the
52 is left

character of S2 onto the end of the string starting at S1.
untouched.

Example:

129 SUPER-FORTH 64 (TM)

Implementation Specific Words

40 SVARIABLE WORK
$CONSTANT STR1 "“TESTING ONE, TWO, THREE"

$CONSTANT STR2 "STILL AT IT"
WORK STR1 9 3 $MID

WORK STR2 6 3 SMID

WORK §.

Results in WORK being set to "ONE AT" and output to the display.

5.11.16 SRIGHT : Concatenate Right Substring

(S1 S2 NUM ——-)
Concatenates the rightmost NUM characters of the string starting at S2
onto the end of the string starting at S1. 82 is left untouched.

Example:

40 SVARIABLE WORK
$CONSTANT STR1 "TESTING ONE, TWO, THREE "

$CONSTANT STR2 "STILL AT IT"
WORK STR1 6 SRIGHT

WORK STR2 2 S$RIGHT

WORK §.

Results in WORK being set to "THREE IT" and output to the display.

5.11.17 $VAL : Get Numeric Value of String

{ S1 --- NUM)

Converts a numeric string starting at address Sl to a 16-bit number and
leaves it on the stack. If the string contains a non-numeric character
ABORT" is called and the error message "NOT RECOGNIZED" is output to

the display.

NOTE: 1If a string variable area is used to contain the
numeric string, the length of the string area
must be at least 1 greater than the length of the

string.
Example:
" 12345" PAD SVAL

will convert the immediate string "12345" to its binary equivalent
and print it out under the current base.

130 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.11.18 S$VARIABLE : Create String Variable

{ N -——) Compile-time
(——— ADDR) Run-time

Defining word used to allocate dictionary space for a string variable
of maximum N bytes in length. The variable is cleared initially. Upon
invoking the variable name, the starting address of the variable is
left on the stack.

Example:
40 $VARIABLE WORK
WORK " TESTING " SCONCAT
WORK " ONE, TWO " S$CONCAT
WORK §.

Results in a 40 byte space allocated for the string variable WORK
and WORK set to " TESTING ONE, TWO " which is output to the

display.

5.11.13 <"> : Immediate String Run-time Routine
(-=—s1)

Used by " for immediate strings within definitions to move the string
to the PAD and leave its address on the stack. Although available,
this word is not meant for general use.

5.11.20 <S$CONCAT> : Perform Concatenation

(S1 A2 C2 ---)

This word is used by wvarious other words to perform a concatenation
function. C2 characters starting at A2 are appended to the end of the
string starting at S1.

Example:

SCONSTANT STR1 "TEST"
SCONSTANT STR2 "ABCDE"

40 SVARIABLE WORK

WORK STR1 COUNT <S$SCONCAT>
WORK STR2 COUNT <$CONCAT>

WORK S.

Results in WORK being set to the string "TESTABCDE" and output to
the display. Note that this could more easily be done using
SCONCAT.

131 SUPER~-FORTH 64 (TM)

Implementation Specific Words

5.12 Interrupt Extension Words

Among the many uses of the FORTH language are applications which
require an action to be performed upon ‘receiving an interrupt from a
peripheral device. High level languages typically do not have the
hardware control to provide high level support of interrupts. SUPER
FORTH, however, supports both low level (machine language) and high
level (FORTH) handling of IRQ interrupts. The concept of interrupt
handling is an advanced programming topic which the user should fully
understand before attempting to use the words in this section.

Whether an interrupt routine can be handled in high level is determined
by how often the interrupt occurs and how much processing must happen
upon detection of the interrupt. An interrupt which occurs once a
second, for instance, and signals the reading of an analog-to-digital
converter can easily be handled in high level FORTH. An interrupt
which occurs 50,000 times a second (which may be the frequency for
digitizing an audio signal, for example) could not be handled in high
level FORTH. Once method of determining whether the interrupt could be
handled in high level is to write the interrupt routine in high level
code and call it 1in a test loop to determine how long it takes to
execute. If the routine takes longer to execute than the expected time
between interrupts then it will have to be coded in machine code (this
could be done using the FPORTH 6510 assembler).

For example, if we define an interrupt routine:
: I-ROUTINE 1 32768 +! ;
and a test loop which uses it, along with a durmy test loop:

: TEST1 30000 0 DO LOOP ;

: TEST2 30000 0 DO I-ROUTINE LOOP :
0. SETTIM TEST1 RDTIM DROP 6 / .

0. SETTIM TEST2 RDTIM DROP 6 /

We find that execution of TEST1 takes 3.8 seconds (38 1/10 seconds) and
execution of TEST2 takes 16.3 seconds. Thus I-ROUTINE executes 30000
times in 12.5 seconds, or 2400 times a second. An interrupt which
occurred more than 2400 times a second would have to be handled by an
equivalent machine code routine. Note that high level routines MUST BE
KEPT SHORT! Otherwise they will take too long to execute. The
following paragraphs give a description of the words which are used to
implement the SUPER FORTH interrupt system.

I-INIT is used to initialize the SUPER FORTH interrupt system. Upon
being called by the user, I-INIT saves the system IRQ interrupt vector
(at location $314) and replaces it with the address of the interrupt
executive routine. The executive is wused by SUPER FORTH as a
replacement for the standard system interrupt routine. It is called on
at the occurance of an IRQ interrupt (such as the 60 cycle clock

132 SUPER-FORTH 64 (TM)

Implementation Specific Words

interrupt). Upon entry, it checks to see if there is a user defined
interrupt routine to execute. If there is, the FORTH system context is
saved and the system is set up to execute the user interrupt routine.
I-INIT should be called only once after any cold or warm starts.

I-SET is used to set up the user interrupt routine and interrupt
routine stack size. I-CLEAR 1is used to - clear the user interrupt
routine and resume using the initial system IRQ vector.

Since there is only a single IRQ interrupt signal, the user interrupt
routine must verify that the interrupt 1is meant for it. Before
exiting, the user interrupt routine must set the byte length interrupt
return flag at location $7F either to 0, designating that the interrupt
has been handled and a normal return should occur, or 1, designating
that this interrupt is not a user interrupt and execution should pass
to the system interrupt handler. The SUPER FORTH words I-USER and I-
SYSTEM can be called to clear or set the return flag location (S7F)
quickly.

After exiting the user interrupt routine execution go to an interrupt
return routine which handles restoring the regular FORTH context and
based on the return flag either performs the return from interrupt
sequence or jumps to the system interrupt routine.

Thus, the interrupt sequence when using the SUPER FORTH system is as
follows:

INTERRUPT -> INTERRUPT EXEC =-> USER WORD -> INTERRUPT RETURN
[-> system default routine]

The following is a complete example of an interrupt routine
implementation. Both the high level and the assembly language versions
are shown, The routine will increment the 16-bit value at location
32768 on every 60-cycle interrupt and will give control to the system
interrupt routine when finished:

£33 SUPER-FORTH 64 (TM)

Implementation Specific Words

I-INIT (INITIALIZES FORTH INTERRUPT SYSTEM)
(HIGH LEVEL VERSION) (ASSEMBLER VERSION)
INCREMENT CODE INCREMENT
1 32768 +! 1 # LDA,
I-SYSTEM ; CLC,
32768 ADC,
32768 STA,
0= IF,
0 # LDA,
32769 ADC,
32769 STA,
THEN,
' I-SYSTEM JMP,
END-CODE
0 32768 ! { CLEAR THE LOCATION INITIALLY)

(WORD TO TEST INCREMENT OF LOCATION 32768)
: TEST 100 ¢ DO 32768 ? LOOP ;

' INCREMENT 5 I-SET

TEST - (PRINTS QUT INCREMENTING VALUES)
I-CLEAR (STOPS INTERRUPT ROUTINE)

Note that the assembly language version, while much more complicated
to read and slightly larger in memory usage, would run somewhat
faster than the high level wversion. Note also that the
assembler version uses no stack space while the high level
version uses two stack locations (we allocate 5 locations just
to be "safe"}.

5.12,1 I-CLEAR : Clear User Interrupt Routine Address

(=)

Sets the SUPER FORTH interrupt system to go to the system interrupt
routine and not call a user interrupt routine. Used to stop calling a
routine which had been set up by using I-SET.

Example: I-CLEAR clears any previously set user interrupt routine.

5.12.2 §7F : Interrupt Return Flag
(——= 7F)

Returns the address of a byte which is used to the interrupt system to
determine whether or not to execute the default system interrupt
routine (generally, the 60 cycle <clock routine) after wuser interrupt
processing 1is completed. If 0, a standard return from interrupt
sequence 1s executed (PLA TAY PLA TAX PLA RTI). If 1, the system

134 SUPER-FORTH 64 (TM)

Implementation Specific Words

interrupt routine is executed. The words I-USER or I-SYSTEM should be
used to set I-FLAG.

5.12,3 I-INIT : Initialize Interrupt System

(=)

Initializes the SUPER FPORTH interrupt system to allow user defined
interrupts. Replaces the system default interrupt vector with the
address of the SUPER FORTH interrupt executive routine. Since system
defaults are reset upon warm starting, this word must be invoked on
initjial startup and warms starts after the initial startup.

Example: I-INIT sets up system to enable user defined interrupts.

5.12.4 I-SET : Set User Interrupt Routine Address
(PFA N -——)

Sets the SUPER FORTH interrupt system to go to the interrupt routine
whose parameter field address is PFA. N is the number of stack values
to allocate to the interrupt stack (stack usage must be determined for
each interrupt routine).

Example: ' ROUTINE 10 I-SET sets up the word ROUTINE to be executed
upon receiving an IRQ interrupt. Ten values are allocated for
ROUTINE to use as its system stack.

5,12.5 I-SYSTEM : Set I-FLAG to System Routine Exit

(=)

Word which sets the interrupt return flag to 1 so that the interrupt
return routine will call the system default interrupt routine upon
completion. No stack usage 1is performed by . this word. I-SYSTEM is
implemented in machine language for efficiency and can be called by a
machine language interrupt routine to exit to the system.

Examples:
I-SYSTEM sets the interrupt return flag to 1.

In assembler: ' I-SYSTEM JMP, sets the interrupt return flag to 1
and returns control to the system.

135 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.12.6 I-USER : Set Interrupt Return Flag to Exit

Word which sets the interrupt return flag to 0 so that the interrupt
return routine will perform a return from interrupt upon completion.
No stack usage is performed by this word. I-USER is implemented in
machine language for efficiency and can be called by a machine language
interrupt routine to exit to the system.

Examples:

I-USER sets the interrupt return flag to 0.
In assembler: ' I-USER JMP, sets the interrupt return flag
to 0 and returns control to the system.

5.13 Display Screen Words

These extensions give the user control over the output display screen.
All display related extensions are prefixed with "D-" to -enable the
user to remember the "D"isplay subset of SUPER FORTH commands. D-SPLIT
allows text and hi-res graphics to be mixed on the output display. D-
CLEAR allows the wuser to paritally clear a display, leaving selected
data untouched. D-READ and D-POSITION are used to control placement of
output on the display screen.

5.13.1 D-CLEAR : Clear Screen From Cursor Position

()

This word reads the position of the cursor on the screen and clears
from that line to the bottom of the screen, leaving the curscor at the
start of the line to which 1t had been positioned at the start of
execution of the word. The cursor should be positioned to the starting
line to be cleared before entering the word D-CLEAR. D-CLEAR could be
used to prevent the screen from scrolling off the top if there were
data on the top of the screen which needed to be examined while
‘commands were being entered,

Example: User positions cursor to proper 1line and types D-CLEAR.
The screen is cleared from that line to the bottom of the
screen,

5.13.2 D-READ : Return Position of Cursor on Screen

{ ——— COLUMN ROW)

Returns the COLUMN number (0-39) and the ROW number (0-24) of the
current cursor position on the screen.

136 SUPER-FORTH 64 (TM)

Implementation Specific Words

Example: D-READ .," ROW=" ., .," COLUMN=" . will get the position of
the cursor and display its row and column positions.

5.13.3 D-POSITION : Position Cursor On Screen

(COLUMN ROW -——)

Positions the cursor at the given COLUMN number {(0-39) and ROW number
(0-24) on the screen. Output to the screen will proceed f£from the
position the cursor is left at.

Example: 10 5 D-POSITION ." THIS IS A TEST" will position the cursor
to column 10, row 5 and display the string THIS IS A TEST
starting there.

5.13.4 D-SPLIT : Split Screen Into Hi-res/Text

(LINE4 ———)

The screen splits into two parts, the upper part will be a hi-res
(bitmap) display of the currently selected bitmap area. The lower part
will be the normal 0 bank text screen. In this way, bitmap graphics
commands can be seen executing on the top while being entered in on the
bottom of the screen. LINE# 1is a value which determines at what line
the screen will be split.

A value of 0 clears the split-screen mode and resets the 'BANK and
'BITMAP to 0. Thus, 0 D-SPLIT can be used to return to a normal screen
when working with hi-res graphics.

Example:

20 D-SPLIT
7 BITMAP

splits the screen so that 5 text lines remain at the bottom of the
screen. The top of the screen displays bitmap area 7 (57344)
~which resides under the Commodore Kernel ROM.

WARNING: Timing problems in the graphics chip may arise if D-SPLIT is
used to change the line split while split screen is in effect. The
screen will appear to lock up in bitmap mode. If this occurs, a warm
start (RUN-STOP/RESTORE sequence) should bring things back to normal.

5.14 C64 High RAM Access Words

The following words are used to access the memory which 1is located
underneath the C64 Kernel ROM and I/O Memory Map area. This
effectively give the user an extra 12k of RAM to use for wvariable or

137 SUPER-FORTH 64 (TM)

Implementation Specific Words

array storage. The FORTH dictionary itself cannot extend into this
area, but constants can be set up and arrays referenced through the
constant.

Example: If we want a 4k array at $D000C and an 6k array at $E000 we
could define the arrays as follows :

HEX D000 CONSTANT ARRAY1
ECO0 CONSTANT ARRAY2

Data could be stored at ARRAY1+100 as follows:
100 ARRAY] + H!

Since a write will "go through" the Kernel ROM into the RAM below, H!
and HC! need not be used to write into that RAM, but H@ and HC@ must
be used to fetch the written values.

Note : The last 8 bytes 1in the 6510 address space, $FFF8-$FFFF,
should not be disturbed by the user. They are set up by the
system and insure that interrupts (IRQ or NMI) will not cause
the system to hang up when the C64 Kernel is swapped out.

5.14.,1 H! : Store Value At High RAM Address
({ VALUE ADDR ---)

Turns off the 60 cycle clock interrupt, swaps out the Cé64 Kernel ROM
and -I/0 Memory Map area and stores the 16-bit VALUE at location ADDR.
After the store is completed swaps the ROMs back in and turns the clock
interrupt back on.

Note: H! need not be used to store into the C64 Kernel area {SE0GO-
$FFFF), however H@ must be used to fetch values which have been
stored in RAM under the Kernel and I/0 Memory Map areas.

Example: HEX 12AB D500 H! will store. the 16-bit hex value 12AB at
high memory locations D500 and D501.
5.14.2 HE : Fetch Value From High RAM Address
{ ADDR --- VALUE)
Turns off the 60 cycle clock interrupt, swaps out the C64 Kernel ROM
and I/0 Memory Map area and fetches the 16-bit VALUE from location
APDR. After the fetch is completed swap the ROMs back in and turn the
clock interrupt back on.
Example: HEX D500 H@ . will fetch and display the 16-bit value
stored in the RAM located at D500.

138 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.14.3 HC! : Store Byte At High RAM Address
{ BYTE-VALUE ADDR ---)

Turns off the 60 cycle clock interrupt, swaps out the C64 Kernel ROM
and I/0 Memory Map area and stores the 8-bit VALUE at location ADDR.
After the store is completed swap the ROMs back in and turn the clock

interrupt back on.

Note: HC! need not be used to store into the C64 Kernel area (SED0O0-
$FFFF), however HC@ must be used to fetch values which have been
stored in RAM underneath the Kernel ROM.

Example: HEX 1B D500 HC! will store the 8-bit hex value 1B at high
memory location D500.

5.14.4 HC@ : Fetch Byte From High RAM Address
(ADDR --- BYTE-VALUE)

Turns off the 60 cycle clock interrupt, swaps out the C64 Kernel ROM
and I/0 Memory Map area and fetches the 8-bit VALUE from location ADDR.
After the fetch is completed swap the ROMs back in and turn the clock
interrupt back on.

Example: HEX D500 HC@ . will fetch the 8-bit value from D500 and
display it.

5.15 Data Structure Words

The following words are included not so much as an aid to declaring
data (which they are), but to provide the beginning FORTH wuser with
examples of how to define "defining words". As such, the source
screens are provided (see Screens, Appendix II).

These words contain no run-time bounds checks although such data
validation could be written into the run-time part of the structure at
the expense of the extra execution time involved in performing the

checks.

As with other defining words, these are ‘invoked by setting up the
stack, naming the defining word, and naming the word to be defined.

Example: 15 1ARRAY NEWWORD uses the defining word 1ARRAY to define a
15 element array called NEWWORD.

139 SUPER~FORTH 64 (TM)

Implementation Specific Words

5.15.1 1ARRAY : One Dimensional Array Structure

(#ELEMENTS ---) Compilation
(ELEMENT# --- ADDR) Execution

This structure allows users to declare an N element one dimensional
array. N is the number of 16-bit elements to be allocated during
compilation. During execution, the number of the required element is
put on the stack and the ADDR of the element is returned. ELEMENT#
ranges from 0 to #ELEMENTS-1.

Example:
16 1ARRAY SINGLE (DECLARES A 16 ELEMENT ARRAY NAMED SINGLE)
-1 8 SINGLE ! { STORES A -1 IN ELEMENT 8)
8 SINGLE @ . { WILL PRINT A -1)

5.15.2 2ARRAY : Two Dimensional Array Structure

(XY -——) Compilation
(X# ¥Y# --- ADDR) Execution

This structure allows users to declare an X by Y element two
dimensional array. X determines the number of columns and Y determines
the number of rows in the matrix. X times Y 16-bit values are
allocated during compilation. During execution, the X# and Y#
determine the column and row of the element whose ADDRess is returned.
X# and Y# range from 0 to X#-1 and 0 to Y#-1 respectively.

Example:
4 5 2ARRAY DQUBLE (DECLARES A 4 x 5 ARRAY NAMED DOUBLE)
-1 3 2 DOUBLE (STORES -1 IN ELEMENT 3,2)
3 2 DOUBLE @ . (PRINTS A -1)

5.16 Math Extension Words

The math routines were adapted from several articles published in FORTH
Dimensions. See the articles (in Appendix VII) for a basic description
of wusage. Then refer to the appropriate area in this section for
extensions which were added for efficiency and utility.

5.16 Math Extension Words

In addition to the words defined in the published article, several
words - have been added for easier utilization of the floating point
system. Probably the greatest change was in allowing direct entry of
floating point numbers into the system by redefinition of <NUMBER>.
The new definition, <FNUM> is set up by calling FINIT. This allows
entry of floating point numbers instead of the integer double precision

140 SUPER-FORTH 64 (TM)

Implementation Specific Words

numbers usually accepted by <NUMBER>. If standard double precision
arithmetic is required, FEXIT should be used to exit the floating point

system.

Other additions 1include integer to floating and floating .to integer
conversion words and floating point sine, cosine and square root words.
The word !EXPONENT as described in the article was changed to E! to
enable a more familiar entry of scientific notation floating numbers
and @EXPONENT was changed to E@ for consistancy. In the examples,
FINIT is used only as a reminder. It need only be entered once during
floating point arithmetic.

5.16.1.1 <FNUM> : Floating Number Conversion Routine

{ ADDR ~—= F)

This routine replaces the standard system number conversion routine
(<NUMBER>) when FINIT is invoked. Single precision input 1is
unaffected, however double precision numbers are automatically
converted into floating point, with the decimal point marking what the
exponent will be. This provides an easy way to enter floating numbers
whose exponent range fits within the standard double precision number
format.

Positive double precision integers are identical in either integer or
floating point format, however negative numbers differ, therefore this
mode cannot be considered compatible with the standard double precision
entry of numbers.
Example:
FINIT 123.456 23.7892 F+ F.

will cause 147.2452 to be output to the display.

5.16.1.2 DFIX : Convert Floating to Double Integer
(F# —— D#)

Converts the floating point number F# to a double precision number D#
truncating any fraction.

Example: FINIT 1234.567 DFIX D.

Results in "1234" beihg displayed.

14] SUPER-FORTH 64 (TM)

Implementation Specific Words

5.16.1.3 DFLOAT : Convert Double Integer to Floating
({ D# --=- F#)
Converts the double precision number D# to a floating point number F#.
Example:
FINIT 1234. DFLOAT F.
Results in "1234." being displayed.
5.16.1.4 E! : Enter Floating Number in Scientific
(ME -—)
Allows the wuser to enter a number of the form MANTISSA EXPONENT and
converts it to floating point format. M is the double precision signed
mantissa. E is the single precision exponent. Regular double
precision input must be in effect in order to enter negative numbers.
Example:

12345, -25 E! E.

Results in 12345 E-25 being displayed.

5.16.1.5 FCOS : Return Floating Point Cosine
(F# --- FCOS)
Returns the cosine of the floating point number F#.
Example:
FINIT 120. FCOS F.

Results in "-~0.5000" (the cosine of 120 degrees) to be displayed.

5.16.1.6 FEXIT : Exit Floating Point Mode

(==)
Restores the standard system routine (<NUMBER>) to provide numeric

conversion. After execution of FEXIT, double precision numbers entered
will be kept in the standard double number format.

142 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.16,1.7 FLOAT : Convert Integer to Floating
(N ——— F#)
Converts the single precision number N into a floating point number F§.
Example:
FINIT 1234 FLOAT F.

Results in "1234." being displayed.

5.16.1.8 FSIN : Return Floating Point Sin of An Angle
(F# --- FSIN)
Returns the floating point sin of a flcating point number F#.
Example:
FINIT 120. FSIN F.

Results in "0.8660" being displayed.

5.16.1.9 FSQRT : Return Floating Square Root
(F# --- FSQRT)

Calculates the floating point square root of a floating point number
F#. _F# must be in the range 0 <= F# <= 65535,

Example:
54321. FSQRT F.

Results in "233.06" being displayed.

5.16.2 Trig Extensions

Three levels of integer sine/cosine routines are provided for different
requirements of speed vs. flexibility. <SIN> and <COS> are fastest
(completely machine language), but can only be used in the range of 0

to 90 degrees. QSIN and QCOS as not as fast but accept values of 0
through 360 degrees. SIN and COS are slowest, but accept negative
degrees and degrees > 360.

All sine/cosine values are scaled by 16384, The word TSCALE must be
used to bring values back to normal. See the examples for TSCALE
usage.

143 SUPER-FORTH 64 (TM)

Implementation Specific Words

5.16.2.1 <SIN>
{(N ——- SIN)

Returns the sine of an angle N. N must be in the range of 0 to 90
degrees. The sine is in the range of 0 to 16383. This is a very fast
machine language table lookup routine.

Example:
45 <SIN> 10000 U* TSCALE .,

Displays the sine of 45 degrees multiplied by 10000.

5.16.2.2 <COS>
(N -—-- COS)

Returns the cosine of an angle N. N must be in the range of 0 to 90
degrees. The cosine is in the range of 0 to 16383. This is a very
fast machine language table lookup routine.

Example:
60 <COS> 10000 U* TSCALE

Displays the cosine of 60 degrees multiplied by 10000.

5.16.2.3 QSIN : Quick Sin Routine

{ N ——- SIN)

Returns the sine of an angle N. N must be in the range of 0 to 360
degrees. The sine is in the range of 0 to 16383.

Example:
240 QSIN 10000 M* TSCALE

Displays the sine of 240 degrees multiplied by 10000.

5.16.2.4 QCOS : Quick Cosine Routine

{ N --- COSINE)

Returns the cosine of an angle N. The cosine falls in

the range of 0
to 16384. N must be in the range of 0 to 360 degrees.

Example:

144 SUPER-FORTH 64 (TM)

Implementation Specific Words

135 QCOS 10000 M* TSCALE

Displays the cosine of 135 degrees multiplied by 10000.

5.16.2.5 SIN : Sin Routine
(N -—- SIN)

Returns the sine of an angle N. N must be in the range of -32768 to
32767 degrees. The sine is in the range of 0 to 16383.

Example:
600 SIN 10000 M* TSCALE .

Displays the sine of 600 degrees multiplied by 10000.

5.16.2.6 COS : Cosine Routine
(N -——— COSINE)

Returns the cosine of an angle N. N must be in the range of -32768 to
32767 degrees. The cosine falls in the range of 0 to 16384.

Example:
495 COS 10000 M* TSCALE

Displays the cosine of 495 degrees multiplied by 10000.

145 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

6. MVP Standard Word Set Glossary

This glossary contains definitions of the words in the MVP FORTH
Standard Word Set. Non-standard MVP words ‘and Commodore 64 extensions
are defined in the section titled "Implementation Specific Words".

Since it is expected that a 1541 type drive will be used with a Coe4,
the disk system has been simplified to eliminate the various words,
tables and calculations dealing with drive densities (there is only one
drive density possible) present in ALL ABOUT FORTH.

The word LIT has been changed to <LIT> to avoid accidently typing LIT
interactively (by mistyping LIST for example) thereby crashing the
system.

! (n addr ---) Store n at address.

(udl --- ud2) Generate the next ASCII character which is
placed in an output string. The result ud2 is the quotient
after division by BASE and is maintained for further
processing. Used between <# and #>.

#> { ud -~- addr n) End pictured numeric output conversion.
Drop ud, leaving the text address, and character count,
suitable for TYPE.

#BUFF { -—-- n) A constant returning the number of disk buffers
allocated. For the disk I-O routines to work correctly #BUFF
must be greater than 1.

#S (ud --- 0 0) Convert digits of unsigned 32-bit number ud,
adding each to the pictured - numeric output text, until
remainder 1is zero. A single zero is added to the output
string if the number was initially zero. Use only between <§

and #>.
' (tick) (--- addr) If executing, leave PFA of next word acceptéd
from 1input stream. If compiling, compile address as a

literal; later execution will place this value on the stack.

'-FIND (---addr) A wuser variable containing the address to be
executed by -FIND.

"?TERMINAL/(--—-~ £) A user variable containing the compilation
address to be executed by ?TERMINAL.

'ABORT { --—addr) A user variable containing the compilation
address to be executed by ABORT.

146 SUPER-FORTH 64 .(TM)

MVP Standard Word Set Glossary

'BLOCK (--—- addr) A user variable containing the compilation
address to be executed by BLOCK.

‘CR (---addr) A user variable containing the compilation
address to be executed by CR.

'EMIT (=-—-—addr) A user variable containing the compilation
address to be executed by EMIT.

'EXPECT (=--- addr) A user variable containing the compilation
address to be executed by EXPECT.

"INTERPRET(' --- addr) A wuser variable containing the compilation
address to be executed by INTERPRET.

'KEY (---—addr) A user variable containing the compilation
address to be executed by KEY.

' LOAD (=-—addr) A user variable containing the compilation
address to be executed by LOAD.

' NUMBER (—--- addr) A wuser variable containing the compilation
address to be executed by NUMBER.

'PAGE (—--—addr) A user variable containing the compilation
address to be executed by PAGE.

‘R/W (-—— addr) A user variable containing the compilation
address to be executed by R/W.

'S (-—— addr) Place the address of the top of the stack on
the top of the stack.

'STREAM (——— addr) Returns the address of the next character in
the input stream.

'T&SCALC (=--- addr) A user variable containing the compilation
address to be executed by T&SCALC.

'"TITLE (--—addr) A variable holding the compilation address
executed by TRIAD to place a message at the bottom of each
page (UTILITY).

'VOCABULARY (--- addr) A user variable containing the compilation
address to be executed by VOCABULARY.

"WORD (——-— addr) A user variable containing the compilation

address to be executed by WORD.
{ ——-) Accept and ignore comment characters from the input

stream until the next right parenthesis. Used to comment
FORTH screens and definitions.

147 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

* (nl1 n2 ---n3) Leave the arithmetic product of nl times
n2.
x/ { n1 n2 n3 --- nd4d) Multiply nl by n2, divide the result by

n3 and leave the quotient n4. n4 is rounded toward zero.

* /MCD { nl n2:n3 —--— n4 n5) Multiply nl by n2, divide the result
by n3 and leave the remainder n4 and quotient n5. The
remainder has the same sign as nl. Used for scaling and

rounding.

+ (nI n2 -—- n3) Leave the arithmetic sum of nl plus n2,.

+1 (n addr --- } Add n to the 16-bit value at he address, by
the convention given for +. '

- (n1 n2 --- n3) Apply the sign of n2 to nl, which is left
as n3.

+BUF (addrl --- addr2 £) Advance the disk buffer address addrl

to the address of the next buffer addr2. Boolean f is False
when addr2 is the buffer presently pointed to by the variable
PREV. '

+LOOP (n —-—) Add the signed increment n to the loop index and
compare the total +to the 1limit. Return execution to the
corresponding DO until the new index is equal to or greater
than the limit (n>0) or until the new index is less than the
limit (n<0). Upon exiting from the loop, discard the loop
control parameters.

r (comma) { n ---) Allot two bytes in the dictionary, storing n
there.
- (nl n2 --- n3) Subtract n2 from nl and leave the

difference n3.

-—> { --——) Continues interpretation (LOADing) from the next
sequential screen number. This word can be used for a word
definition which will not fit on a single screen. All
information following --> on the .screen will be skipped in
the loading.

Note: This word should NOT be used on a screen which is being loaded

using THRU.
-FIND { -—— pfa b tf) 1if found
(——= f£ff) if not found-Accepts the next word (delimited by

blanks) in the input stream to HERE and searches the CONTEXT
and then the FORTH vocabularies for a matching entry. 1If
found, the dictionary entry's parameter field address, length
byte and a boolean true is left. Otherwise, a boolean false
is left.

148 SUPER-T'ORTH 64 (TM)

MVP Standard Word Set Glossary

-TEXT

-TRAILING

. INDEX

.LINE

R

(addrl nl addr2 --- £) Compare two strings over the length
nl beginning at addrl and addr2. Return zero if the strings
are equal. If unequal, return 1 if the string at addrl > the
string at addr2, or -1 if the string at addrl < the string at
addr2. The comparison is performed a byte at a time.

({ addr nl --- addr n2) Adjust character count nl of a text
string beginning at addr to exclude trailing . blanks, i.e.,
the characters at the addr+n2 to addr+nl-1 are blanks. An
error exists if nl is negative.

(n ---) Display n converted according to BASE in a free-
field format with one trailing blank. Display only a
negative sign.

(--—) Interpreted or used in a colon-definition. Accept
the following text from the input stream, terminated by "
(double quote). If executing, transmit this text to the
selected output device. If compiling, compile so that later
execution will transmit the text to the selected output
device. At least 127 characters are allowed in the text. If
the input stream is exhausted before the terminating double-
quote, an error condition exists.

(n -———) Print line 0 on screen n.

(line scr —-—-) Print on the terminal device, a 1line of
text from the disk by its line and screen number. Trailing
blanks are suppressed.

(nl nz2 ---) Print nl right aligned in a field of n2
characters, according to BASE. If n2 is less than 1, no
leading blanks are supplied.

.S .8L .SR(———)

.88

/LOOP

(-—— FLAG) These words work 1in concert to implement
nondestructive stack display. .S will print the values on the
stack in ascending or descending order according to the flag
in the constant .SS. The flag is set by .SL and .SR. .SL
causes the stack to be displayed from the most recent entry
through the oldest entry, while .SR causes the stack to be
displayed from the oldest to the most recent entry (default).

(nl n2 ---) Print nl right aligned in a field of n2
characters, according to BASE., 'If n2 is less than 1, no
leading blanks are supplied.

(nl n2 -~~~ n3) Divide nl by n2 and leave the gquotient n3.
n3 is rounded toward zero.

(. n=-—) A DO-LOOP terminating word. The loop index is
incremented by the unsigned magnitude of n. Until the

149 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

/MOD

0>

0BRANCH

1+

2%

2+

2__.

2/
2@

2CONSTANT

2DROP

2DUP

resultant index exceeds the limit, execution returns to just
after the corresponding DO, otherwise, the index and limit
are discarded. Magnitude Logic is used.

(nl n2 -—— n3 n4d) Divide nl by n2 and leave the remainder
n3 and quotient n4. n3 has the same sign as nl.

(—— 0) The value is defined as an ideogram.

(n ~— flag } True if n is less than zero (negative).

{ n --- flag) True is n is zero. .

(n --- flag) True is n is greater than zero.

(£ ---) The run-time procedure to conditionally branch.

If f is false {zero), the following in-line parameter is
added to the interpretive pointer to branch ahead or back.
Compiled by IF, Until, and While.

(——— 1) A common integer defined as a constant.

(n —— n+l) Increment n by one, according to the operation
for +.

(n--—n-1) Decrement n by one, according to the operation
{ -—— 2) A common integer value defined as a constant.

(d addr ---) Stored in 4 consecutive bytes beginning at
addr, as for a double number.

(nl -- n2)} Leave 2*(nl).

(n -——- n+2) Increment n by two, according to the operation
for +,

(n --— n-2) Decrement n by two, according to the operation
fOI’ =

{ nL -——— n2) Leave (nl)/2.

(addr --- d) Leave on the stack the contents of the four

consecutive bytes beginning at addr, as for a double number.

(d-—-) A defining word used to create a dictionary entry
for <name> is later executed, d will be left on the stack.

(d -———) Drop the top double number on the stack.

(d ---~dd) Duplicate the top double number on the stack.

150 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

20VER (d1 d2 ---dl d2 dl) Leave a copy of the second double
number the stack.

2SWAP { d1 d2 -—- d2 d1) Exchange the top double number on the
stack.

2VARIABLE (---) A defining word used to create a dictonary entry of

<name> and assign 4 bytes for storage in the parameter field,
When <name> 1is later executed, it will leave the address of
the first byte of its parameter field on hte stack.

79-STANDARD (---) Execute assuring that a FORTH-79 Standard system
is available, otherwise an error condition exists.

(——) A defining word which selects the CONTEXT vocabulary
to be 1identical to CURRENT. Create a dictionary entry for
<name> in CURRENT, and set compile mode. Words thus defined
are called 'colon-definitions' The compilation addresses of
subsequent words from the input stream which are not
immediate words are stored into the dictionary to be executed
when <name> 1s later executed. IMMEDIATE words are executed
as encountered. If a word is not found after a search of the
CONTEXT and FORTH vocabularies, conversion compilation of a
lateral number is attempted, with regard to the current BASE:
that failing, an error condition exists.

{ -—-) Terminate a colon-definition and stop compilation.
If compiling from mass storage and the input stream is
exhausted before encountering ; an error condition exists.

-

; CODE (---) Stop compilation and terminate a defining word.
ASSEMBLER becomes the CONTEXT vocabulary.

< { nl n2 —— flag) True if nl is less than n2.

<# (481 --—— d1) Initialized pictured numeric output. The

ideograms <#, #, #S, HOLD, SIGN, and #> can be used to
specify the conversion of a double-precision number into an
ASCII character string stored in right-to-left order.

<+LOOP> (n ---) The run-time procedure compiled by +LOOP.
<-FIND> { —— pfa b t£) if found

(——— ££) 1if not found: A run-time procedure compiled by
<,"> (———)} A run-time procedure, compiled by ." which transmits

the following in-line text to the selected output device.
</LOOP> (u--—-) The run-time procedure compiled by /LOOP.

<:CODE> (———) The run-time procedure compiled by ;CODE.

151 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

<<CMOVE> { addrl addr2 u ---) The run-time procedure compiled by
<CMOVE.

<?TERMINAL> (--- £) The run-time procedure compiled by ?TERMINAL.

<ABORT"> (f ---) The run-time procedure compiled by ABORT".

<ABORT> (———) The run-time procedure compiled by ABORT.

<BLOCK> (n —— addr) The run-time procedure compiled by BLOCK.

<CMOVE> { addrl addr2 n ---) The primitive code routine for CMOVE
and MOVE. Up to 65,535 bytes may be moved. Nothing is moved
when u=0.

<CR> { ——) The run-time procedure compiled by CR.

<DO> (nl n2 ---) The run-time procedure compiled by DO.

<EMIT> (¢ -——) The run-time procedure compiled by EMIT.

<EXPECT> (addr n ---) The run-time procedure compiled by EXPECT.

<FILL> (addr n b ---) The run-time procedure compiled by FILL,

<FIND> (addrl addr2 -—— pfa b tf) if found

' (addrl addr2 --- £f) if not found: Searches the dictionary

starting at the name field address addr2, matching to the
text at addrl. Returns parameter field address, length byte
of name field and boolean true for a good match. If no match
is found, only a boolean false is left.

<INTERPRET> { ---) The run-time procedure compiled by INTERPRET.

<KEY> (——— char) The run-time procedure compiled by KEY.

<LINE> (nl n2 --- addr count) The run-time procedure compiled by
LINE,

<LIT> (-——— n) Within a colon-definition, <LIT> is automatically
compiled before each 16-bit literal number encountered in
input text. Later execution of LIT causes the contents of
the next dictionary address to be pushed to the stack.

<LOAD> (n -——) The run-time procedure compiled'by LOAD.

<LOOP> (-——=) The run-time procedure compiled by LOOP.

<NUMBER> (addr --- d) The run-time procedure compiled by NUMBER.

<PAGE> (———) The run-time procedure compiled by PAGE.

<R/W> (addr blk £ ---) The run-time procedure conipiled by R/W.

152 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

<T&SCALC> (n --- d s t)} Track & Sector and drive calculation for
disk I/0. n 1is the total sector displacement. The
corresponding drive (d), track (t) and sector numbers are
calculated. The track number is stored in TRACK; the sector
number is stored is SEC.

<VOCABULARY79> (--- '} The run-time routine for a defining word to
create (in the CURRENT vocabulary) a dictionary entry for
<name>, which specifies a new ordered list of word
definitions. Subsequent execution of <name> will make it the
CONTEXT vocabulary. When <name> becomes the CURRENT
vocabulary (see DEFINITIONS), new definitions will be created
in that 1list. In 1lieu of any further specifications, new
vocabularies ‘'chain' to FORTH. That is, when a dictionary
search through wvocabulary 1is exhausted, FORTH will be
searched. When VOCABULARY is vectored toward this word (the
system default) the implementation produces the correct run-
time procedure according to the function described in the
FORTH-79 STANDARD.

<VOCABULARYFIG> (-—--) Vectoring VOCABULARY to this word will produce
the run-time procedure for VOCABULARY according to the FIG-
FORTH definition.

<WORD> (char --- addr) The run-time procedure compiled by WORD.

= (n1 n2 -—— flag) True if nl is equal to n2.

> (n1 n2 --- flag) True if nl is greater than n2.

>BINARY { d1 addrl --- d2 addr2) Same as CONVERT.

>IN (-—— addr) Leave the address of a variable which contains
the present character offset within the input stream.

? (fa?dr --—) Display the number at address, using the format
of ".".

>R (n ---) Transfer n to the return stack. Every >R must be

balanced by a R> in the same control structure nesting level
of a colon-definition.

?COMP (-———) 1Issue an error message if not compiling.

?CONFIGURE(---) Display the current configuration for all available
disk drives.

?2CSP { ———) 1Issue an error message if stack position differs
from value saved in CSP,.

?DUP {n---n n) Duplicate n if it is non-zero.

153 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

?PAIRS

?STACK

?STREAM

ABORT

ABORT"

ABS

AGAIN

ALLOT

AND

ASSEMBLER

BASE

BEGIN

BL

BLANK

BLK

(n1 n2 --——) Issue an error message if nl does not equal
n2. Indicates that compiled conditionals do not match.

{ =--—) Issue an error message if the stack is out of
bounds.

(£ ---) Issue an error message if the flag is true,
indicating that the input stream is exhausted.

(addr --- n)} Leave on the stack the number contained at
addr.

{(———) Clear the data and return stacks, setting execution
mode. Return control to the terminal. '

({ flag ---) Used in a colon-definition. If the flaq is
true, print the following text, till ". Then execute ABORT.
(n1 --- n2) Leave the absolute value of a number.

(addr n ---) Compiling

(——) Run-time-Effect an unconditional jump back to the
start of a BEGIN-AGAIN loop.

(n=---) Add n bytes to the parameter field of the most
recently defined word.

(n1 n2 --- n3) Leave the bitwise logical 'and' of nl and
nz,

(-——=) Sets CONTEXT vocabulary to ASSEMBLER.

(——— addr) Leave the address of a variable containing the
current input-output numeric conversion base.

(=—- addr n) Used in a colon definition. BEGIN marks the
start of a word sequence for repetitive execution. A BEGIN-
UNTIL loop will be repeated until flag is true. A BEGIN-
WHILE-REPEAT loop will be repeated until flag is false. The
ideograms after UNTIL or REPEAT will be executed when either
loop is finished.

(=== ¢) A constant that leaves the ASCII value for "blank"
on the stack.

(addr n —---) Fill in an area of memory over n bytes with
the value for ASCII blank, starting at addr . If n is less

than or equal to zero, take no action.
(-——— addr) Leave the address of a variable containing the

number of the mass storage block being interpreted as the
input stream. If the content is zero, the input stream is

154 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

BLOCK

BMOVE

BRANCH

BUFFER

BYE

C,

C/L

ce

CFrA

CHANGE

taken from the terminal. The value of the variable is an
unsigned number.

(n ——= addr) Leave the address of the first byte in block
n, If the block is not already in memory, it is transferred
from mass storage into whichever memory buffer has been least
recently accessed. If the block occupying that buffer has
been UPDATED (i.e., modified), it is rewritten onto mass
storage before block n is read into the buffer. n is an
unsigned number. If correct mass storage read or write is
not possible, an error condition exists. Only data, within
the latest block referenced by BLOCK is valid by byte
address, due to sharing of the block buffers.

(addrl addr2 n ---) Move n bytes beginning at address
addrl to addr2., Perform the operation correctly even if the
ranges involved overlap.

(-=~—) The run-time procedure to unconditionally branch.
An in-line offset is added to the interpretive pointer IP to
branch ahead or back. BRANCH is compiled by ELSE, AGAIN,
REPEAT.

(n -—— addr) Obtain the next block buffer, assigning it to
block n, The block is not read from mass storage. In
standard mode, if the previous contents of the buffer has
been marked as UPDATED, it is written to mass storage. If
correct writing to mass storage is not possible, an error
condition exists. 1In file mode, if no empty buffers exist,
the operation- aborts with the message "BUFFERS FULL". The
address left is the first byte within the buffer for data
storage. n is an unsigned number.

{ -——) save FORTH and perform a system cold start,
returning to the C-64 kernal and restoring the BASIC ROM.

(naddr ---) Store the least significant 8-bits of n at
addr .
(n--—) Store the low order 8 bits of n at the next byte

in the dictionary, advancing the dictionary pointer.

(-—— n) Constant leaving the number of characters per
line; used by the editor.

(addr --- byte) Leave on the stack in the contents of the
byte at addr (with higher bits zero, in a 16-bit field.)

(pfa --- cfa) Convert the parameter field address of a
definition to its code field address.

(——-) Modify the size of your FORTH image and the number

155 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

of buffers in use according to the current values of LIMIT
and #BUFF. This word can be used to move the FORTH User
area., LIMIT should be set to the new User area.

CHANGE executes a cold 'start, so buffers will be emptied and stack
values will be lost.

CLEAR (n ---) Clear screen n to all blanks.
CMOVE { addrl addr2 n ---) Move n bytes beginning at address
addrl to addr2. The contents of addrl is moved first

proceeding toward high memory. If n is =zero or negative
nothing is moved.

COLD { ——) The cold start procedure to adjust the dictionary
pointer to the minimum standard and restart via ABORT. May
be called from the terminal to remove -application programs
and restart.

COMPILE (-=—) When a word containing COMPILE executes, the 16-bit
value following the compilation address of COMPILE is copied
(compiled) into the dictionary. i.e., COMPILE DUP will copy
the compilation address of DUP.

CONFIGURE (=-~-) Lets you change the number of drives available on
the system. The configuration is initially set for one
drive.

CONSTANT (n ---) A defining word to create a dictionary entry for

<name>, leaving n in its parameter field. When <name> is
later executed, n will be left on the stack.

CONTEXT (——— addr) Leave the address of a variable specifying the
vocabulary in which dictionary searches are to be made,
during interpretation of the input stream.

CONVERT (d1 addrl --- d2 addr2) Convert to the equivalent stack
number the text beginning at addrl+l with regard to BASE,
The new value is accumulated into double number d1, being
left as da2. addr2 is the address of the first non-
convertable character.

COPY (n1 n2 ---) Copy the contents of screen nl to screen n2.

COUNT (addr --- addr+l n) Leave the address addr+l and the
character count of text beginning at addr. The first byte at
addr must contain the character count n. Range of n is
0..255.

CR (~——-) Cause a carriage-return and line-feed to occur on
the current output device.

156 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

CREATE { ———) A defining word used to create a dictionary entry
for <name> without allocating any parameter field memory.
When <name> is subsequently executed, the address of the
first byte of <name>'s parameter field is left on the stack.

Csp (——— addr) A user variable temporarily storing the stack
pointer position, for compilation error checking.

CURRENT (-—- addr) Leave the address of a variable specifying the
vocabulary into which new word definitions are to be entered.

D! (d addr ———)} Same as 2!.

D+ (d1 d2 --- d3) Leave the arithmetic sum of dl plus d2.

D+- (dl n --- d2) Apply the sign of n to the double number 41,

leaving it as d2.

D~ (d1 d2 --- d3) Subtract d2 from dl and leave the
difference d3.

D. (d -——) Display 4 converted according to BASE in a free-
field format, with one trailing blank. Display the sign only
if negative.

D.R (d n -~ Display d converted according to BASE, right
aligned in an n character field. Display the sign only if
negative.

DO= { d -——— flag) Leave true if d is zero.

D< ({ d1 d2 ——— flag) True if dl is less than d2.

D= (dl1 d2 --- flag) True if d1 eguals d2.

D> (d1 42 ~-- £) True if dl is less than d2.

pa (addr --- d) Same as 24@.

DABS (dl ---d2) Leave as a positive double number d2, the
absolute value of a double number, dl. Range
0..2,147,483,647.

DCONSTANT (---) Same as 2CONSTANT.

DDROP (d --—) Same as 2DROP,

DDUP (d -——dd) Same as 2DUP.

‘DECIMAL (———) Set the input-output numeric conversion base to ten.

DEFINITIONS (---) Set CURRENT to the CONTEXT vocabulary so that

157 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

DEPTH

DIGIT

DLITERAL

DMAX
DMIN

DNEGATE

DO

DOES>

DOVER

DP

DPL

subsequent defintions will be created in the vocabulary
previously selected as CONTEXT.

{ =——— n) Leave the number of the quantity of 1l6-bit values
contained in the data stack, before n was added.

(cnl -—— n2 tf)

(enl ---ff) bad-Converts the ASCII character c (using
base nl) to its binary equivalent n2, accompanied by a true
flaqg. If the conversion is 1invalid, leaves only a false
flag.

{ d -—— d) [executing]

(d ---) [compiling] : 1If compiling, compile a stack

double number into a literal. Later execution of the
defintion containing this literal will push it to the stack.
If executing, the number will remain on the stack.

({ d1 d2 ~-- d3) Leave the larger of two double numbers.

(d1 d2 --- d3) Leave the smaller of two double numbers.

(d1 -—— =-dl) Leave the two's complement of a double
number.

(nl n2 --—) Use only in a colon-definition. Begin a loop

which will terminate based on control parameters. The loop
index begins at n2, and terminates based on the limit nl. At
LOOP or +LOOP, the index is modified by a positive or
negative value. The range of a DO-LOOP is determined by the
terminating word. DO-LOOP may be nested. Capacity for three
levels of nesting 1is specified as a minimum for standard
systems.

(--——) Define the run-time action of a word created by a
high-level defining word. It marks the termination of the
defining part of the defining word <name> and begins the
definition of the run time action for words that will later
be defined by <name>. On execution of <namex> the sequence
of words between DOES> and ; will be executed, with the
address of <name>'s parameter field on the stack.

(d1 d2 --- d2 d1) Leave a copy fo the second double number
on the stack.

(—-- addr) A user variable, the dictionary pointer, which
contains the address of the next free memory above the
dictionary. The value may be read by HERE and altered by
ALLOT.

(-——— addr) A user variable containing the number of digits
to the right of the decimal on double integer input.
Defaults to -1 on single number input. '

158 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

DRO , DR1 , DR2 , DR3 , DR4 (---) Commands to select disk drives, by
presetting OFFSET. The contents of OFFSET is added to the
block number in BLOCK to allow for this selection.

DROP { n -—--) Drop the top number from the stack.

DSWAP (d1 d2 --- d2 dl) Exchange the top two double numbers on
the stack.

DU< (udl ud2 --- flag) True if udl 1is less than ud2. Both

numbers are unsigned.

DUMP (addr n ---) List the contents of n addresses starting at
addr. Each line of values may be preceded by the address of
the first value.

DUP (n--——nn) Leave a copy of the top stack number.

DVARIABLE (---) A defining word used to create a dictionary entry of
' <name> and assign 4 bytes for storage in the parameter field.
When <name> is later executed, it will leave the ' address of

the first byte of its parameter field on the stack.

ELSE (——) Used in a colon-definition and executes after the
true part following IF. ELSE forces execution te skip till
just after THEN. It has no effect on the stack. {See IF).

EMIT (¢ -—-) Transmit a charcter to the current output device.

EMPTY. { ——) Forget all new words added to the dictionary by the

user. This is useful for correctly adjusting the dictionary
pointer after an aborted entry of a definition, or after warm
starting without using FORGET to drop unwanted definitions.

EMPTY-BUFFERS (=---) Mark all block buffers as empty. The block
buffers are set to blanks. UPDATED blocks are not written to
mass storage.

ENCLOSE (addrl ¢ --- addrl nl n2 n3) The text scanning primitive
used by WORD. From the text address addrl and an ASCII
delimiting character c, is determined the byte offset to the
first non-delimiter character nl, the offset to the first
delimiter after the text n2, and the offset to the first
character not included n3.

ERASE (addr n ---) Clear a region of memory to zero from addr
over n addresses.

EXECUTE (addr ---) Execute the dictionary entry whose compilation
address is on the stack.

EXIT (-——) When compiled within a colon-definition, terminate

159 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

EXPECT

FENCE

FILL

FIND

FIRST

FLD

FLUSH

FORGET

FORTH

FREEZE

GO

HERE

execution of that definition, at that point. May not be used
within a DO...LOOP.

(addr n ---) Transfer characters from the terminal
beginning at addr, upward, until a "return" or the count of n
has been received. Take no action for n less than or equal
to zero. One or two nulls are added at the end of the text.

(——— addr) A user variable containing an address below
which FORGETting is trapped. To forget below this point the
user must alter the contents of FENCE.

(addr n byte ---) Fill memory beginning at address with a
sequence of n copies of byte. If the quantity is 1less than
or equal to zero, take no action.

(=—- addr) Leave the compilation address of the next word
name which is accepted from the input stream. Leave zero if
the word cannot be found.

(——— n } A constant that leaves the address of the first
(lowest) block buffer.

(--- addr) A variable pointing to the field length
reserved for a number during output conversion.

{ ———) A synonym for SAVE-BUFFERS.

(~——) Delete from the dictionary <name> (which is in the
CURRENT vocabulary) and all words added to the dictionary
after <name>, regardless of their vocabulary. Failure to

find <name> in CURRENT or FORTH is an error condition.

(———) The name of the primary vocabulary. Execution makes
FORTH the CONTEXT vocabulary. New defintions become a part
of FORTH until a differing CURRENT vocabulary is established.
User vocabularies conclude by 'chaining' to FORTH, so it
should be considered that FORTH is 'contained' within each
users' vocabulary.

(———) Save the current values of the user wvariables and
th top of the dictionary in low memory in place of the
original values.

(addr ---) Makes the address on the stack the next address
in the hardware program counter.

(-——— addr) A synonym for DP, the dictionary pointer.

{ ——— addr) Return the address of the next available
dictionary location.

160 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

HEX (—) Set the numeric conversion base to sixteen
{hexadecimal).

HLD (-———- addr) A user variable that holds the address of the
latest character of text during numeric output conversion.

HOLD (char ---) Insert char into ‘a pictured numeric output
string. May only be used between <# and #>.

I { =-- n) Copy the loop index onto the data stack. May be
only used in the DO-LOOP control structure.

I (——— n) Used within a colon-definition executed only from
within a DO-LOOP to return the corresponding loop index.

ID. (nfa ---) Print a definition's name from its name field
address.

IF (flag -=--) Used only in a colon-definition. If flag is
true, the words following IF are executed and the words
following ELSE are skipped. The ELSE part is optional. If
flag is false, words between IF and ELSE r or between IF
and THEN (when no ELSE is used), are skipped. IF-ELSE-THEN
conditionals may be nested.

IMMEDIATE (---) Mark the most recently made dictionary entry as a
word which will be - executed when encountered during
compilation rather than compiled.

INDEX (from to ---) Print the first line of each screen over
the range from, to. This is used to view the comment lines
of an area of text on disk screens.

This word incorporates a PAUSE feature, which holds the display still
when any key 1is pressed. Once suspended, the INDEX may be
resumed by striking any key once, or aborted by striking any
two keys in rapid succession.

INIT-FORTH({ --- addr) A constant locating the bootup parameter used
to initialize the FORTH vocabulary.

INIT-USER (--- addr) A constant returning a pointer to the start of
the bootup parameter area in low memory. This area 1is an
array containing cold-start values for the user variables.

INTERPRET (--- } Begin interpretation at the character indexed by the
contents of >IN relative to the block number contained in
BLK, continuing until the input stream is exhausted. If BLK
contains zero, interpret characters from the terminal input
buffer.

J { ——— n)} Return the index of the next outer loop. May be

used only within a nested DO-LOOP.

16l SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

KEY

LATEST

LEAVE

LFA

LIMIT

LIST

LIT

LITERAL

LOAD

LOOP

M*

M*/

(--- char) Leave the ASCII value of the next available
character from the current input device.

(—7— addr) Leave the name field address of the topmost
word in the CURRENT vocabulary.

(---) Force termination of a DO-LOOP at the next LOOP or
+LOOP by sertting the 1loop limit equal to the current value
of the index. - The index itself remains unchanged, and
execution proceeds normally until the loop terminating word
is encountered,

{ pfa --- 1fa) Convert the parameter field address of a
dictionary definition to its link field address.

{ ~-—— n) A constant leaving the address just above the
highest memory available for a disk buffer.

(n -——) List the ASCII symbolic contents of screen n on
the current output device, setting SCR to contain n and
setting FLAST if n is greater than FLAST. A single keystroke
while the screen is LISTing will terminate the LIST.

Changed to <LIT> to avoid crashing the system by accidental
typing of LIT from the keyboard (this can easily happen while
typing LIST, for instance).

(n ———) If compiling, then compile the stack value n as a
16-bit literal, which when later executed, will leave n on
the stack.

(n ---) Begin interpretation of screen n by making it the
input stream; preserve the locators of the present input
stream (from >IN and BLK). If interpretation is not
terminated explicitly it will be terminated when the input
stream 1is exhausted. Control then returns to the input
stream containing LOAD, determined by the input stream
locators >IN and BLK. Note that screen 0 is unloadable.

(===) Increment the DO-LOOP index by one, terminating the
loop if the new index is equal to or greater than the limit.
The 1limit and index are signed numbers in the range
-32,768..32,767.

(nln2 ---d) A mixed magnitude math operation which
leaves the double number signed product to two signed
numbers.

(dl nl n2 ---d42) Multipies .dl. by nl and divides the
triple precision product by n2 leaving the quotient d2. all
values are signed.

162 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

M+ { dl n --- 42) Add 41 to n and return d2. Note all values
are signed.

M/ { d nl ---n2 n3) A mixed magnitude math operation which
leaves the signed remainder n2 and signed quotient n3, from a
double number dividend and divisor nl. The remainder takes
its sign from the dividend.

M/MOD (udl u2 --- u3 ud4) An unsigned mixed magnitude math
operation which leaves a double quotient ud4 and remainder
u3, from a double dividend udl and single precision divisor
uz.

MAX (nIl n2 ~-- n3) Leave the greater of two numbers.

MAX-DRV {(--—— n) A constant which returns the current maximum
number of drives.

MIN (nl n2 ~—- n3) Leave the lesser of two numbers.

MOD (n1 n2 --- n3) Divide nl by n2, leaving the remainder ni,
with the same sign as nl.

MOVE (addrl addr2 n ---) Move the specified quantity n of 16-
bit memory cells beginning at addrl into addr2. The contents
of addrl is moved first. If n is negative or zero, nothing
is moved.

NEGATE {(n-—— -n) Leave the two's complement of a number, i.e.,
the difference of 0 less n.

NEXT (———) An assembler constant pointing to the machine code
entry point of the inner interpreter.

‘NFA (pfa --- nfa) Convert the parameter field address of a
definition to its name field.

NOT { flagl --- flag2) Reverse the boolean value of flagl.
This is identical to 0=.

NUMBER (addr ---4d) Convert the count and character string at
addr, to a signed 32-bit integer, using the current base. If
numeric conversion 1is not possible, an error condition
exists.,

This implementation follows the Starting Forth version. It allows the
following characters to be used as punctuation signalling
entry of a double precision number: '.' ',' '/' '—' apnd ‘'.',

OFFSET (--- addr) A variable that contains the offset added to

the block number on the stack by BLOCK to determine the
actual physical block number. The user must add any desired
offset when utilizing BUFFER.

163 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

CR

ouT

OVER

PAD

PAGE

PAUSE

PFA

PICK

PP

PREV

QUERY

QUIT

R#

R/W

RO

(nl n2 ---n3) Leave the bitwise inclusive-or of two
numbers.
(—-—— addr) A user variable that contains a wvalue

incremented by EMIT. The user may alter and examine OUT to
control display formatting.

(n1 n2 --- nl' n2 nl) Leave a copy of the second number on
the stack.

(——— addr) The address of a scratch area used to hold
character strings for imtermediate processing. The minimal
capacity of PAD is 64 characters. (addr through addr+63)

(---) Clear the terminal screen or perform an action
suitable to the output device currently active.

(-=—) Test the terminal keyboard for actuation of any key.
If true, wait until a key has been pressed ‘again.

{ nfa --- pfa) Convert the name field address of a compiled
definition to its parameter field address.

(nl --- n2) Return the contents of the nl-th stack value,
not counting nl itself. An error condition results for n
less than one.

(n --- <text>) On the latest screen listed, put <text> on
linre n. This ideogram makes it possible to enter new source
text on a screen without use of an EDITOR.

(-~~ addr) A wvariable containing the address of the disk
buffer most recently referenced.

(==~) Accept input of up to 80 characters (or until a
carriage return) from the operator's terminal, into the
terminal input buffer.

(-———) Clear the return stack, setting execution mode, and
return control to the terminal. No message is given.

(-—— addr) A user variable which contains the current
editing line in the current screen.

(ADDR BLK F =---) The fig-FORTH standard disk read-write
linkage. addr specifies the source or destination buffer,
blk is the sequential number of the referenced block; and £
is a flag for f=0: write and f=1: read.

(——— addr) A user variable containing the initial location
of the return stack.

L64g SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

R> (----n) Transfer n from the return stack to the data
stack.

R@ (——— n) Copy the number on the top of the return stack to
the data stack.

REPEAT (———) Used 1in a colon-definition. At run—-time, REPEAT
returns to just after the corresponding BEGIN.

ROLL (n ---—) Extract the n-th stack value to the top of the
stack, not counting n itself, moving the remaining values
into the vacated position. An error condition results for n
less than one.

ROT (nl n2n3 ---n2 n3 nl) Rotate the top three values,
bringing the deepest to the top.

RP! (———) A procedure to initialize the return stack pointer
from the variable RO.

RPR (-=- addr) Leaves the current wvalue in the return stack
pointer register.

S->D {n--- d) Sign extend a single number to form a double
number.

S0 (——- addr) Returns the address of the bottom of the stack,
when empty.

SAVE-BUFFERS (---) Write all blocks to mass—-storage that. have been
flagged as UPDATEd. An error condition results if mass-
storage writing is not completed.

SCR (--— addr) Leave the address of a variable containing the
number of the screen most recently listed. The value of the
variable is unsigned.

SEC/BLK (-—-—- addr) A variable containing the number of sectors in
a block.

SET-DRX { n—) For drive number n, calculates and adds the
necessary value to QOFFSET.

SIGN { n---) Insert the ASCII "-" (minus sign) into the
pictured numeric output string, if n is negative.

SMUDGE (=——) Used during word definition to toggle the "smudge
bit" in a definition's name field.

SP! (——=) A procedure to initialize the stack pointer from §0.

SPO (—-- addr) A user variable that contains the initial wvalue

of the stack pointer.

165 SUPER~FORTH 64 (TM)

MVP Standard Word Set Glossary

Spra@

SPACE

SPACES

STATE

SWAP

T&SCALC

TEXT

THEN

THRU

TIB

TITLE

TOGGLE

TRAVERSE

TRIAD

TYPE

(=== addr) Return the address of the top of the stack,
just before SP@ was executed.

(--—-) Transmit an ASCII blank to the current output
device.

(n---) Transmit n spaces to the current output device.
Take no action for n of zero or less.

(-—— addr) Leave the address of the variable containing
the compilation state. A non-zero content indicates
compilation is occurring.

(nl n2 --- n2 nl) Exchange the top two stack values.

{ rel.sect -—- drive sector track) Performs physical drive,
sector and track calculations given a relative sector number.
rel.sect is the total sector displacement from the first
logical drive to the desired sector. -

{ ¢ -——) Accept characters from the input stream, as for
WORD, into PAD, blank filling the remainder of PAD to 64
characters.

(-——-) Used in a colon-definition. THEN is the point where
execution resumes after ELSE or IF (when no ELSE is present).

{ nl n2 ---) Load consecutively the blocks from nl through
nz,

{ ——— addr) A user variable containing the address of the
terminal input buffer.

(———) Print a fixed message followed by a carriage return,
({ addr b ---) Complement the contents of addr by the bit
pattern b.

(addrl n --- addr2) Move across the field of a £ig-FORTH
variable length dictionary header. addrl is the address of
either the length byte or the last letter. If n=1, the
motion is toward high memory; if n = -1, the motion is toward

low memory. The addr2 resulting is the address of the other
end of the name.

(scr -—-) Display on the selected output device the three
screens which include that numbered scr, beginning with a
screen evenly divisible by three.

(addr n --—) Transmit n characters beginning at address to
the current output device. No action takes place for n less
than or equal to zero.

166 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

u*

U/MOD

U<

UNTIL

Up

UPDATE

USE

USER

VARIABLE

VLIST

{ unl un2 --- un3) Perform an unsigned multiplication of
unl by un2, leaving the double number product un3. All
values are unsigned.

(un ---) Display un converted according to BASE as an
unsigned number, in a free-field format, with one trailing
blank.

(unl n2 ---) Output unl as an unsigned number right
justified in a field n2 characters wide. If n2 1is smaller
than the characters required for nl, no leading spaces are
given.

(udl un2 --- un3 un4 } Perform the unsigned division of
double number udl by un2, leaving the remainder un3, and
quotient un4. All values are unsigned.

(unl un2 --—- flag) Leave the flag representing the
magnitude comparison of unl < un2 where unl and un2 are
treated as 16-bit unsigned integers.

(addr n ~——) [compiling]

(fl ---) [executing] : Within a colon-definition, mark
the end ¢f a BEGIN-UNTIL loop, which will terminate based on
a flag. If flag is true, the loop is terminated. If flag is
false, execution returns to the first word after BEGIN.
BEGIN-UNTIL structures may be nested.

{ -~- addr }) A constant returning a pointer to the cell in
low memory which holds the pointer to the user area.

{ -——) Mark the most recently referenced block is modified.
The block will subsequently be automatically transferred to
mass storage of a different block, or upon execution of :SAVE-
BUFFERS.

({ --- addr) A variable containing the address of the block
buffer to use next, as the least recently written.

(n ---) A defining word which creates a user variable
<name>. n 1is the cell offset within the user area where the
value for <name> is stored. Execution of <name> leaves its
absolute user area storage address.

{ ~--) A defining word to create a dictionary entry for
<name> and allot two bytes for storage in the parameter
field. The application must initialize the stored wvalue.

When <name> is later executed, it will place the storage
addresses on the stack.

(---) List the word names of the CONTEXT vocabulary
starting with the most recent definition. This word

167 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

VOC-LINK

incorporates the PAUSE feature- pressing any key will freeze
the display. Once suspended, the VLIST may be resumed by a
single keystroke, or aborted by striking any two keys in
rapid succession.

(——— addr) A user variable containing the address of a
field in the definition of the most recently created
vocabulary. All vocabulary names are linked by these fields
to allow control for FORGETting through multiple
vocabularies.

VOCABULARY(=--~) A defining word to create (in the CURRENT

WARNING

WHERE

WHILE

WIDTH

WORD

vocabulary) a dictionary entry for <name>, which specifies a
new ordered list of word definitions. Subsequent executions
of <name> will make it the CONTEXT vocabulary. When <name>
becomes the CURRENT vocabulary (see DEFINITIONS), new
defintions will be «created in that list. In lieu of any
further specifications, new vocabularies 'chain' to FORTH.
That is, when a dictionary search through a wvocabulary is
exhausted, FORTH will be searched.

(--- addr) A user variable containing a flag which enables
the output of selected non-fatal error messages.

(——=) Display the last character string parsed by the text
interpreter, along with the line containing it. If loading,
the screen and line numbers are printed.

{ flag —---) Used in a colon-definition to select
conditional execution based on -the flag. On a true flag,
centinue execution through to REPEAT, which then returns back
to just after BEGIN. On a false flag, skip execution to just
after REPEAT, exiting the structure.

(-—— addr) 1In fig-FORTH, a user variable containing the
maximum number of letters saved in the compilation of a
definition's name. It must be 1 through 31, with a default
value of 31.

(char --- addr) Receive characters from the input stream
until the non-zero delimiting character is encountered or the
input stream is éxhausted, ignoring leading delimiters. The
characters are stored as a packed string with the character
count in the first character position. The actual delimiter
encountered (char or null) is stored at the end of the text
but not included in the count. If the input stream was
exhausted as WORD is called, then zero length will result,
The address of the beginning of this packed string is left on
the stack.

(-—-- '} This is a pseudonym for the "null" or dictionary
entry for a name of one character of ASCII null. It 1is the

168 SUPER-FORTH 64 (TM)

MVP Standard Word Set Glossary

XOR

(]

[COMPILE]

execution procedure to terminate interpretation of a line of
text from the terminal or within a disk buffer, as both
buffers always have a null at the end.

{ nl n2 ---n3) Leave the bitwise exclusive-or of two
numbers.
(-———) End the compilation mode. The text from the input

stream is subsequently executed. See)

{ ——) Used in a colon-definition to compile the parameter
field address of the next word in the input stream as a
literal, N

(~~—) Used 1in a colon-definition to force compilation of
the following word. This allows compilation of an IMMEDIATE
word when it would otherwise be executed.

(——) Set the compilation mode. The text from the input
stream is subsequently compiled. See [

169 SUPER-FORTH 64 (TM)

P

* kkk &
* % *
hhkkikk kkkk
* * &
* * %

kk kX
* %

Kk &k

*

*

*

Rk kK
*
*kkk
*
* %k &

k& * kkkk
*k k *k
* &k %
x kk &
x % * kkkk
170

*
*
*

*kkkk % *

* L

* *

* * %
khkAhkk * *

SUPER-FORTH 64 (TM)

Example Programs

I. Example Programs

An extensive program example (also included in the system) is the
CURVES demo (see source screens in Appendix II). This demo uses hi-res
graphics, sprites, and a sound oscillator at same time. To load and
run the demo enter the following:

9% 110 THRU (LOADS THE DEMO SCREENS)
DEMO { STARTS THE DEMO)

To stop it perform a warm start (RUN/STOP RESTORE sequence. After
running DEMO, trying changing the LEVEL and LINE-LENGTH wvalues which
DEMO uses to call D-CURVE and C~CURVE (see screens) for variations of
those curves.

Examples:
23 D-SPLIT 0 23 D-POSITION
4 8 D-CURVE (4 LEVEL DRAGON CURVE- RESOLUTION 8)
8 6 C-CURVE (LARGE 8 LEVEL C-CURVE)
12 2 D-CURVE (THIS WILL TAKE A WHILE TO DISPLAY)
SOUND. INIT (GET RID OF SQUND)
OFF D-SPLIT (GET BACK TO NORMAL SCREEN)

Comments in the examples (anything which is delimited by parenthesis-"(
..)") need not be entered when entering definitions interactively
(since the comments will not be stored anyway). They are provided to
add clarity to the example. If the examples are entered as source
files, however, 1 recommend inclusion of the comments.

A brief pep talk on the use of comments in source code: My particular
technique is to put a comment line above each definition giving a
general description of the definition, a "stack notation" comment of
the form "(input --- output)" after the name of the definition (this
describes the inputs and outputs of the word), and other comments as
needed to clarify the definition. Unlike BASIC where everything you
might do to clarify the program slows it down even more, FORTH comments
are NOT compiled into the definition, so they DON'T slow down
execution! Therefore, I highly recommend the use, overuse and abuse of
comments- believe me, comments are just dying to be seen! Well, so
much for my comments on comments.

The examples included in this section are intended to provide the user
with some concrete programming examples. The first example describes
how to design a complete application from the "top down" to the bottom.
The second example provides an example of how the language itself can
be extended to provide very high level functions.

I have used music for these examples since that is my particular
interest, but the concepts demonstrated apply to any application area.

171 SUPER-FORTH 64 (TM)

Example Programs

I-1 Designing A Program- Sound Synthesizer Example

The SID chip takes lots of parameters—- I mean LOTS of parameters. A
certain number of these must be set up in order to get the chip to do
anything at all! The SUPER-FORTH word SOUND.INIT has been provided to
perform a basic initialization of the SID chip. SOUND.INIT clears all
SID registers and then performs resets on each of the three
oscillators, leaving V1 as the active oscillator.

In order to specify a sound you must set up what 1is known as the
amplitude envelope, or ADSR. Since the Commodore Reference Manual (or
one of the other recommended books on sound) gives a description of
ADSR I won't go into that here. Words V-AD and V-SR are used to set up
the attack/decay parameters and the sustain/release parameters.

So, you need to understand all about ADSR in order to use the SID chip,
right? Wrong! There is a word called V-DEFAULT which will set up the
active voice with default parameters for the ADSR and the waveform.
SOUND. INIT calls V-DEFAULT for each of the three voices as part of its
SID initialization. Using SOUND.INIT should get you started, but try
experimenting with different parameters to get your own sounds. The
source code (see screen #47) is provided for V-DEFAULT and SOUND.INIT,
so if you desire a different default the appropriate words in V-DEFAULT
should be replaced and screen 47 re-loaded. All the wuser really
need know to use the SID chip, however, is that SOUND.INIT must be
invoked in order for the sound system to do anything. It 1is only
necessary to use SOUND.INIT once after each FORTH startup.

Note: Words which are prefixed with "v-" affect .one of the three
oscillators, V1, V2 or V3, whichever was last invoked. That
voice is referred to as the "“active" wvoice.

You can play a note from the chromatic scale using PLAY.NOTE (see
PLAY .NOTE description). If you type the following, for example:

SOUND. INIT (INITIALIZES SOUND SYSTEM)
48 PLAY.NOTE { PLAY A C4)
60 PLAY.NOTE { PLAY A C5)

you will hear two C notes played one octave apart.

But who wants to remember all those numbers? Certainly not I! The
following are two different approaches to letting the computer keep
track of the numbers while you, the user, tell the computer what to
play by using a more familiar format.

The first example describes how to write a SUPER FORTH program which
will allow the wuser the "play" the C64 keyboard like a piano (or
synthesizer) keybecard. It could be the basis of a real-time
synthesizer program, that is, a user plays notes and instantly gets the
musical response.

172 SUPER~FORTH 64 (TM)

Example Programs

The second example describes ways of creating useful music composition
tools which could be used as the basis of a music editing program.

I-1.1 Sound Synthesizer Example

This example is intended both as an example of using the SID chip AND
as an example of what is known in the programming world as "structured
top down design", a method of programming which FORTH is particularly
suited for. Unlike the previous graphics example, this 1is NOT an
interactive example, that is, you won't be able to enter anything until
the complete program has been designed by us. If you are particularly
itchy to hear your (64 make music using SUPER-FORTH, the complete
program example is given at the end of this section. It may be useful
to enter the program to see the end result of what we are trying to
accomplish, and then come back here to read the description of how we
went about creating the program. Okay, on with the program!

Lets say we want to write a program which will allow the user to "play"
the C64 keyboard as 1if it 1is a piano keyboard (similar to the program
in the Commodore 64 User's Manual). The following keys:

2 3 5 6 7 9 0 -
Q W E R T Y U I O P @ *

would map into a piano keyboard:

C# D# F# G# A# C# D# F#
¢ b EF G A B C D E F G

First we need to set up a method by which a keyboard key can be used by
the program to designate a key on a piano keyboard (for instance,
pressing a Q would look to the program like a C on the piano). The
method we will use is called a translation table. This table will be
used to translate the keys entered (Q, W etc.) into the numbers
required by PLAY.NOTE to play the proper note., The table requires up
to 128 values since that is the maximum number of ASCII characters we
may want to translate., Since the values used will be less than 256 (a
character value ranges from 0-255) we can use a byte table to contain
the values,

CREATE TRANSLATE 128 ALLOT

defines a word named TRANSLATE in the dictionary and allocates 128
bytes of dictionary storage.

Lets set up a4 string which describes each character in chromatic scale
order. [If we use the SUPER-FORTH data structure STRING, when NOTE.KEYS
is invoked the length of NOTE.KEYS and the address of the beginning of
the string will be left on the stack.

SCONSTANT NOTE.KEYS "Q2W3ERST6Y7UISO0P@-*"

173 SUPER-FORTH 64 (TM)

Example Programs

Okay, our data structures have been defined. I will describe the
actual program using the method "top down design, bottom up testing”,
that is, we first determine at a high level what we need to do and then
implement the words to perform our high level requirements. Testing,
however proceeds from the lowest level words up to the high level
words. Don't worry about it if this is not very clear yet.

Note: Since we are going to design high level words first, you will
not be able to enter the words interactively until we are ready
to test, the low level definitions being the last to be defined.

Let's call our highest level word PLAY, since that is what we are
trying to do. What we'll do is fill in the words which make up PLAY as
we determine what they are. So far we have:

(PLAY THE C64 KEYS LIKE A PIANO KEYBOARD)
: PLAY (~--) ;

The first thing we must do is initialize all those things that need
initializing. What's a good name for our initialize routine? How
about INITIALIZE?

(PLAY THE C64 KEYS LIKE A PIANO KEYBOARD)

PLAY (---
INITIALIZE (INITIALIZE VARIOUS THINGS)

"

-
r

The main function of PLAY is to get a note from the keybcard and to
play it:

(PLAY THE C64 KEYS LIKE A PIANO KEYBOARD)

PLAY (——-)
INITIALIZE (INITIALIZE VARIOUS THINGS)

GET.NOTE (GETS A NOTE FROM THE C64 KEYBOARD)
PLAY.NOTE (TELLS THE SID CHIP TO PLAY THE NOTE)

a
f

What happens after we've played the note? We fall off the edge of the
program, that's what! Well, this is fine if we want to play a single
note, but it's a heck of a 1lot of work to go through for one little
note. So, why don't we put in a way of playing lots of notes?

(PLAY THE C64 KEYS LIKE A PIANO KEYBOARD)

: PLAY (--—-)
INITIALIZE (INITIALIZE VARIOUS THINGS)
BEGIN
GET . NOTE (GETS A NOTE FROM THE C64 KEYBOARD)
PLAY.NOTE (TELLS THE SID CHIP TO PLAY THE NOTE)
AGAIN

-
’

Okay, now we've got LOTS of notes, but no way to stop! We can always

174 SUPER-FORTH 64 (TM)

Example Programs

warm start, but that's really tacky. Let's specify a way to stop and
call it MORE?. We can worry about the definition of MORE? later.

(PLAY THE C64 KEYS LIKE A PIANO KEYBOARD)

PLAY (---)
INITIALIZE (INITIALIZE VARIOUS THINGS)
BEGIN
GET.NOTE GETS A NOTE FROM THE C64 KEYBOARD)

(

MORE? WHILE (PLAY ANOTHER NOTE?)
(
{

?DUP IF IF ZERO, DON'T PLAY)
PLAY .NOTE TELLS THE SID CHIP TO PLAY THE NOTE)
THEN

REPEAT ; { GO GET ANOTHER NOTE)

That's our highest level definition. That was really the hard part,
Now all we have to do is £ill in the lower level words, but we already
have some idea of what they do.

Notice how the highest level word is really a description of what we
want the program to do. There are NO FORTH level primitives in this
word, Jjust broad, descriptive words and the necessary control
structures required (in this case, BEGIN,..WHILE...REPEAT).

First let's define INITIALIZE. INITIALIZE must handle the
initialization of the TRANSLATE table and of the SID chip.

(INITIALIZATION PROCEDURE)

: INITIALIZE
SOUND.INIT (INITIALIZE SID CHIP)
INIT.TRANSLATE ; (INITIALIZE THE TRANSLATE TABLE)
A good thing to remember is to keep definitions short. Short
definitions will make it much easier later on to understand previous
work. SOUND.INIT has already been discussed. INIT.TRANSLATE will
initialize the character translation table, TRANSLATE. Unused places

in the table will contain 2zero. The character which flags the end of
execution ("F" for "finished") is set to 255. Used character places
will contain the number of that characters equivalent PLAY.NOTE
parameter. The character data will be offset by 48 to raise the notes
to a more listenable octave (48 raises a note 4 octaves).

(INITIALIZE TRANSLATION TABLE)
INIT.TRANSLATE (---)
TRANSLATE 128 0 FILL
255 70 TRANSLATE + C!
NOTE.KEYS COUNT 0 DO
I 48 +
OVER I + C@
TRANSLATE + C!
LOOP DROP ;

ZERO OUT TABLE)

FLAG "F" AS FINISH CHAR)

DO FOR # CHARS. IN STRING)

SET UP NOTE VALUE)

GET CHAR FROM STRING)

ADD CHAR TO TABLE & STORE NOTE)
DO REST OF STRING)

A o —

Since this is a low-level word, we can immediately test its

175 SUPER-FORTH 64 (TM)

Example Programs

functionality (or testing could be postponed until ALL low level words

have been defined). Type the following:
INIT.TRANSLATE { INITIALIZE TABLE)
' TRANSLATE 16 DUMP (SHOULD DISPLAY ALL ZEROES)
' TRANSLATE 112 + 16 DUMP
81 TRANSLATE + C@ . { "Q" SHOULD PRINT 48 [C4])
42 TRANSLATE + C@ . ("*" SHOULD PRINT 67 [GS5])
70 TRANSLATE + C@ . ("F" SHOULD PRINT 255 [FINISHED])

The next component in our high 1level definition to be defined is
GET.NOTE, the routine which gets input from the keyboard and translates
it according to the TRANSLATE table. GET.NOTE returns 255 if the
"finished" character ("F") is entered, 0 for non-defined characters and
the note value for characters defined in NOTE.KEYS.

{ GET A NOTE FROM THE KEYBOARD)
: GET.NOTE (—--- VALUE)
KEY TRANSLATE + CQ@ ;

Test out GET.NOTE by entering some keys and displaying their values.
GET.NOTE is the routine which would be changed if a different type of
input device was used (a synthesizer keyboard, for instance).

MORE? simply checks to see if the depressed key is the ™"finished" key
and leaves a FALSE flag on the stack if it is (this ends the
BEGIN...WHILE...REPEAT main loop) or leaves a TRUE flag if it is not.

(CHECK FOR "FINISHED" CHARACTER [255])
: MORE? (VALUE --- VALUE FLAG) _
DUP 255 = NOT ; (FALSE IF "FINISHED")

If execution efficiency becomes a problem this would be the Ffirst word
to be eliminated and incorporated into the main definition, but it pays
to define MORE? for the clarity it brings to the main definition.

This one is easy to test, enter a value, if the value was 255, ' 255 0
will be left on the stack, otherwise, VALUE 1 will be left, Values of
0 will be checked for and not played.

The final word to test is our high-level word, PLAY. Well, ¢try it-

type PLAY and then try playing on the keyboard. For reference, here is
the complete program:

.76 SUPER-FORTH 64 (TM)

Example Programs

CREATE TRANSLATE 128 ALLQT
$CONSTANT NOTE.KEYS "Q2W3ERST6Y7UIS0Q0P@-*"

(GET A NOTE FROM THE KEYBOARD)
: GET.NOTE { -—- VALUE)
KEY TRANSLATE + C@ ;

(CHECK FOR "FINISHED" VALUE [255])
: MORE? (VALUE --- VALUE FLAG)
DUP 255 = NOT ; (FALSE IF "FINISHED")

(INITIALIZE TRANSLATION TABLE)
¢ INIT.TRANSLATE (---)
TRANSLATE 128 0 FILL { ZERO OUT TABLE)
~1 70 TRANSLATE + C! { FLAG "F" AS FINISH CHAR)
NOTE.KEYS COUNT 0 DO (DO FOR # CHARS. IN STRING)
I 48 + { SET UP NOTE VALUE)
OVER I + C@ (GET CHAR FROM STRING)
(
{

TRANSLATE + (! ADD CHAR TO TABLE & STORE NOTE)

LOOP DROP ; DO REST OF STRING)
(INITIALIZATION PROCEDURE)
: INITIALIZE

SOUND.INIT { INITIALIZE SID CHIP)

INIT.TRANSLATE ; (INITIALIZE THE TRANSLATE TABLE)

(PLAY THE C64 KEYS LIKE A PIANO KEYBOARD)

PLAY (---)
INITIALIZE (INITIALIZE VARIOUS THINGS)
BEGIN
GET.NOTE GETS A NOTE FROM THE C64 KEYBOARD)

{
MORE? WHILE (PLAY ANOTHER NOTE?)
?2DUP IF { IF ZERO, DON'T PLAY)
(

PLAY .NOTE TELLS THE SID CHIP TO PLAY THE NOTE)
THEN
REPEAT ; { GO GET ANOTHER NOTE)

I-1.2 Extending SUPER FORTH- Music Tools
I will describe extending the system by creating various music handling
tools using the SUPER FORTH 64 Sound primitives. These words actually
form the basis of the Music Editor words incorporated into SUPER FORTH.
Thus, to aveid having the ISN'T UNIQUE message print out (since many of
these words are already defined in the system) enter the following:
OFF WARNING !

I'm assuming the user has a basic knowledge of music theory for the
understanding of the following examples.

Let's set up a way of specifying tempo and note duration:

177 SUPER-FORTH 64 (TM)

Example Programs

VARIABLE TEMPO (TEMPO OF MUSIC)
VARIABLE DURATION (NOTE DURATION)

TEMPO will store our tempo value (how fast the notes are played) and
DURATION will store our single note duration. The following words will
be used to set duration (similar definitions exist in the system, but
these are less complex)

(NOTE DURATIONS BASED ON 64TH NOTE RESOLUTION)
(4/4 TIME ASSUMED)
: WHOLE 16 DURATION
: .1/2 12 DURATION
: 1/2 8 DURATION

! WHOLE NOTE)

!

!
DURATION !

1

!

DOTTED HALF NOTE)
HALF NOTE.)

|E. e ME me wa W

: .1/4 6 DOTTED QUARTER NOTE)
: 1/4 4 DURATION QUARTER NOTE)
: 1/8 2 DURATION EIGHTH NOTE)

etc.

DURATION.PAUSE provides a pause for a given note (or chord) based on
the values in DURATION and TEMPO.

(PAUSE TO ALLOW NOTE TO LAST FOR DURATION)

: DURATION.PAUSE (---)
DURATION @ 900 TEMPO a *x/ { PAUSE = DURATION / TEMPO)
WAIT ;

PLAY.WAIT plays a note of a given value, then calls waits an amount of
time based on the duration of the note and the tempo of the music.

(PLAY A NOTE OF GIVEN DURATION)

PLAY .WAIT (VALUE —--)
PLAY.NOTE (PLAY THE NOTE)
DURATION.PAUSE ; (PAUSE TO LET NOTE COMPLETE)

Notes will play faster as TEMPO is increased and slower as TEMPO is
decreased., First, ways of dealing with PLAY.WAIT more reasonably in
interactive mode. One simple method would be to create 9§ definitions,
one for each chromatic note, as follows:

: CO 0 PLAY.WAIT ; : Cl 12 PLAY.WAIT i ¢ C2 24 PLAY.WAIT

: CO# 1 PLAY.WAIT ; : Cl# 13 PLAY.WAIT i C2# 25 PLAY.WAIT

: DO 2 PLAY.WAIT ; Dl 14 PLAY.WAIT ; : D2 26 PLAY.WAIT
etc.

w8 wma wa

These can now be combined, using the appropriate duration value to
define phrases:

r DOE .1/4 C4 1/8 D4 .1/4 E 1/8 D4 1/4 E4 D4 1/2 E4 ;
REY .1/4 D4 1/8 E4 F4 F4 E4 D4 WHOLE F ;
DOE REY

A different usage of the definitions CO, C#0 etc., may be to set the 9§
values as constants:

178 SUPER-FORTH 64 (TM)

Example Programs

0 CONSTANT CO 12 CONSTANT Cl 24 CONSTANT C2

1 CONSTANT CO# 13 CONSTANT Cl# 25 CONSTANT C2#

2 CONSTANT DO 14 CONSTANT D1 26 CONSTANT D2
etc.

We can now use the constant values to specify chords, for instance.
Let's define a FORTH structure to play a major chord. For those non-
music-theorectical type people, I will give a brief explanation about
how to define a major chord structure. A simple major chord (three
notes played simultaneously), can be described by specifying "a root
note (let's say C4 for our example), and playing the third of the root
key (E4 in our example) and the fifth of the root key (G4 1in our
example) simultaneously.

To set up our chord constructions we can define more constants defining
key intervals which can be used to construct chords. The following
table describes only the more commonly used intervals. Of course, none
of these constants NEED to be defined, they are used only for clarity
in defining higher level FORTH words.

D0 CO - CONSTANT SECOND

D#0 CO - CONSTANT MIN.THIRD
E0 CO -~ CONSTANT THIRD

FO CO - CONSTANT FORTH

GO C0 - CONSTANT FIFTH

A0 CO0 - CONSTANT SIXTH

A#0 CO - CONSTANT DOM.SEVENTH
B0 CO - CONSTANT SEVENTH

Okay, now for our major chord definition:

: MAJOR (ROOT ---)
DUP THIRD + (PUT THIRD ON STACK)
OVER FIFTH + (PUT FIFTH ON STACK)
V3 PLAY.NOTE (PLAY FIFTH ON VOICE 3)
V2 PLAY.NOTE (PLAY THIRD ON VOICE 2)
V1 PLAY.NOTE (PLAY ROOT ON VOICE 1)
DURATION.PAUSE ; (PAUSE FOR DURATION OF CHORD)

Great, now we have a chord structure definition.

We Must initialize voices V2 and V3 (V1 is already initialized) before
attempting to use MAJOR: '

V2 V-DEFAULT V3 V-DEFAULT (INIT. V2 AND V3)
Now try out the following chord changes:
120 TEMPO ! WHOLE C4 MAJOR 1/2 F4 MAJOR G4 MAJOR
You should hear a measure of C4 major followed by a half measure of F4

major and a half measure of G4 major.

179 SUPER-FORTH 64 (TM)

Example Programs

Well, I think I've given you enough ideas to start you off. The same
methods could be used to define other chords, arpeggios, or seguences
of notes which will be repeated.

The techniques described were used to create the SUPER FORTH Music
Editor which is included in the system. The Music Editor vocabulary is
somewhat more complex due to having to handle synchronizing the three
voices, however you should now be able to understand the code which
implements the Music Editor. Refer to source screens 81-86 for the
code. Also,. if you haven't done so, go through the examples in the
Music Editor section of this manual (however, first FORGET the
definitions which you have added in this section). I hope you have as
much fun as I've had bringing the system to you.

180 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

II. SUPER-FORTH 64 User Source Screens

The index and listing which follows describe the source screens which
are distributed with the system. All words up to the point which is
marked "Not Compiled") have been compiled into the SUPER-FORTH system.
The source code of these words has been provided to allow user
flexibility in configuring a FORTH system, and as an educational tool
to provide to beginner with examples of implementations of FORTH words.

The following screens are compiled into the system:

0
1 (SF64 REVIEW SYSTEM LOADER BLOCK)
2 (DISK DIRECTORY/LOADER)
3 (UTILITIES: THRU)
4 (C64 UTILITIES: SYSCALL RECURSE -TEXT)
5 (KERNAL & I/O: SETLFS SETNAM OPEN CLOSE CLRCHN)
6 { KERNAL INTERFACE: LOADRAM DOS ST)
7 { STRINGS: $VARIABLE $CONSTANT <$CONCAT>)
8 (STRINGS: $CONCAT $LEFT $MID SRIGHT)
9 (STRINGS: $VAL SLEN $. S$CLR)
10 (STRINGS: <"> " wo
11 { STRINGS: $CMP $<)
12 (STRINGS: $> $= SFIND)
13 (FILE MODE: FNAME FOPEN FILE-MODE)
14 (FILE-MODE: READB WRITEB)
15 (FILE-MODE: F-INIT F-NEW F-APPEND)
16 { FILE-MODE: F-EDIT F-SAVE)
17 (FILE MODE: F-LOAD F-NUMBER)
18 (GRAPHICS: S-MULTIR MULTI-COLOR S-S-COLLISION S-B-COLLISION)
19 (GRAPHICS: B-GRAPHICS B-FILL B-COLOR B-COL-FILL)
20 (GRAPHICS: S-FSET S-ENABLE S-XEXP S-YEXP)
21 (GRAPHICS: S-PRIORITY S-MULTI S-POINTER S—COLOR)
22 { SOUND- V-FREQ V-PW V-AD V-SR)
23 (SOUND- V-CTRL RESFILT MODEVOL)
24 (UTILITIES: .S .SL .SR .SS ,INDEX <ROT)
25 (UTILITIES:MAX-BUFFS BMOVE COPY SCOPY DSWAP D- DO=)
26 (UTILITIES: D= D> D@ DCONSTANT DMAX DMIN DOVER DU< DVARIABLE)
27 (UTILITIES: PAUSE)
28 (UTILITIES: INDEX ?LOADING -->)
29 (UTILITIES: DUMP)
30 (UTILITIES: 'TITLE TITLE TRIAD)
31 (UTILITIES: <EMIT7> 1ID.)
32 (UTILITIES: VLEN VTAB VLIST)
33 (SUPPLEMENTALS: 'S "2" DOUBLE NUMBER SET)
34 (SUPPLEMENTALS: >BINARY ERASE FLUSH H U.R ['])
35 (ASSEMBLER: CONSTANTS INDEX)
36 (ASSEMBLER: MODE ADDRESSING MODES BOT SEC RP> UPMODE)

181 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62

63
64
65

66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

(
(
(

(
(
(
(
(
(
(
(
(
(
(
(
(
(
{
{
(
(
(
(
(
(
(
(
(
(
{
(
(
(
(
(
(
(
{
(
(
(
(
(
(
(
(
(
(
(
{
(
{
(

ASSEMBLER:
ASSEMBLER:
ASSEMBLER:
ASSEMBLER:
ASSEMBLER:

CPU)
M/CPU)

BEGIN, UNTIL, IF, THEN, ELSE, NOT BRANCHES)

AGAIN, WHILE, REPEAT)
END-CODE ENTERCODE ;CODE CODE)

EDITOR: CHKLIN LINE PP C)
EDITOR: SCREEN COMMANDS)
EDITOR: K X O M)

EDITOR: F L W N P SC SM LIST)

DECOMPILER:
DECOMPILER:
DECOMPILER:

GIN GIN+ GCHK)
<DECOM>)
DECOMPILE)

TRIG: TSCALE)
TRIG: SIN/COS VALUES TABLE - SCALED BY 32768)

TRIG: QSIN

QCOS SIN COS)

MATH: SQUARE ROOT ROUTINES)
MATH: SQUARE ROOT ROUTINES)

F.P. MATH:
MATH:
MATH:
MATH:
MATH
MATH:
.P. MATH:
F.P. MATH:

B omomomo
W gy g

FPSW FRESET FER FZE FNE FOV)
SFZ SFN E@)

E! E.)

F. F* F/)

ALIGN F+ F-)

RSCALE LSCALE DFIX)

FIX DFLOAT FLOAT FSIN FCOS FSQRT FINIT FEXIT)

FABS FNEGATE FMIN F> FMAX)

C64 DATA: COLORS SPRITE-DEFS)
C64 DATA: SOUND)

C64 DATA: SOUND MISC I/O)

DATA STRUCTURES: S-DEF)

DATA STRUCTURES: 1ARRAY 2ARRAY)
GRAPHICS: M-X M-Y B-MFLAG S.DIST L.DIST)
GRAPHICS: BORDER BKGND M-ORIGIN)
GRAPHICS: R-PLOT)

GRAPHICS: M-PLOT)

GRAPHICS: CHAR)

GRAPHICS: B-CPLOT <B-LINE>)
GRAPHICS: <B-LINE>)

GRAPHICS: LSETUP)

GRAPHICS: B-LINE)

GRAPHICS: ELLIPSE CIRCLE)

GRAPHICS: ARC ELLIPSE CIRCLE)

I/0 EXTENSIONS: CMD CMDI INPUT INPUT
I/0 EXTENSIONS: GET# PUT# RS232 FRE

I/0 EXTENSIONS: SETTIM WAIT)

UTILITIES:
UTILITIES:
UTILITIES:
UTILITIES:
MUSIC EDIT:
MUSIC EDIT:
MUSIC EDIT:
MUSIC EDIT:
MUSIC EDIT:

CASE OF ;; ENDCASE)
DIR)

PATCH)

H@ HC@ H! HC!)

PRINT# $INPUT PRINTER)
RDTIM)

WAVE PLAY.NOTE V~DEFAULT SOUND.INIT)

T@ T!)
0@ 0! OX)

TEMPO DURATION TIMINGS)
NDEF NEXT.NOTE READY NCALC)

182

SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

90 (MUSIC EDIT: PLAY.WAIT)

81 (MUSIC EDIT: NOTE DEFS)

92 (S-EDITOR: S-EDITOR)

93 (S-EDITOR:)

94 (TURTLE: HEADING SETH SETXY PENFLG PU PD PM SETX SETY RT LT)
95 (TURTLE: CS HOME PC BG TS DRAW)

96 (TURTLE: FD BK)

97 (TURTLE: LONG NAMES)

The following screens must be compiled to be executed:

98 (TRACE COLON WORDS)

99 (CURVES: CONSTANTS DIRECTIONS)

100 ({(CURVES: DRAGON1) HEX
101 (CURVES: DRAGON2) HEX

102 (CURVES: VARIABLES NOTE NEXT-POINTER MOVE-SPRITE)
103 (CURVES: DRAWLINE NEW-POINT DRAW MOVE-DIRECTION)
104 (CURVES: C-DRAW) '

105 (CURVES: SPRITES-INIT HI-RES-INIT) HEX

106 (CURVES: DIRECTIONS-INIT)

107 (CURVES: CURVE-INIT C-CURVE)

108 (CURVES: CALL-RDRAGON LDRAGON)

109 (CURVES: RDRAGON)

110 (CURVES: D-CURVE WAIT-5-SEC DEMOQ)

111 (BACKUP: DUAL DRIVE BUFFER COPY)

112 (BACKUP: COPYBUI)

113 (BACKUP: PCOPY BACKUP SOURCE-BACKUP)

114 (ASSEMBLER: CONSTANTS INDEX)

115 (ASSEMBLER: MODE ADDRESSING MODES BOT SEC RP> UPMODE }
116 (ASSEMBLER: CPU)

117 (ASSEMBLER: M/CPU)

118 (ASSEMBLER: BEGIN, UNTIL, IF, THEN, ELSE, NOT BRANCHES)
119 (ASSEMBLER: AGAIN, WHILE, REPEAT)

120 (ASSEMBLER: END-CODE ENTERCODE ;CODE CODE)

121 (ASSEMBLER: A-REMQVE)

122

123 (SPRITES DEMO)

124 (SPRITES DEMO)

125 (GRAPHICS DEMOQOS)

126 (GRAPHICS DEMOS)

127 (JESU)

128 (JESU)

129 (TURTLE DEMOS)

130 (DEMO EXECUTIVE)

183 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #0
0)
1)
2) SUPER-FORTH 64
3) FOR THE
4) COMMODORE 64 COMPUTER
5)
6) VZ2.2R
7}
8)
9) COPYRIGHT 1983,1984
10) BY
11) ELLIOT B. SCHNEIDER
12)
13) ALL RIGHTS RESERVED
14)
15)
SCREEN #1
0) (SF64 REVIEW SYSTEM LOADER BLOCK)
1) 3 ." THRU " LOAD CR
2) 4 ." C64 UTILITIES " LOAD CR
3) 5 6 ." C64 KERNEL WORDS " THRU CR
4) 7 12 ." STRINGS " THRU CR
5) 13 17 ." FILE-MODE " THRU CR
6) 18 21 ." GRAPHICS " THRU CR
7) 22 23 ." SOUND " THRU CR
8) 24 32 ." UTILITIES " THRU CR
9) 33 34 ." SUPPLEMENTALS " THRU CR
10) 35 41 ." LOCAL ASSEMBLER " THRU CR
11) 42 45 ." EDITOR " THRU CR
12) 46 49 ." DECOMPILER UTIL. " THRU CR
13) 50 51 ." TRIG ROUTINES " THRU CR
14) 52 53 ." SQUARE ROOT " THRU CR
15) -->
SCREEN #2
0} (DISK DIRECTORY/LOADER)
1) 54 61 ." FLOATING POINT " THRU CR
2) 62 66 ." C64 DATA/CONST., " THRU CR
3) 67 77 ." GRAPHICS * THRU CR
4) 78 80 ." I/O EXTENSIONS " THRU CR
5) 81 84 ." UTILITIES " THRU CR
6) 85 91 ." MUSIC EDITOR " THRU CR
7) 92 ." SPRITE EDITOR " LOAD CR
8) 94 97 ." TURTLE GRAPHICS " THRU CR
9) EXIT
10) 98 ." TRACE UTILITY " LOAD
11) 99 110 ." GRAPH/SOUND DEMO" THRU CR
12) 111 113 ." BACKUP UTILITIES" THRU CR
13) 114 121 ." REMOTE ASSEMBLER" THRU CR
14) 123 130 ." DEMOS " THRU CR
15}

184 SUPER~FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #3
0) (UTILITIES: THRU)
1) FORTH DEFINITIONS

2)
3) : THRU 1+ SWAP
4) DO I U. I LOAD
5) ?TERMINAL IF LEAVE THEN LOOP ;
6)
7}
8)
9)
10)
11)
12)
13)
14)
15)
SCREEN #4
0) (C64 UTILITIES: SYSCALL RECURSE -TEXT)
1)
2) : SYSCALL (A X Y ADDR ---)
3) SYS DDROP DDROP ;
4)
5) (IMPLEMENT RECURSIVE DEFINITIONS)
6) : RECURSE (IMPLEMENT RECURSIVE PROCEDURES)
7) LATEST PFA CFA , ; IMMEDIATE
8)
9) : -TEXT (ADRl C ADR2 —--- FLAG)
10) DDUP + SWAP
11) DO DROP 1+ DUP 1- C@ I C@ - DUP
12) "IF 1 SWAP +- LEAVE THEN
13) LOOP SWAP DROP ;
14)
15)
SCREEN #5
0) (KERNAL & I/0: SETLFS SETNAM OPEN CLOSE CLRCHN)
1) HEX
2) : SETLFS (LFN DEV CMD -—-)
3) FFBA SYSCALL ;
4)
5) : SETNAM (STRINGADDR ---)

6) COUNT SWAP SPLIT FFBD SYSCALL ;
7)

8) : OPEN (LFN DEV CMD ADDR ---)
9) SETNAM SETLFS

10) FFCO GO ;
11)

12) : CLOSE (LFN --~)

13) 0 0 FFC3 SYSCALL ;

14) : CLALL (--- } FFE7 GO ;

15) : CLRCHN (---) FFCC GO :; DECIMAL

185 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #6
0) (KERNAL INTERFACE: LOADRAM DOS ST)
1) HEX
2) : LOADRAM (LOADADDR FILEADDR ---)
3) SETNAM
4) >R FF SYSDEV @ R@ 0= SETLFS
5) 0 R> SPLIT FFD5 SYSCALL ;
6)
7)
8) : DOS (STRINGADDR —--)
9) >R F SYSDEV @ F R> OPEN
10) F CLOSE ;
11)
12) : ST (--- STATUS) 0090 C@ ;
13) DECIMAL
14)
15)
SCREEN #7

0) (STRINGS: SVARIABLE $CONSTANT <$CONCAT>)
1)} : $VARIABLE
2) CREATE (# ---)

3) 0 C, ALLOT :
4)

5) : $CONSTANT

6) CREATE (—---)

7) HERE 1+ 34 TEXT PAD COUNT

8) DUP C, DUP ALLOT CMOVE :

9)

10) (CONCATENATION PRIMITIVE- CONCAT C2 CHARS FROM A2 ONTO END S1)
11) : <$CONCAT> { S1 AZ C2 --—-)

12) >R OVER COUNT +

13) R@ CMOVE DUP C@ R> +
14) SWAP C! ;
15)
SCREEN #8

0) (STRINGS: $CONCAT SLEFT $MID SRIGHT)
1) (CONCAT S2 ONTO END OF Sl)
2) : $CONCAT (S1 82 ---)

3) COUNT <$CONCAT> ;
4)

5) (CONCAT N LEFTMOST CHARS OF $2 TO S1)
6) : SLEFT (S1 S2 NUM ---)

7) SWAP 1+ SWAP <$CONCAT> ;

8)

9) (CONCAT N CHARS STARTING FROM S IN S2 TO 51)
10) : SMID (S1 S2 S N -—-)

11) >R + R> <$SCONCAT> :

12)

13) (CONCAT N RIGHTMOST CHARS OF S2 TO s1)
14) : SRIGHT { SiL S2 NUM ---)

15) >R COUNT + R@ - R> <SCONCAT> ;

186 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

)

SCREEN #9

0) (STRINGS: $VAL SLEN $. SCLR)

1} (CONVERT STRING S1 INTQ 16 BIT #

2) : SVAL (S1 ——— N)

3) NUMBER DROP ;

4)

5} (GET LENGTH OF STRING S1)

6) : SLEN (S1 --—- N)

7) ce ;

8)

9) (PRINT A STRING)

10) : s. (81 ---)
11) COUNT TYPE ;

12)

13) (CLEAR A STRING)
14) : S$SCLR (S1 -——)
15) 0 SWAP C! ;
SCREEN #10

0) (STRINGS: <"> " "v)

1) (RUN-TIME ROUTINE FOR ")

2) : <"> ([=--- 81)

3) 0 PAD C! PAD

4} R@ COUNT DUP 1+ R> + >R

5) <$CONCAT> PAD ;

6)

7) (ENTER A STRING INTO THE PAD)

8) « " { ~-— 81)

5) 34 STATE @ (CHECK FOR COMPILE)
10) IF COMPILE <"> (COMPILE ADDR OF RUN-TIME ROUTINE)
11) WORD C@ 1+ ALLOT
12) ELSE TEXT PAD
13) THEN ; IMMEDIATE
14)

15) «: "" (--- 81) 0 PAD C! PAD :
SCREEN #11

0) (STRINGS: SCMP $<)

1) (COMPARE TWO STRINGS- RESULTS:

2) 0: 51=82; 1: S1>82; 2: S1<S2)

3)

4) : SCMP (S1 A2 C2 --- FLAG)

5) COUNT ROT COUNT RQT DDUP - >R R@

6) 0> IF SWAP THEN

7) DROP ROT -TEXT

8) ?DUP IF R> DROP

9) ELSE R> DUP IF 1 SWAP +- THEN
10) THEN ;

11}

12}y (CHECK IF S1 < S§2)
13) : s« (S1 s2 --- F)
14) SCMP 0< ;

15)

187

SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #12

0) (STRINGS: $> $= SFIND)

1) (CHECK IF S1 > 82)

2) : 8> (S1 s2 -——- F)

3) $CMP 0> ;

4)

5) (CHECK IF S1 = S2)

6) : $= (S1 S2 —~- F)

7) SCMP 0= ;

8)

9) (FIND OCCURENCE OF S1 IN STRING)
10) : $FIND (S1 A2 C2 --- [ADDR] FLAG)
11} OVER + SWAP
12) DO DUP COUNT I -TEXT DUP 0=
13) IF SWAP DROP I SWAP LEAVE ELSE DROP THEN.
14) LOOP NOT ;

15)
SCREEN #13

0) (FILE MODE: FNAME FOPEN FILE-MODE)

1) 23 $VARIABLE FNAME

2)

3) { OPEN A FILE)

4) : F-OPEN { R/W ~---)

5) 9 SYSDEV @ ROT FNAME OPEN H

6) (DUMMY R/W ROUTINE)

7) + FR/W DDROP DROP ;

8) (SET UP FILE-MODE)

9) : FILE-MODE ("FILENAME" —--

19) DRO 1 MODE ! ' FR/W CFA 'R/W !

11) 34 TEXT PAD $LEN

12) IF FNAME $CLR FNAME PAD SCONCAT

13) THEN ;

14)

15) F-EXIT 0 MODE ! ' <R/W> CFA 'R/W | ;
SCREEN #14 _

0} (FILE-MODE: READB WRITEB)

1) (READ A BLOCK FROM AN OPENED FILE INTO A BUFFER)

2) : READB (ADDR ---)

3) 9 INPLFN !

4) 1024 0 DO

5) KEY OVER I + C!

6) LOOP

7 2 INPLFN ! DROP ;

8)

9) (WRITE A BLOCK FROM A BUFFER INTO AN OPENED FILE)
10) WRITEB (ADDR --—-)

11) 9 QUTLFN !

12) 1024 0 DO

13) DUP I + C@ EMIT
14) LOOP

15) 3 OUTLFN ! DROP :

188

SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #15
0) { FILE-MODE: F-INIT F-NEW F-APPEND }
1) (INITIALIZE TO EDIT A FILE)

2) : F-NEW { -——)
3) EMPTY-BUFFERS FILE-MODE

4) LIMIT 1028 - PREV ! FIRST USE !
5) 0 FLAST ! 1 SCR ! ;

6)
7) (APPEND FILE TO BUFFERS)
8) : F-APPEND ([FILENAME])

9) FILE-MODE 0 F-OPEN
10) #BUFF 1+ FLAST @ 1+ DUP SCR ! DO
11) I BLOCK READB ST
12) IF I FLAST ! LEAVE THEN
13) LOOP
14) 9 CLOSE ;

15)
SCREEN #16

0) (FILE-MODE: F-EDIT F-SAVE)

1) { INIT SYSTEM & READ IN FILE)

2) : F-EDIT ([FILENAME])

3) F-NEW F~APPEND ;

4}

5) HEX

6) (SAVE BUFFERS TO A FILE)
7) + F-SAVE ([FILENAME])

8) FILE-MODE 1 F-OPEN
9) #BUFF 0 DO

10) I 404 * FIRST + DUP @

11) 7FFF AND 7FFF XOR

12) IF 2+ WRITEB ELSE DROP THEN
13) LOOP
14) 9 CLOSE ;
15) DECIMAL
SCREEN #17

0) (FILE MODE: F-LOAD F-NUMBER)

1) : F-LOAD ([FILENAME] ; ---)

2) F-NEW 0 F-OPEN

3) 1 BLOCK (LOAD INTO BLOCK 1)
4) 170 0 DO

5) DUP READB ST

6) 1 LOAD

7) IF LEAVE THEN (CHECK STATUS FOR EOF)
8) LOOF 9 CLOSE ; HEX

3} : F-NUMBER (START ---)

10} DEPTH 0= IF 1 THEN-

11) 8000 OR LIMIT 1- FIRST DO

12) I @ 7FFF = NOT

13) IF DUP I ! 1+ THEN

14) 404 /LOOP DROP ;

15) DECIMAL

185 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

{ GRAPHICS: S-MULTIR MULTI-COLOR S-S-COLLISION S-B-COLLISION)

-
’

)

)

SCREEN #18
0)

1) HEX

2) : S-MULTIR (COLOR NUM ---)

3) D025 + C! ;

4)

5) : MULTI-COLOR (F ——)

6) D016 10 FBIT ;

7)

8) S-S-COLLISION { -—— VALUE)
9) DO1E C@ ;
10)
11) : S-B-COLLISION (——- VALUE)
12) DO1F Cc@ ;
13) DECIMAL EXIT
14)
15)
SCREEN #19

0) { GRAPHICS: B-GRAPHICS B~FILL B-COLOR B-COL-FILL)
1) HEX

2) B~GRAPHICS (FLAG ---)

3) D011 20 FBIT ;

4)

5) : B-FILL { CHAR ~---)

6} 'BITMAP 1F40 ROT FILL :

7)

8) : B-COLOR (POS HCOL LCOL ---
9) CATNIB SWAP 'SCREEN + C! ;
10)
11) B-COLOR-FILL (HCOL LCOL ---
12) CATNIB 'SCREEN 3E8 ROT FILL
13) DECIMAL
14)
15)
SCREEN #20

0) (GRAPHICS: S-FSET S-ENABLE S-XEXP S-YEXP)
1) HEX

2) : S-FSET (FLAG ADDR —---)

3) SPRITE @ MASK FBIT ;

4}

5) : S~ENABLE (FLAG ---)

6) D015 S-FSET ; '

7)

8) S-XEXP (FLAG ---)

9) DO1D S-FSET ;
10)

11) S-YEXP (FLAG ---)

12) D017 S-FSET ;

13) DECIMAL EXIT

14)

15)

L90

SUPER~FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

S-POINTER S—-COLOR)

SCREEN #21

0) { GRAPHICS: S-PRIORITY S-MULTI

1) HEX

2) S—-PRIORITY {(FLAG ———)

3) DO1B S-FSET ;

4)

5) : S~MULTI (FLAG --- }

6) D01C S-FSET :

7) .

8) : S-POINTER (SPR§ ———)

9) 'SCREEN 3F8 + SPRITE @ + C!
10)

11) : S-COLOR { COLOR ~---)
12) D027 SPRITE @ + C! ;
13) DECIMAL EXIT

14)

15)

SCREEN #22

0) (SOQUND- V-FREQ V-PW V-AD V-SR)

1) (SET FREQUENCY OF VOICE)

2) :+ V-FREQ (VALUE ---)

3) SPLIT 1 V! Q0 Vi ;

4)

5) (SET PULSE WIDTH OF VOICE)

6) : V-PW (VALUEl2 -~-)

7) SPLIT 3 V! 2 V! ;

8)

9) (SET ATTACK & DECAY OF VOICE)
10) : V-AD (ATTACK4 DECAY4 ---)
11) CATNIB 5 VI ;

12)

13) (SET SUSTAIN & RELEASE OF VOICE }
14} : V-SR (SUST4 REL4 --—~)

15) CATNIB 6 V! ;

SCREEN #23

0) (SOUND- V-CTRL RESFILT MODEVOQOL)

1) (SET CONTROL VALUES OF VOICE }

2) ¢+ V-CTRL (VALUE ---)

3) 4 V! ;

4)

5) (SET FILTER FREQUENCY)

6) (SET RESONANCE & FILTER SWITCHES }

7) : RESFILT (RES FSWS ~---)

8) CATNIB 23 SID! ;

9)

10) (SET FILTER MODE & SID VOLUME)
11) : MODEVOL (MODE VOLUME ---)
12) CATNIB 24 SID! ;

13)

14)

15)

191 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User

SCREEN #24

0) (UTILITIES: .S .SL .SR .SS .INDEX)

1) -1 CONSTANT .SS

2) + .SL O ' .88 ! ;

3) + .SR -1 ' .88 1! ;

4) : .S CR DEPTH

5) IF .SS 1IF SP@ SO 2-

6) ELSE SP@ S0 SWAP THEN

7) DO I @ 0 D. 2 .85 +- +LOOP

8) ELSE ." EMPTY STACK " THEN CR ;

9)

10) : .INDEX

11) DUP PAD 1 ROT T&SCALC 1 RWTS DROP

12) CR OFFSET @ - 4 .R

13) 2 SPACES PAD C/L -TRAILING TYPE ;

14)

15)

SCREEN #25 o
0) (UTILITIES: <ROT BMOVE COPY SCOPY D- DO= D=
l) : <ROT ROT ROT ‘'

2) BMOVE <ROT DDUP U<

3) IF ROT <CMOVE

4} ELSE ROT CMOVE THEN ;

5) _

6) : COPY OFFSET @ + SWAP BLOCK 2- ! UPDATE

7) : SCOPY (FSTART FEND TSTART ---

8) <ROT 1+ SWAP DO I OVER COPY 1+ LOOP DROP

9) : D- DNEGATE D+ ;

10) : DO= OR 0= ;

11) : D= D- DO= ;

12)

13} : MAX-BUFFS (---)

14) LIMIT HERE - 0 1028 U/MOD

15) ' #BUFF ! DROP CHANGE ;

SCREEN #26
0) (UTILITIES:DSWAP D> D@ DU< DCONSTANT DOVER DMA
l) : DSWAP 4 ROLL 4 ROLL '

2) : D> DSWAP D< ;

3) : D@ DUP 2+ @ SWAP @ :

4) : DU< >R >R 32768 +

5) R> R> 32768 + D< ;

6) : DCONSTANT CREATE SWAP , ,

7) DOES> DUP @ SWAP 2+ @ ;

8) : DOVER 4 PICK 4 PICK ;

9) : DMAX DOVER DOVER D< IF DSWAP THEN DDROP
10) : DMIN DOVER DOVER D< NOT IF DSWAP THEN DDROP
11) DVARIABLE CREATE 4 ALLOT ;

12)

13)

14)

15)

Source Screens

192

-
!’

MAX-BUFFS)

-
r

X DMIN DVARIABLE)

SUPER-FORTH 64 (TM)

—

SUPER-FORTH 64 User Source Screens

SCREEN #27

0) (UTILITIES: PAUSE)

1) HEX

2) : PAUSE ?TERMINAL

3} IF 1000 0 DO LOOP

4) BEGIN ?TERMINAL UNTIL
5) 1000 ¢ DO LOOP

6) THEN ;

7) DECIMAL

8)

9)

10)

11)

12)

13)

14)

15)

SCREEN #28

0) (UTILITIES: INDEX ?LOADING -->)
1)

2) : INDEX (FROM TO --- ,)

3) CR OFFSET @ DUP ROT + 1+ <ROT +
4) OVER MAX-BLKS 1+ >
5) ABORT" BLK NO. ERROR"

6) DO I .INDEX PAUSE ?TERMINAL
7) IF LEAVE THEN

8) LOOP ;

9)

10) : ?LOADING
11) BLK @ NOT ABORT" LOADING ONLY " ;

13) ¢ ==> (---)

14) ?LOADING 0 >IN ! 1 BLK +! ;
15) IMMEDIATE

SCREEN #29

0) (UTILITIES: DUMP)

1) HEX { ADDR N -—-)

2) : DUMP 0 BASE @ >R HEX
3) DO CR DUP I + DUP 0 6

4) D.R 2 SPACES DUP 8 0

5) DO DUP I + C@ 3 .R LOOP

6) DROP SPACE DUP 8 + 8 0

7) DO DUP I + C@ 3 .R LOOP

8) DROP 3 SPACES 10 0

9) DO DUP I + C@ DUP 20 < OVER 7E > OR
10) IF DROP 2E THEN EMIT

11) LOOP DROP 10

12) PAUSE ?TERMINAL IF LEAVE THEN
13) /LOOP

14) DROP CR R> BASE ! ;
15) DECIMAL

193

SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #30

0) { UTILITIES: 'TITLE TITLE TRIAD)
1) VARIABLE ‘'TITLE

2) : TITLE CR 11 SPACES

3) ." SUPER FORTH 64 VERSION 2.2R" CR ;
4)

5) ' TITLE CFA 'TITLE !

6)

7) : TRIAD 0 3 U/MOD SWAP DROP

8) 3 * 3 OVER + SWAP

9) DO CR I LIST ?TERMINAL
10) IF LEAVE THEN 1 /LOOP

11) '"TITLE @ EXECUTE
12) 12 EMIT ;

13)
14)

15)
SCREEN #31

0) (UTILITIES: <EMIT7> 1ID.)

1) HEX

2)

3) : <EMIT7> 7F AND <EMIT> ;

4)

5) (ID. : PRINT NAME FROM NFA)

6) : ID. (ADDR -~--)

7) ' <EMIT7> CFA 'EMIT !

8) COUNT 1F AND TYPE

9) ' <EMIT> CFA 'EMIT |{ ;
10)
11) DECIMAL
12)
13)

14)

15)
SCREEN #32

0) (UTILITIES: VLEN VTAB VLIST)
1) VARIABLE VLEN 40 VLEN !

2) VARIABLE VTAB 13 VTAB !

3}

4) : VLIST 32767 OUT ¢! CONTEXT @ @
5) BEGIN VLEN @ 1- OUT @ - OVER C@ 31 AND
6) < IF CR 0 QUT ! THEN

7) DUP ID.

8) VTAB @ OUT @ OVER MOD - SPACES
9) PFA LFA @ DUP

10) 0= PAUSE ?TERMINAL OR

11} UNTIL DROP ;

12)

13)

14)

15)

194

SUPER-FORTH 64

(TM)

SUPER~FORTH 64 User Source Screens

SCREEN #33
0) (SUPPLEMENTALS: 'S "2" DOUBLE NUMBER SET)
1) 'S SP@ ; '
2)
3) 21 D!
4) : 2@ pe@ ;
5) : 2CONSTANT DCONSTANT :
6) : 2DROP DDROP ;
7) : 2DUP DDUP ;
8) : 20VER DOVER ;
9) : 2SWAP DSWAP ;
10) : 2VARIABLE DVARIABLE ;
11)
12)
13)
14)
15)
SCREEN #34
0) (SUPPLEMENTALS: >BINARY ERASE FLUSH H U.R ['])
1) : >BINARY CONVERT ;
2)
3) : EMPTY INIT-FORTH @ ' FORTH 2+ |
4) INIT-USER UP @ 6 + 48 CMOVE :
5)
6) : ERASE 0 FILL ;
7)
8) : PFLUSH SAVE-BUFFERS ;
9)
10) : H DP ;
11)
12) : U.R 0 SWAP D.R ;
13)
14) (') ?COMP [COMPILE] ' ; IMMEDIATE
15)
SCREEN #35
0) { ASSEMBLER: CONSTANTS INDEX)
1) VOCABULARY ASSEMBLER IMMEDIATE
2) HEX ASSEMBLER DEFINITIONS
3) (REGISTER ASSIGNMENTS SPECIFIC TO THIS IMPLEMENTATION)
4) 83 CONSTANT XSAVE 81 CONSTANT W
5) 04 CONSTANT IP 87 CONSTANT N
6)
7) (NUCLEUS LOCATIONS SPECIFIC TO THIS IMPLEMENTATION)
8) 0884 CONSTANT POP 0882 CONSTANT POPTWO
9) 088B CONSTANT PUT 0889 CONSTANT PUSH
10) 0890 CONSTANT NEXT 0871 CONSTANT SETUPN
11)
12) VARIABLE INDEX -2 ALLOT
13) 0909 , 1505 , 0115 , 8011 , 8009 , 1DOD , 8019 , 8080 ,
14) 0080 , 1404 , 8014 , 8080 , 8080 , 1COC , 801C , 2C80 , DECIMAL
15) '

195 SUPER-FORTH 64 {TM)

SUPER-FORTH 64 User Source Screens

SCREEN #36

) (ASSEMBLER: MODE ADDRESSING MODES BOT SEC RP> UPMODE)
1) HEX

2) VARIABLE MODE 2 MODE !

3) : .AOMODE ! ; : # 1 MODE ! ; : MEM 2 MODE ! ;

4) : ,X 3 MODE ! ; : ,Y 4 MODE ! ; : ,X) S5 MODE ! ;

5) :),Y 6 MODE ¢ ; :) F MODE ! ;

6)

7) :« BOT ,X 0 ; (ADDRESS THE BOTTOM OF DATA STACK)
8) : SEC ,X 2 ; (ADDRESS SECOND ITEM ON DATA STACK)
: RP> ,X 101 ; (ADDRESS BOTTOM OF RETURN STACK)

9) :

10)
11) : UPMODE IF MODE @ 8 AND 0= IF B8 MODE +! THEN THEN
12) 1 MODE @ OF AND ?DUP IF 0 DO DUP + LOOP THEN

13) OVER 1+ @ AND 0= ;
14)

15) DECIMAL
SCREEN #37

0) (ASSEMBLER: CPU)

1)

2) HEX

3) : CPU CREATE C, DOES> C@ C, MEM ;

4) 00 CPU BRK, 18 CPU CLC, DE CPU CLD, 58 CPU CLI,
5) B8 CPU CLV, CA CPU DEX, 88 CPU DEY, E8 CPU INX,
6) C8 CPU INY, EA CPU NOP, 48 CPU PHA, 08 CPU PHP,
7) 68 CPU PLA, 28 CPU PLP, 40 CPU RTI, 60 CPU RTS,
8) 38 CPU SEC, F8 CPU SED, 78 CPU SEI, AA CPU TAX,
9) A8 CPU. TAY, BA CPU TSX, 8A CPU TXA, 9A CPU TXS,
10) 98 CPU TYA,
11)
12) DECIMAL
13)
14)

15)
SCREEN #38

0) {(ASSEMBLER: M/CPU)

1) HEX ,

2) : M/CPU CREATE C, , DOES>

3) DUP 1+ @ 80 AND IF 10 MODE +! THEN OVER

4) FFO00 AND UPMODE UPMODE IF MEM CR LATEST ID.

5) ABORT" INCORRECT ADDRESSING" THEN C@ MODE cCa@

6) INDEX + C@ + C, MODE C@ 7 AND IF MODE Ca@

7) OF AND 7 < IF C, ELSE , THEN THEN MEM ;

8) 1C6E 60 M/CPU ADC, 1C6E 20 M/CPU AND, 1C6E CO M/CPU CMP,

9) 1C6E 40 M/CPU EOR, 1C6E AD M/CPU LDA, 1C6E 0 M/CPU ORA,
10) 1C6E EO0O M/CPU SBC, 1Cé6C 80 M/CPU STA, 0DOD 1 M/CPU ASL,
11) 0C0C Cl M/CPU DEC, 0COC El1 M/CPU INC, 0DOD 41 M/CPU LSR,
'12) 0DOD 21 M/CPU ROL, 0DOD 61 M/CPU ROR, 0414 81 M/CPU STX,
13) 0486 EO0O M/CPU CPX, 0486 CO M/CPU CPY, 1496 A2 M/CPU LDX,
14) OCBE AQ M/CPU LDY, 048C 80 M/CPU STY, 0480 14 M/CPU JSR,
15) 8480 40 M/CPU JMP, 0484 20, M/CPIJ BIT, DECIMAIL

196 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCRIEN $#39

0) (ASSEMBLER: BEGIN, UNTIL, IF, THEN, ELSE, NOT BRANCHES)
1) : BEGIN, HERE 1 ;

2) : UNTIL, >R 1 ?PAIRS R> C, HERE 1+ - C, ;

3) : IF, C, HERE 0 C, 2 ;

4) : THEN, 2 ?PAIRS HERE OVER C@

5) IF SWAP ! ELSE OVER 1+ - SWAP C! THEN ;

6) : ELSE, 2 ?PAIRS HERE 1+ 1 JMP,

7) SWAP HERE OVER 1+ - SWAP C! 2 ;

8) HEX

9) : NOT 20 + ; (REVERSE ASSEMBLY TEST)
10) 90 CONSTANT CS (ASSEMBLE TEST FOR CARRY SET)
11) DO CONSTANT 0= (ASSEMBLER TEST FOR EQUAL ZERO)
12) 10 CONSTANT 0< (ASSEMBLE TEST FOR LESS THAN OR EQUAL ZERO)
13) 90 CONSTANT >= (ASSEMBLE TEST FOR GREATER OR EQUAL ZERO)
14) (>= IS ONLY CORRECT AFTER SUB, OR CMP,)
15) 50 CONSTANT VS DECIMAL
SCREEN #40°

0) (ASSEMBLER: AGAIN, WHILE, REPEAT)

1)

2) : AGAIN, 1 ?PAIRS JMP, :

3)

4) : WHILE, >R DUP 1 ?PAIRS R> IF, 2+ ;

5)

6) REPEAT, >R >R 1 ?PAIRS JMP, R> R> 2 - THEN, ;

7)

8)

9)
10)
11)
12)

13)

14)
15)
SCREEN #41

0) (ASSEMBLER: END-CODE ENTERCODE ;CODE CODE)

1) END-CODE CURRENT @ CONTEXT ! SP@ 2+ =

2) IF SMUDGE

3) ELSE ." CODE ERROR, STACK DEPTH CHANGE"

4) THEN ;

5} FORTH DEFINITIONS

6) : ENTERCODE (COMPILE] ASSEMBLER SP@ ;

7) CODE CREATE SMUDGE HERE DUP 2- |-

8) ASSEMBLER MEM ENTERCODE IMMEDIATE

9) : ;CODE ?CSP COMPILE <;CODE> [COMPILE] [ENTERCODE ; IMMEDIATE
10) EXIT

11)

12)

13)

14} (THIS 6510 FORTH ASSEMBLER WAS WRITTEN BY WILLIAM F. RAGSDALE)
15) (IT WAS PUBLISHED IN "FORTH DIMENSIONS", VOL. ITT # 5 }

197 SUPER-FORTH 64 (TM)

SUPER~FORTH 64 User Source Screens

SCREEN #42
0) (EDITOR: CHKLIN LINE PP C)

1) : CHRLIN { LINE# -—— LINE#)

2) DUP C/L * 1023 > ABORT" OFF SCREEN" ;
3)

4) : LINE (LINE# --- BUF-ADDR COUNT)

5) CHKLIN DUP R# ! SCR @ <LINE> UPDATE ;
6)

7) : PP (LINE# —--)

8) PAD 1+ SWAP LINE 1 TEXT CMOVE :

9)
10) VOCABULARY EDITOR IMMEDIATE
11)
12) EDITOR DEFINITIONS
13) : C (FROM# TO# ---)
14) SWAP LINE DROP SWAP LINE CMOVE ;

15)
SCREEN #43

0) (EDITOR: SCREEN COMMANDS)
1) : SE DUP R# ! PP QUIT ;

2) : 0) 0 SE ; l) 1 SE ;
3) = 2) 2 SE ; 3) 3 SE ;
4) : 4) 4 SE ; 5) 5 SE ;
5) :+ 6) 6 SE ; 7) 7 SE ;
6) : 8) 8 SE ; t 9) 9 SE ;
7) : 10} 10 SE ; : 11) 11 SE ;
8) : 12) 12 SE ; : 13) 13 SE ;
9) : 14) 14 SE ; : 15) 15 SE ;
10) EXIT (EXT. FOR > 15 LINES/SCR)
11} : 16) 16 SE ; : 17) 17 SE ;
12) : 18) 18 SE ; : 19) 19 SE ;
13) : 20) 20 SE ; + 21) 21 SE ;
14) : 22) 22 SE ; : 23) 23 SE ;
15) : 24) 24 SE ; 25) 25 SE ;

SCREEN #44
0) (EDITOR: K X O M)
1) (KILL - REPLACE LINE WITH BLANKS)

2) : K (LINE# ---) LINE BLANK ;
3) : LL (--- LAST.LINE.+1.ADDR)
4) SCR @ BLOCK 1024 + ;

5) { X-TRACT A LINE FROM SCREEN)

6) : X (LINE$ —--)

7) LINE OVER + SWAP OVER LL SWAP -
8) CMOVE LL C/L ~ C/L BLANK ;

9) (OPEN A LINE FOR INPUT)

10) : O (LINE§ --——)

11) DUP LINE OVER + LL

12) OVER - <CMOVE K ;

13) (MOVE LINE)

14) : M { FROM TO ---)

15) OVER SWAP C X ;

198 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #45
0) (EDITOR: F L W N P SC SM LIST)
1) : F PREV @ DUP @ DUP 0<
2) IF 32767 AND SWAP DDUP ! 2+ SWAP 0 R/W ELSE DDROP THEN ;
3) : L ([SCR] ---) DEPTH IF F ELSE SCR @ THEN PAGE LIST ;
4) : W SCR @ BLOCK 1024 BLANK UPDATE L :
5) : N F 1 SCR +! :
6) : P F -1 SCR +! ;
7) (COPY LINE FROM DIFF SCREEN)
8) : SC (FR-SCR FR-LINE ---)
9) CHKLIN SWAP <LINE> DROP
10) R @ DUP O LINE CMOVE ;
11) (MOVE LINE FROM DIFF SCREEN)
12) : SM (FR-SCR FR-LINE ---)
13) SCR @ R# @ DSWAP DDUP SC
14) SWAP SCR ! X R#% ! SCR ! ;

15) FORTH DEFINITIONS : LIST LIST [COMPILE] EDITOR :

SCREEN #46

0) (DECOMPILER: GIN GIN+ GCHK)

1) VARIABLE GIN (# TO INDENT)

2) : GIN+ CR GIN @ 2+ DUP GIN ! SPACES :
3) :+ GCHK DUP @ 2+ ' COMPILE =

4) IF SPACE 2+ DUP @ 2+ NFA ID. 2+
5) ELSE DUP @ 2+ DUP ' <LIT> =
6) OVER ' BRANCH = OR
7) OVER ' 0BRANCH = OR
8) OVER ' <LOOP> = OR
9) OVER ' </LOOP> = OR
10) SWAP ' <+LOOP> = OR
11) IF 2+ DUP @ SPACE . 2+
12) ELSE DUP @ 2+ DUP ' <.,"> = SWAP ' <ABORT"> = OR
13) IF SPACE 2+ DUP COUNT TYPE DUP C@ 1+ +
14) ELSE 2+ THEN THEN
15) THEN -2 GIN +! ;
SCREEN #47
0) (DECOMPILER: <DECOM>)
1) : <DECOM> (PFA ——-)
2) DUP CFA @ ' : CFA @ =
3} IF (-COLON DEF.)
4) BEGIN DUP @ DUP ' EXIT CFA =
5) OVER ' <;CODE> CFA = OR 0=
6) WHILE (HIGH LEVEL & NOT END OF COLON DEF)
7) 2+ DUP GIN+ NFA ID. KEY DUP 81 =
8) IF ('Q') SP! QUIT
9) ELSE 13 = (RETURN)
10) IF RECURSE (GO DOWN ONE LEVEL)
11) ELSE DROP
12) THEN
13) THEN GCHK REPEAT (SHOW LAST WORD)
14) 2+ CR GIN @ SPACES NFA ID.
15) THEN DROP ;

199 SUPER-FORTH 64

(TM)

SUPER~FORTH 64 User Source Screens

SCREEN #48

0) (DECOMPILER: DECOMPILE)

1) : DECOMPILE -FIND IF DROP 0 GIN !
2) <DECOM> ELSE ." NOT FOUND" THEN H

SCREEN #49
0) (TRIG: TSCALE)

1) CODE TSCALE (D -—- N)

2) BOT ASL, BOT 1+ ROL,

3) SEC 1+ LDA, .

4) .A LSR, .A LSR, .A LSR, .A LSR, .A LSR, .A LSR,
5) BOT ORA, SEC STA,

6) BOT 1+ LDA, SEC 1+ STA,

7) 0< IF, SEC INC,

8) 0= IF, SEC 1+ INC, THEN,

9) THEN,

10) POP JMP, END-CODE

15)

SCREEN #50
0) (TRIG: SIN/COS VALUES TABLE - SCALED BY 32768
1) CREATE SINTABLE

L

2) 00000 , 00572 , 01144 , 01715 , 02286 , 02856 ,
3) 04560 , 05126 , 05690 , 06252 , 06813 , 07371 .
4) 09032 , 09580 , 10126 , 10668 , 11207 , 11743 .
5} 13328 , 13848 , 14365 , 14876 , 15384 , 15886 .
6) 17364 , 17847 , 18324 , 18795 , 19261 , 19720 .
7) 21063 , 21498 , 21926 , 22348 , 22763 , 23170 |
8) 24351 , 24730 , 25102 , 25466 , 25822 , 26170 .
9) 27166 , 27482 , 27789 , 28088 , 28378 , 28660 .
10) 29452 , 29698 , 29935 , 30163 , 30382 , 30592
11) 31164 , 31336 , 31499 , 31651 , 31795 , 31928 .
12) 32270 , 32365 , 32449 , 32524 , 32588 , 32643 .
13) 32748 , 32763 , 32767 .

14)

15)

200

.A LSR,

03425
07927
12275
16384
20174
23571
26510
28932
30792
32052
32688

L R T T

039913
08481
12803
16877
20622
23965
26842
29197
30983
32166
32723

SUPER-FORTH 64

(TM)

SUPER-FORTH 64 User Source Screens

SCREEN #51

0) (TRIG: <SIN> <COS> QSIN QCOS SIN COS)

1) CODE <SIN> BOT ASL, BOT LDY, SINTABLE :,Y LDA, BOT STA,
2) SINTABLE 1+ ,Y LDA, BOT 1+ STA, NEXT JMP, END-CODE
3) CODE <COS> SEC, 90 # LDA, BOT SBC, BOT STA,

4) ' <SIN> JMP, END-CODE

5) : S180 DUP 90 > IF 180 SWAP - THEN <SIN> ;

6) : QSIN DUP 180 > IF (181-359 DEG)

7) 180 - S180 NEGATE ELSE S180 THEN ;

8) : QCOS DUP 270 > IF 270 - ELSE 90 + THEN QSIN ;

9) : SIN (DEGREES --- SINE*10000)

10) DUP ABS 359 >
11} IF 360 MOD THEN (DOESN'T CHANGE SIN VALUE)

12) DUP 0< IF 360 + THEN (HANDLE NEGATIVE ARGUMENT)
13) QSIN ;

14) : COS (DEGREES --- COSINE*10000)
15) 90 + SIN ;
SCREEN #52 |

0) (MATH: SQUARE ROOT ROUTINES)

1) CODE D2* SEC ASL, SEC 1+ ROL,

2) BOT ROL, BOT 1+ ROL, NEXT JMP, END-CODE

3) : EASY-BITS (DREMl PARTIALROOT1 COUNT --- DREM?2 PARTIALROOT2)
4} 0 DO

5) >R D2* D2* (SHIFT DREM TWICE)

6) R@ - DUP (SUBR. PARTIAL ROOT)

7) 0< IF Rg + R> 2* 1- (RESTORE DREM & SET 0)

8) ELSE R> 2* 3 + (OR SET 1)

9) THEN (PROOT SHIFTED FOR NEXT GO-ROUND) LOOP ;
10) : 2'S-BIT (DREMZ2 PROOT2 --- DREM3 PROOT3 ;i GET PENULT. BIT)
11) >R D2* DUP 0< IF D2* R@ - R> 1+

12y ELSE D2* R@ DDUP

13) U< IF DROP R> 1- { SET 0)

14) ELSE - R> 1+ (SET 1)

15) THEN THEN ;
SCREEN #53

0) (MATH: SQUARE ROOT ROUTINES) _

1) 1'S-BIT (DREM3 PROOT3 --- FULLROOT ; REMAINDER LOST)
2) >R DUP 0< IF DDROP R> 1+

3) ELSE D2* 32768 R@ DU< 0= R> + THEN ;

4)

5) : SQRT (UDlL ~-- U2 ; 32-BIT UNSIGNED RADICAND--> 16-BIT ROOT)
6) 0 1 8 EASY-BITS ROT DROP 6 EASY-BITS

7) 2'S-BIT 1'S-BIT ;

8) EXIT

9)
10) (THIS WAS WRITTEN BY KLAXON SURALIS AND PUBLISHED IN

11) FORTH DIMENSIONS VOL. IV NO. 1)

12)

13)

14)

15)

201 SUPER~-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #54

¢) (F.P. MATH: FPSW FRESET FER FZE FNE FOV)
1) CREATE FPSW 0 C,

2) CREATE FBASE 10 C, { BASE)

3) : FRESET { ---)

4) 0 FPSW C! ;

5)

6} : FER { --- N)

7) FPSW Ca ;

8) : FZE (—-- N)

9) FER 1 AND 0= NOT ;
10) : FNE (--- N)
11) FER 2 AND 0= NOT ;
12) : FOV (--- N)
13) FER 4 AND 0= NOT ;
14) '
15)
SCREEN #55

0) (F.P. MATH: SFZ SFN E@)

l) (CC'Ss 8, 16, 32, 64

2) HEX

3) : SFZ (F$# -——- F# ; 2

4) FER FFFE AND FPSW C! { RESET Z)
5) DDUP O0OFF AND DO= FER OR FPSW C!
6) : SFN (F# --- F# ; N)

7) FER FFFD AND FPSW C! { RESET N)
8) DUP 0080 AND 40 / FER OR FPSW C!
9) : E@ (F# -~ ME ; ZN)
10)
11) FRESET SFZ SFN (SET FLAGS)
12) DUP FF00 AND 100 /
13) FNE IF FF00 OR
14) . ELSE Q00FF AND THEN R> ;
15) DECIMAL
SCREEN {56

0) (F.P. MATH: E! E.)

1} HEX

2)

3) : EYt (ME~--—-PF¢$: VZN }

4) DUP 100 * DUP 100 / ROT = NOT
5) IF 4 FPSW C! THEN

6) SWAP DUP FF00 AND DUP

7) IF DUP FFO0Q = NOQT

8) IF 4 FPSW C! THEN

9) THEN

10) DROP OOFF AND OR SFZ SFN H

11)

12) E. (F¥# —— ; Z N)

13) Ed <ROT D. ." E" H

14)

15) DECIMAL

(FLOATING POINT STATUS WORD)

(CLEAR CONDITION CODES }

(RETURNS SUM OF. CONDITION CODES)

(TRUE IF LAST F# WAS ZERO)

(TRUE IF LAST F# WAS < ZERO)

(TRUE IF LAST OPERATION OVERFLOWED)

AND 128 ARE AVAILABLE FOR USE)

) (SETS Z ACCORDING TO F#)

>R (OBTAIN EXPONENT)

-
r

.
r

(SETS N ACCORDING TO F#)

(REMOVE EXPONENT)

{ SIGN EXTEND MANTISSA)

(RESTORE EXPONENT)

(EXPONENT OVERFLOW)

(MANTISSA OVERFLOW)

202

SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #57

0) (F.P. MATH: F. F* F/)

1) : F. (F# —— ; 2 N)

2) E@ >R SWAP OVER DABS

3) <} R@ 0<

4) IF I ABS 0 DO # LOOP 46 HOLD

5) ELSE 46 HOLD R@

6) IF R@ 0 DO 48 HOLD LOOP THEN

7) THEN R> DROP #S ROT SIGN #> TYPE SPACE ;
8)

9) : F* (F#l F#2 -——— F# ; N 2 V) { MULTIPLY)
10) DSWAP E@ >R DSWAP E@ >R
1) DROP 1 M*/ R> R> + BE! ;
12)
13) : F/ (F4l FP§2 -— F# ; N Z V) (DIVIDE)
14) DSWAP E@ >R DSWAP E@ >R
15) DROP 1 SWaAP M*/ R> R> SWAP - E! ;
SCREEN #58

0) (F.P. MATH: ALIGN F+ F-)

1) : ALIGN (M1 E1. M2 E2 ——— M1l M2 E)

2) 4 ROLL

3) BEGIN DDUP = NOT

4) WHILE DDUP > (E2 > El?)

5) IF >R >R FBASE C@ 1 M*/ R> 1- R>

6) ELSE >R >R DSWAP FBASE C@ 1 M*/ DSWAP R> R> 1- THEN
7) REPEAT DROP ;

8)

9) :+ F+ (F#l F#2 -—— FSUM ; NV Z)

10) E€ >R DSWAP R> <ROT E@
11) ALIGN >R D+ R> E! ;

12)
13) : F- (F#1 F§2 --- FDIFF ; NV Z)
14) DSWAP EQ >R DSWAP R> <ROT E@

15) ALIGN >R D- R> E! ;
SCREEN #59

0) (F.P. MATH: RSCALE LSCALE DFIX)

1) : RSCALE (F$ -~— F# ; N Z V)

2) E@ 1- <ROT FBASE C@ 1 M*/ ROT E! ;
3)

4) : LSCALE (F$# --—— F# ; N Z V)

5) Ed 1+ <ROT 1 FBASE C@ M*/ ROT E! :
6)

7) : DFIX (F¢ --- D ; V 2 N)

8} E@

9} BEGIN ?DUP
10) WHILE DUP 0>

11) IF 1- <ROT FBASE C@ 1 M*/

12) ELSE 1+ <ROT 1 FBASE C@ M*/ DDUP DO=
13) IF 5 FPSW C! ROT DROP 0 <ROT THEN (UNDERFLOW)
14) THEN ROT

15) REPEAT ;

203 SUPER-FORTH 64

(TM}

SUPER-FORTH 64 User Source Screens

SCREEN #60
0) (F.P. MATH: FIX DFLOAT FLOAT FSIN FCOS FSQRT FINIT FEXIT)
l) : FIX |(F# --- N ') DFIX DROP ;

2) : DFLOAT (D --- F§) 0 El ;

3) : FLOAT (N --- F§) S->D DFLOAT ;

4) : FSIN (FDEG --- FSINE)

5) FIX SIN 10000 M* TSCALE S->D -4 E! H
6) : FCOS (FDEG --- FCOSINE)

7) 90. F+ FSIN ;

8) : FSQRT (F# -—- FSQRT)

9) FIX 10000 U* SQRT S->D -2 EI :

10) : <FNUM> (ADDR --- D

11) <NUMBER> DPL @ NEGATE E! ;

12) : FINIT (--—-)

13) FRESET BASE @ FBASE C!

14) ' <FNUM> CFA 'NUMBER ! ;

15) : FEXIT (--- } ' <NUMBER> CFA 'NUMBER ! ;

SCREEN #61
0) (F.P. MATH: FABS FNEGATE FMIN F> FMAX)
l) : FABS (Fg ——- ABS[F#] : Nz Vv)

2) E@d <ROT DABS ROT E! ;

3) : FNEGATE (F# --- ~F# : N2 V)

4) E@ <ROT DNEGATE ROT E! ; _

5) ¢« FMIN (F#1 F$2 --- MIN[F4S) ; Nz V)
6) DSWAP E@ >R DSWAP R> <ROT E@

7) ALIGN >R DMIN R> E! ;

8) : F> (F#1L F#2 -~—- B ; N Z V)

9) F- DDROP FNE ;

10) : FMAX (F#1 F$2 --- MAX[F#S] ; N 2 V)

11) DOVER DOVER FMIN F- P+ ;

12)

13) (THESE ROUTINES WERE ADAPTED FROM THE ARTICLE BY MICHAEL JESCH
14) PUBLISHED IN FORTH DIMENSIONS, VOL. IV NO. 1)

15)

SCREEN #6

2

0) (C64 DATA: COLORS SPRITE-DEFS)

1) 0 CONSTANT BLACK 1 CONSTANT WHITE 2 CONSTANT RED

2) 3 CONSTANT CYAN 4 CONSTANT PURPLE 5 CONSTANT GREEN
3) 6 CONSTANT BLUE 7 CONSTANT YELLOW 8 CONSTANT ORANGE
4) 9 CONSTANT BROWN 10 CONSTANT LT.RED 11 CONSTANT DK.GRAY
5) 12 CONSTANT MED.GRAY 13 CONSTANT LT.GREEN

6) 14 CONSTANT LT.BLUE 15 CONSTANT LT.GRAY

7)

8) CODE
$) CODE
10) CODE
11) CODE
12) CODE
13) CODE
14) CODE
15) CODE

Sl
s2
S3
S4
S5
S6
s7
S8

SPRITE STY, NEXT JMP, END-CODE

INY, ' S1 JMP, END-CODE

2 # LDY, ' S1 JMP, END-CODE
3 # LDY, ' S1 JMP, END-CODE
4 # LDY, ' S1 JMP, END-CODE
5 # LDY, ' S1 JMP, END-CODE
6 # LDY, ' S1 JMP, END-CODE
7 # LDY, ' S1 JMP, END-CODE

204 SUPER-FORTH 64

(TM)

SUPER-FORTH 64 User Source Screens

SCREEN #63
(Cé64 DATA: SOUND)

(CTRL. REG CONSTANTS)

11
21
41
81
15

8

3

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

TRIANGLE
SAWTQOTH
PULSE
NOISE
RING
RESET
SYNC

9) DECIMAL
10) (FILTER CONSTANTS)

11) 1 CONSTANT FILT1 2 CONSTANT FILT2

12) 4 CONSTANT FILT3 8 CONSTANT FILTEX
13) 1 CONSTANT LOWPASS 2 CONSTANT BANDPASS
14) 4 CONSTANT HIGHPASS

15) LOWPASS HIGHPASS OR CONSTANT NOTCH

SCREEN #64

0) (C64 DATA: SOUND MISC I/C)

1) CREATE NOTE-VALUES 34334 , 36376 , 38539 , 40830 , 43258 ,
2) 45830 , 48556 , 51443 , 54502 , 57743 , 61176 , 64814 ,

3) : NOTE@ (# --—- FREQ) 2* NOTE-VALUES + @ ;
4)

5) 8 CONSTANT 30FF

6) HEX

7) CODE V1 VOICE STY, NEXT JMP, END-CODE
8) CODE V2 INY, ' V1 JMP, END-CODE

9) CODE V3 2 # LDY, ' V1 JMP, END-CODE
11) 0 CONSTANT OFF 1 CONSTANT ON
12) DCO1 CONSTANT JOY1

13) DCOO CONSTANT JOY2

14) DDOl CONSTANT UPORT
15) D800 CONSTANT COLOR-MEM DECIMAL
SCREEN #65

0) (DATA STRUCTURES: S-DEF)

1) (COMPILE: ALLOCATES ROOM & READS SPRITE DATA FROM INPUT STREAM)
2) (EXEC: MOVES SPRITE DATA TO ADDR ON STACK)

3) : S-DEF
4) CREATE ([63 BYTE VALUES IN INPUT STREAM] ; —---)
5) 63 0 DO
6) BL TEXT PAD NUMBER DROP C,
7} LOOP
8) DOES> (ADDR —---)
9) SWAP 63 CMOVE ;
10)
11)
12)
13)
14)
15)

205 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #66
0)

DATA STRUCTURES:
1) (CREATES & GETS ELEMENT FROM 16-BIT 1 D

1ARRAY 2ARRAY)

IMENSIONAL ARRAY)

2) : 1lARRAY
3) CREATE (#ELEM ---)
4) 2* ALLOT
5) DOES> (ELEMENT --- ADDR)
6) SWAP 2% + ;
7)
8) (CREATES & GETS ELEMENT FROM 16-BIT 2 DIMENSIONAL ARRAY)
9) : 2ARRAY
10) CREATE (#Y-ELEM #X-ELEM —--)
11) DUP , * 2* ALLOT
12) DOES> (Y-ELEM X-ELEM --- ADDR)
13) >R R@ @ ROT * + (GET X-MAX * Y + X)
14) 2% R> + 2+ (MAKE 2 BYTE & ADD ARRAY BASE)
15)
SCREEN #67

0) (GRAPHICS: M-X M-Y B-MFLAG S.DIST L.DIST }

1)

2) (MIRROR CENTER COORDINATES)

3) 0 CONSTANT M-X

4) 0 CONSTANT M-Y

5) |

6) (MIRROR FLAG)

7) VARIABLE B-MFLAG

8)

9) (LINE VARIABLES)
10) VARIABLE S.DIST
11)

12)
13)
14)
15)

SCREEN #68

0) (GRAPHICS: BORDER BKGND M-ORIGIN)

0 B-MFLAG !

VARIABLE L.DIST

1) (CHANGE BORDER COLOR)
2) : BORDER (C ---) 53280 C!
3)
4) (CHANGE A BACKGROUND REGISTER)
5) : BKGND ([REG) C ---)
6) 53281 DEPTH 2-
7) IF ROT + THEN C! ;
8)
9) CODE M-ORIGIN (X Y ---)
10) SEC LDA, ' M-X STA,
‘11) SEC 1+ LDA, ' M-X 1+ STA,
12) BOT LDA, ' M-Y STA,
13) POPTWO JMP,
14) END-CODE
15)

206

SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #69
0) (GRAPHICS: R-PLOT)

1) { PLOT A POINT X,Y RELATIVE TO M-X,M-Y)

2) CODE R-PLOT (X Y ——)

3) cCLC,
4) ' M-X LDA, SEC ADC, SEC STA,

5) ' M-X 1+ LDA, SEC 1+ ADC, SEC 1+ STA,
6) CLC,

7) ' M~Y LDA, BOT ADC, BOT STA,

8) ' M-Y 1+ LDA, BOT 1+ ADC, BOT 1+ STA,
9) ' B~PLOT JMP,
10) END-CODE

11)

12)

13)
14)
15)
SCREEN $70

0) (GRAPHICS: M~PLOT)
1) (M-PLOT 4 POINTS AROUND M-X,M-Y)
2) : M-PLOT (X ¥ ---)

3) B-MFLAG @ IF
4) DDUP. NEGATE R-PLOT (X -Y)

5) OVER NEGATE OVER DDUP R-PLOT (-X Y)
6) NEGATE R-PLOT (-X -Y)

7) R-PLOT (X Y)

8) ELSE

9) R-PLOT
10) THEN ;
11)
12)
13)
14)
15)
SCREEN #71

0) (GRAPHICS: CHAR)

1) CODE CHAR ('SCREEN ---)

2) HEX (B-Y F8 AND 5 * B-X 3 RSHIFT + + 85 C@ SWAP C!)

3) ' B-Y LDA, F8 # AND, N STA, N 1+ STY,

4) CLC, .A ASL, N 1+ ROL, .A ASL, N 1+ ROL,

5) TYA, N 1+ ADC, N 1+ STA,

6) ' B-X 1+ LDA, .A LSR,

7) ' B-X LDA, .A ROR, .A LSR, .A LSR,
8) CLC, N ADC, BOT STA,

9} BOT 1+ LDA, N 1+ ADC, BOT 1+ STA,
10) 85 LDA, BOT ,X) STA,
11) POP JMP,

12) END-CODE
13)
14) DECIMAL
15)

207

N ADC, N STA,

SUPER-FORTH 64

(TM)

SUPER-FORTH 64 User Source Screens

SCREEN §#72

0) { GRAPHICS: B-CPLOT <B-LINE> }

1)

2) : B~CPLOT B-PLOT 'SCREEN CHAR H

3)

4) CODE <B-LINE>

5) CLC,

6) S.DIST LDA, BOT ADC, BOT STA,

7) S.DIST 1+ LDA, BOT 1+ ADC, BOT 1+ STA,

8) 0< IF, CLC,

9) 4 ,X LDA, ' B-X ADC, -2 ,X STA,
1Q) 5 ,X LDA, ' B-X 1+ ADC, -1 ,X STA,
11) CLC,

12) 2 ,X LDA, ' B-Y ADC, -4 ,X STA,
13) 3 ,X LDA, ‘ B-Y 1+ ADC, -3 ,X STA,
14) ELSE,

15)

SCREEN #73

0) { GRAPHICS: <B-LINE>)

1) = SEC,

2) BOT LDA, L.DIST SBC, BOT STA,

3) BOT 1+ LDA, L.DIST 1+ SBC, BOT 1+ STA,

4) cLC,

9) 8 ,X LDA, ‘ B-X ADC, -2 ,X STa,

6) 9 ,X LDA, ' B-X 1+ ADC, -1 ,X STA,

7) CLC,

8) 6 ,X LDa, ' B-Y ADC, -4 ,X STA,

9) 7 ,¥X LDA, ' B-Y 1+ ADC, -3 ,X STA,
10) THEN,

11) DEX, DEX, DEX, DEX,
12) WNEXT JMP,

13) END-CODE

14)

15)

SCREEN #74

0) (GRAPHICS: LSETUP)

1) : LSETUP (X ¥ -——)

2) B-Y - { DY) 1 OVER +- (SIGN OF DY)

3) >R ABS SWAP

4) B-X - (DX) 1 OVER +- (SIGN OF DX) >R ABS

5) DDUP MIN S.DIST ! DDUP MAX L.DIST ! > (DY > DX?)

6) R> R> DDUP 5 ROLL

7) IF SWAP DROP 0 SWAP B-Y

8) ELSE DROP 0 B-X THEN

9) L.DIST @ MOD L.DIST @

10) L.DIST @ 0 ;
11)
12)
13)
14)
15)

208 SUPER-FORTH 64

(TM)

SUPER-FORTH 64 User Source Screens

SCREEN #75
0) { GRAPHICS: B-LINE)
1) : B-LINE (X Y -—-)

2) LSETUP DO
3) <B-LINE> B-PLOT

4) LOOP

5) DDROP DDROP DROP ;
6)

7} : B-CLINE (X ¥ —---)
8) LSETUP DO

9) <B-LINE> B-CPLOT
10) LOOP
11) DDROP DDROP DROP ;
12)

13)
14)
15)

SCREEN #76

0) (GRAPHICS: ELLIPSE CIRCLE)
1) : ELLIPSE (X Y HR VR ———)
2) DSWAP M-ORIGIN ON B-MFLAG !

3) DDUP MAX 360. ROT U/MOD SWAP DROP >R
4) 364 0 DO

5) OVER I 2 RSHIFT <COS> U* TSCALE
6) OVER I 2 RSHIFT <SIN> U* TSCALE
7) M-PLOT

8) J +LOOP

9) R> DDROP DROP OFF B-MFLAG ! ;

10)

11)

12) : CIRCLE (X Y R -—-) DUP 3 4 */ ELLIPSE ;
13)

14)
15)
SCREEN #77

0) (GRAPHICS: ARC)

1) : ARC { HR VR STRT END -—-)

2) >R >R DDUP MAX 360 SWAP / _
3) R> 2% 2% R> 1+ 2* 2* SWAP ROT >R
4) DO

5) OVER I 2 RSHIFT QCOS M* TSCALE
6) OVER I 2 RSHIFT QSIN M* TSCALE
7) M-PLOT

8) J +LOOP

9) R> DDROP DROP ;

10)

11)

12)

13)

14)

15)

209 SUPER~FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #78

0) (I/0 EXTENSIONS: CMD CMDI INPUT
1) : CMD (LFN ---) OUTLFN ! :
2) : CMDI (LFN ---) INPLFN ! ;
3)

4) : INPUT { -—— N)

5) QUERY BL WORD NUMBER DROP ;
6) : INPUT# (LFN --- N)

7) CMDI INPUT ;

8) : PRINT# (N LFN -—-)

9) CMD . ;
10) : $INPUT (~-- ADDR)
11) QUERY 1 TEXT PAD ;
12)
13) : PRINTER (FLAG -——)
14) IF 127 4 0 "" OPEN 127 CMD
15) ELSE CR 127 CLOSE 0 CMD THEN ;
SCREEN #79

0) (I/O EXTENSIONS: GET# PUT

1) : GET# (LFN --- N) CMDI ?TERMINAL
2) : PUT# (N LFN ---) CMD EMIT ;
3) : RS232 (LFN ADDR ---)

4) 2 0 ROT OPEN ;

3)

6) : FRE (--- N

7) FIRST HERE - U. ;

8)

9) CODE RDTIM (--- D)
10) DEX, DEX, SEI,
11) 162 LDA, BOT STA,
12) 161 LDA, BOT 1+ STA,
13) 160 LDA, PHA, TYA,

14) CLI, PUSH JMP,

15) END-CODE
SCREEN #80

0) (I/O EXTENSIONS: SETTIM WAIT)
1) (SET THE 60 CYCLE CLOCK VALUE)
2) CODE SETTIM (D --—-)

3) SEI, BOT LDA, 160 STA,

4) SEC 1+ LDA, 161 STA,

5) SEC LDA, 162 STA,

6) CLI, POPTWO JMP,

7) END~-CODE |

8)

9) (WAIT N TICKS [1/60 SECONDS])
10) : WAIT (N --—-)

11) S->D RDTIM D+

12) BEGIN

13) DDUP RDTIM

14) D> NOT

15) UNTIL DDROP ;

210

INPUT# PRINT# $INPUT PRINTER)

RS232 FRE RDTIM)

.
r

SUPER~FORTH 64

(TM)

SUPER-FORTH 64 User Source Screens

SCREEN #81

0) (UTILITIES: CASE OF ;; ENDCASE)

1) (EXECUTE CODE BASED ON STACK VALUE)
2) : CASE ?COMP CSP @ SP@ CSP ! 4 ;

3) IMMEDIATE

4}

5) : OF

6) 4 ?PAIRS COMPILE OVER COMPILE

7) = COMPILE OBRANCH HERE 0 ,

8) COMPILE DROP 5 ; IMMEDIATE

9)

10) : ;3

11) 5 ?PAIRS COMPILE BRANCH HERE 0 ,
12) SWAP 2 [COMPILE] THEN 4 ; IMMEDIATE
13) : ENDCASE 4 ?PAIRS COMPILE DROP
14) BEGIN SP@ CSP @ = 0=

19) WHILE 2 [COMPILE] THEN REPEAT CSP { ; IMMEDIATE
SCREEN #82

0) (UTILITIES: DIR)

1) : DIR { ---

2) PAD " $" LOADRAM CR PAD 2+

3) (MAIN LOOP - PRINT ENTRY)

4) BEGIN

5) DUP @ . 2+ (PRINT #PAGES)

6) BEGIN (PRINT TEXT)

7} DUP €@ ?2DUP

8) WHILE EMIT 1+

9) REPEAT 1+ CR

10) (CHECK FOR USER INTERVENTION)
11) PAUSE ?TERMINAL IF QUIT THEN
12) (MORE TO DO?)
13) DUP 2+ SWAP @

14) NOT UNTIL DROP ;
15)

SCREEN #83

0) (UTILITIES: PATCH)

1) : PATCH (PATCH-ADDR --- NEXT-PATCH-ADDR)

2) CR QUERY (GET PATCH INPUT LINE)

3) BEGIN

4) DUP BL WORD (GET AN ENTRY)

5) DUP COUNT SWAP DROP (ENTRY NOT NULL?)

6) WHILE NUMBER DROP { CONVERT TO 16 BIT NUMBER)

7) SWAP C! 1+ (PUT AT PATCH ADDR & UPDATE ADDR)
8) REPEAT DDROP ;

9)

10)

11)

12)

13)

14)

15)

211 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #84
0) { UTILITIES: H@ HC@ H! HC!)
1) (HI-RAM ACCESS ROUTINES)
2) : H& (--- N)
3) SWAPOUT @ SWAPIN ;
4)
5) : HC@ (--- N)
6) SWAPOUT C@ SWAPIN ;
7)
8) : Hl (N ---)
9) SWAPOUT | SWAPIN ;
10)
11) : HC! (N ---)
12) SWAPOUT C! SWAPIN ;
13)
14)
15)
SCREEN #85

0) (MUSIC EDIT: WAVE PLAY,NOTE V-DEFAULT SOUND.INIT)
1) VARIABLE WAVE

»
r

2) : PLAY.NOTE (NOTE# ---)
3) 12 /MOD (DETERMINE OCTAVE & NOTE)

4) 7 XOR (GET VALUE TO DIVIDE BY)

5) SWAP NOTE@ (GET NOTE VALUE)

6) SWAP RSHIFT (DIVIDE FOR OCTAVE)

7) V-FREQ (SET FREQUENCY)

8) OFF V-CTRL { CLEAR PREVIOUS NOTE)

9) WAVE @ V-CTRL ; (PLAY NEW NOTE)

10)

11) : V-DEFAULT (---
12) RESET V-CTRL 9 12 V-AD SAWTOOTH WAVE
13) : SOUND.INIT (---
14) SID @ 25 0 FILL (CLEAR SID)

15) V3 V-DEFAULT V2 V-DEFAULT V1 V-DEFAULT 0 15 MODEVOL ;
SCREEN #86

0) (MUSIC EDIT: T@ T!)
1) 0 CONSTANT T@

2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

CODE T!
BOT LDA,
END-CODE

T@ STA, POP JMP,

212

SUPER-FORTH 64

(TM)

SUPER-FORTH 64 User Source Screens

SCREEN #87

0) {(MUSIC EDIT: O@ O! OX)
1) {(RETURN OCTAVE VALUE)

2) 0 CONSTANT O

POP JMP,

.
s

-
’
-
r
r

VARIABLE DURATION

DURATIONS BASED ON 64TH NOTE RESOLUTION - 4/4 TIME ASSUMED)

.
’

TRIPLET DURATION @ 2* 3 / DURATION ! ;

0) (MUSIC EDIT: NDEF NEXT.NOTE READY NCALC)

) 12 ALLOT

-
f

)

V2 NEXT.NOTE D!

213

V1 NEXT.NOTE

3)
4) CODE 0!
5) BOT LDA, ' 0@ STA,
6) END-CODE
7)
g8) : OO 0ODO! ; : 01 12 O!
9) : 02 24 O! ; : O3 36 O!
10) : O4 48 O! ; : 05 60 O!
11) : 06 72 0! ; : O7 84 O!
12)
13)
14)
15)
SCREEN #88
0) (MUSIC EDIT: TEMPO DURATION TIMINGS)
1) VARIABLE TEMPO
2) |
3) : WHOLE 192 DURATION !
4) : .1/2 144 DURATION ! ;
5) : 1/2 96 DURATION ! ;
6) = .1/4 72 DURATION ! ;
7) = 1/4 48 DURATION ! ;
8) :+ .1/8 36 DURATION ! ;
9) : 1/8 24 DURATION ! ;
10) : .1/16 18 DURATION ! ;
11) : 1/16 12 DURATION ! ;
12) : 1/32 6 DURATION ! ;
13) : 1/64 3 DURATION ! ;
14) =
15} 60 TEMPO ! 1/4
SCREEN #89
1) : NDEF CREATE (---
2) DOES> (--- ADDR)
3) VOICE @ 2* 2* + ;
4)
5) NDEF NEXT.NOTE
6)
7) : READY (--- FLAG)
8) NEXT.NOTE D@ RDTIM D<
9)
10) (CALCULATE TICKS TILL NEXT NOTE
11) : NCALC DURATION @ 75 TEMPO @ */ 0
12) NEXT.NOTE D@ D+ NEXT.NOTE D! ;
13)
14) SONG.INIT RDTIM DDUP DDOUP
15) V3 NEXT.NOTE D!

Dl ;

SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #90

0) (MUSIC EDIT: PLAY.WAIT }

1)

2) : PLAY.WAIT (VALUE ---)

3) BEGIN READY UNTIL

4) og + { GET OCTAVE)
5) Ta + { ADD TRANSPOSE)
6) PLAY.NOTE

7) NCALC ;

8)

9} EXIT
10)

11)

12)
13)
14)

15)
SCREEN #91

0) (MUSIC EDIT: NOTE DEFS)

l) : C 0 PLAY.WAIT ;

2) : C# 1 PLAY.WAIT ; : D\ C# ;
3). : D 2 PLAY.WAIT ;

4) : D# 3 PLAY.WAIT ; E\ D# ;
5) + E 4 PLAY.WAIT ;

6) : F 5 PLAY.WAIT ;

7) : F# 6 PLAY.WAIT ; G\ F#
8) : G 7 PLAY.WAIT ;

9) : G# 8 PLAY.WAIT ; : A\ G# ;
10) : A 9 PLAY.WAIT ;

11) : A4 10 PLAY.WAIT ; : B\ A} ;
12) : B 11 PLAY.WAIT ;

13) : R BEGIN READY UNTIL OFF V-CTRL NCALC :
14) : TIE NCALC :
15) FORTH DEFINITIONS

SCREEN #92
0) (S-EDITOR: S-EDITOR)

1) : S-EDITOR (---)

2) CREATE 63 ALLOT PAGE

3) (DRAW SPRITE EASEL)

4) 21 0 DO SPACE SPACE

5) 24 0 DO 209 EMIT LOOP CR

6) LOOP

7) 26 0 DO 184 EMIT LQOP

8) (CLEAR SPRITE AREA #13)

9) 832 63 0 FILL

10) (ACTIVATE S1 AT AREA #13)

11) S1 ON S-ENABLE 13 S~POINTER BLUE S-COLOR
12) 270 130 S-POSITION ON S-XEXP ON S-YEXP
13) CHARIN DROP (SIGNAL END OF INPUT)

14) 0 22 D-POSITION

15) -—>

214 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #93
0) (S-EDITOR:)
1) 832 (SPRITE AREA # 13)
2) 21 0 DO (ROWS)
3) 24 0 DO I J (ADDR COL ROW)
4) 40 * 2+ + 'SCREEN +
5) 8 0 DO (BIT#)
6) DUP C@ 81 = NOT
7) 3 PICK I 7 XOR MASK FBIT
8) 1+ LOOP
9) DROP 1+
10) 8 +LOOP
11) LOOP DROP
12) 832 LATEST PFA 63 CMOVE
13)
14) DOES> SWAP 63 CMOVE ;
15)

SCREEN #94
0) (TURTLE: HEADING SETH SETXY PENFLG PU PD PM SETX SETY RT LT)
1) VARIABLE HEADING
2) : SETH { ANGLE ---) HEADING ! ;

3) : SETXY (X Y -—-) ' B-Y ! ' B-X | :
4) VARIABLE PENFLG

5) : PU 0 PENFLG { ;

6) : PD 1 PENFLG ! ;

7) : PM { X ¥ -~-) PENFLG @ IF B-CLINE ELSE SETXY THEN ;
8) : SETX (X ~-——) B-Y PM ;

9) : SETY (Y ---) B-X SWAP PM ;
10)

11) : RT (N ---
12) HEADING @ + DUP 359 >

13) IF 360 MOD THEN
14) DUP 0< IF 360 + THEN SETH ;
15) : LT { N ---) NEGATE RT :
SCREEN #95

0) (TURTLE: CS HOME PC BG TS DRAW)

1) : C8 (=---) 0 B-FILL ;

2) : HOME (---) 160 100 PM 0 SETH ;

3) : PC (COLOR —---)

4) 133 C@ 15 AND CATNIB 133 ! ;

5) : BG ([COLOR -—-)

6) 133 C@ 4 RSHIFT SWAP DDUP

7)

8) CATNIB 133 C! B-COLOR-FILL :

9) : T§ (~~-) OFF D-SPLIT ;

10) : S§ (--~ } TS 21 D-SPLIT 7 BITMAP

11) PAGE 0 20 D-POSITION ;

12) : FS (---) TS 7 BITMAP ON B-GRAPHICS ;
13) : DRAW (---)

14) SS CS RED PC CYAN BG
15) PU HOME PD ;

215 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #96
0) (TURTLE: FD BK)
1) : /D (N —-——-

2) DUP HEADING @ QSIN M* TSCALE B-X

3) SWAP HEADING @ QCOS M* TSCALE
4) 3 4 */ NEGATE B-Y +
5) PM ;
6)
7) +: BK (N -—-)
8) NEGATE FD ;
9}
10)
11)
12)
13)
14})
15)
SCREEN #97
0) (TURTLE: LONG NAMES)
1) : BACK BK ;
2) : BACKGROUND BG ;
3) : CLEARSCREEN CS ;
4) : FORWARD FD ;
5) : FULLSCREEN FS ;
6) : LEFT LT ;
7) : PENCOLOR BPC ;
8) : PENDOWN PD ;
9) : PENUP PU ;
10) : RIGHT RT ;
11) : SETHEADING SETH ;
12) : SPLITSCREEN S§S ;
13) : TEXTSCREEN TS :
14)
15)
SCREEN $#98

0) { TRACE COLON WORDS)
1} FORTH DEFINITIONS

2) CREATE TFLAG 1 ,

3) : TRACE TFLAG ! :

4)

5) : <TRACE>

6) TFLAG @ IF

7) CR R@ 2- NFA 1ID. .S KEY DROP

8) THEN ;

9) : : SP@ CSP ! CURRENT @ CONTEXT ! CREATE TFLAG @ IF
10} ' <TRACE> CFA DUP @ HERE 2- | » THEN SMUDGE)

11) ; CODE

12) IP 1+ LDA, PHA, IP LDA, PHA, CLC, W LDA, 2 # ADC,
13) IP STA, TYA, W 1+ ADC, IP 1+ STA,

14) NEXT JMP,

15) END-CODE

216

SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #99
(CURVES: CONSTANTS DIRECTIONS)

0)
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

SCREEN #100

4 CONSTANT +90DEG

+90DEG NEGATE CONSTANT

-90DEG

(DIRECTIONS: TABLE OF 2 CELL RECORDS- XDIR*XLEN , YDIR*YLEN)

(

EACH RECORD DESCRIBES A 90 DEG CHANGE IN DIR FROM LAST REC)

CREATE DIRECTIONS

o,
1,
.Of
_1’

-1
0
1
0

o
(

0 DEG)

90

)

r
, (180).
r

(270)

0) (CURVES: DRAGON1)
S-DEF DRAGONI1

1)
2)
3)
4)
5)
6)

SCREEN #101

01 01
00 Cl
00 Fl1
00 FF
00 7F
00 3F
00 3C
00 FO
06 60
38 38
A8 2A
DECIMAL

00
co
EO
00
FE
EO
00
00
00
00
00

00
00
00
00
0o
00
00
01
1C
70

0) (CURVES: DRAGON2)
S-DEF DRAGON2

1)

15)

00
00
00
03
OF
oF
0C
03
OE
38
00

DECIMAL

01
01l
01
FF
FF
FF
F8
EO

60-

70
A8

00
co
EQ
80

FO

FC
7E
1E
00
00
00

00
00
00
07
OF
CE
09
07
1C
54

01
01
01
FF
FF
7D
FO
60
70
70

HEX

81
El
F9
FF
3F
3F

78

EO
70
1C

80
co
80
FF
F8
80
00
00
00
00

HEX

80
co
80
EO
F8
FE
3E
1E
00
00

217

SUPER-FORTH 64

(TM)

SUPER-FORTH 64 User Source Screens

SCREEN #102 |
0) (CURVES: VARIABLES NOTE NEXT-POINTER MOVE-SPRITE)
1) VARIABLE LENGTH
2) VARIABLE DIR-INDX

4) (SPRITE POINTER ALTERNATES BETWEEN SPRITE AREAS 0 § 1)
5) : NEXT-POINTER (TOGGLE SPRITE POINTER)

6) 'SCREEN 1016 + SPRITE @ + DUP C@

7) 1 XOR SWAP C! ;

8)

3) : MOVE-SPRITE (MOVE NEXT SPRITE TO NEW X,¥ POSITION)
10) NEXT-POINTER B-X B-Y S-POSITION

11)

12)

13)

14)

15)

SCREEN #103
0) (CURVES: DRAWLINE NEW-POINT DRAW MOVE-DIRECTION)

2) : NEW-POINT (CALC. NEW X,Y COORD)

3 DIR-INDX @ DIRECTIONS +

4) DUP @ B-X + SWAP 2 +

3) @ B-Y +

6)

7] : LDRAW {(DRAW A LINE

8) NEW-POINT B-LINE MOVE-SPRITE H
9}
10) : MOVE-DIRECTION { DIR ---)

11} DIR-INDX @ + 15 AND DIR-INDX ! :
12)
13)

14)
15)

SCREEN #104
0) (CURVES: C-DRAW)
1) ({ DRAW A C-CURVE)

2) : C-DRAW (LEVEL ---)
3) DUP 0=
4) IF LDRAW
5) ELSE
6) DUP 1- RECURSE
7) +90DEG MOVE-DIRECTION
8) DUP 1- RECURSE
9) -90DEG MOVE-DIRECTION
10) THEN DROP ;
11)
12)
13)
14)
15}

218 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #105

0) (CURVES: SPRITES-INIT HI-RES-INIT) HEX

1) (MOVE SPRITE-DATA TO 0 & 1 SPRITES IN BANK 2)

2) : SPRITES-INIT §1 (SET SPRITE 1 AS ACTIVE SPRITE)

3) C000 DRAGON1 (MOVE DATA TO SPRITE AREAS)

4) C040 DRAGON2 (2 POSITIONS OF DRAGON FOR ANIMATION)
5) 0 S-POINTER (SET POINTER TO SPRITE AREA 0)

6) RED S-COLOR (SET SPRITE COLOR TO RED)

7) ON S-ENABLE { TURN ON SPRITE)

8) ON S-XEXP ; (EXPAND IN X DIRECTION)

9}
10) : HI-RES-INIT
11) 7 BITMAP ON B-GRAPHICS (SET BITMAP AREA)
12) 0 B-FILL { CLEAR BITMAP AREA)
i3) YELLOW BLACK B-COLOR-FILL (SET BITMAP COLOR SCHEME }
14) B-DRAW A0 90 B-PLOT ; (SPECIFY PEN DOWN & PLOT START PT)

15) DECIMAL

SCREEN #106

0) (CURVES: DIRECTIONS-INIT)

1) : DIRECTIONS-INIT

2) LENGTH @

3) DIRECTIONS DUP 16 + SWAP

4) DOI @ IFDUP 1 I @ +— * I ! THEN
5) 2 /LOOP DROP ;

SCREEN #107

0) (CURVES: CURVE-INIT C-CURVE)

1)

2) : CURVE-INIT (LEVELS LENGTH DIR -~-)

3) DIR-INDX !
4) LENGTH !

5) DIRECTIONS-INIT

6) HI-RES-INIT

7) SPRITES-INIT ;

8}

9)

10) : C-CURVE (LEVELS LENGTH ---)
11) 0 CURVE-INIT

12) C-DRAW ;

13)

14)

15)

219 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #108
0) (CURVES: CALL-RDRAGON LDRAGON }

1)

2) (ADDRESS OF RDRAGON GETS STUFFED INTO HERE ENABLING)
3) (LDRAGON TO CALL RDRAGON BY CALLING THIS WORD)
4) : CALL-RDRAGON 0 ;

5)

6) (MAKE A -90 DEGREE TURN)

7) : LDRAGON (LEVEL ——-)

8) DUP 0=

9) IF LDRAW

10) ELSE
11) DUP 1- RECURSE
12) ~90DEG MOVE-DIRECTION

13) DUP 1- CALL-RDRAGON
14) THEN DROP ;
15)

SCREEN #109
0) (CURVES: RDRAGON)

1}

2) (MAKE A +90 DEGREE TURN)
3) : RDRAGON (LEVEL —--)
4) DUP 0=

5) IF LDRAW

6) ELSE

7) DUP 1- LDRAGON

8) +90DEG MOVE-DIRECTION
9) DUP 1- RECURSE
10) THEN DROP ;
11)

12) (SET UP SO LDRAGON CAN CALL RDRAGON)
13) ' RDRAGON CFA ' CALL-RDRAGON !

SCREEN #1190
0) { CURVES: D-CURVE WAIT-5-SEC DEMO)
l) : D-CURVE (LEVELS LENGTH ---)

2) +90DEG 2* CURVE-INIT
3) LDRAGON ;

4)

5) : DDEMO (---)

6) 24 D-SPLIT PAGE 3 24 D-POSITION
7) ." **%* FRACTALS BY SUPER-FORTH 64 **% v

8) BEGIN
9) 7 1 DO

10) I 2% I 7 XOR MASK D-CURVE
11) SOUND.INIT 120 WAIT LOOP

12) 6 1 DO

13) I 2* I 7 XOR 1- MASK C-CURVE
14) SOUND.INIT 120 WAIT LOOP

15) AGAIN ;

220 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #111
0) (BACKUP: TWO DRIVE BUFFER COPY)

1) (COPY BUFFERS FRCM DRO TO DR1)
2) : COPYBUF (FLAG END START ---)

3) (READ SOURCE SCREENS)
4) DO I . I I BPDRV + COPY LOOP
5) IF 53248 1 0 20 17 3 RWTS
6) 53248 0 1 20 17 3 RWTS DDROP
7) THEN

8) SAVE-BUFFERS CR ;

9)

10) 113 LOAD
11)

12)
13)

14)

15)

SCREEN #112
0) (BACKUP: COPYBUF }
1) (SINGLE DRIVE BUFFER COPY)

2) : COPYBUF (FLAG END START ---)
3) CR ." INSERT SOURCE-HIT KEY " KEY DROP

4) (READ SOURCE SCREENS)

5) DO I . I BLOCK UPDATE DROP LOOP

6) DUP IF 53248 1 0 20 17 3 RWTS DROP THEN

7) CR ." INSERT DEST-HIT KEY " KEY DROP SAVE-BUFFERS CR
8) IF 53248 0 0 20 17 3 RWTS DROP THEN ;

g) ~-->

10)

11y

12)
13)
14)

15)

SCREEN #113
0) (BACKUP: PCOPY BACKUP SOURCE-BACKUP)
1) (PERFORM A PARTIAL BACKUP COPY)

2) : PCOPY (FLAG START END -~--)
3) EMPTY-BUFFERS 1+ DDUP SWAP -

4) $BUFF /MOD DROP OVER SWAP -

5) DUP 1- 4 ROLL { E+l E+1-R E-R § ---—)
6) DDUP > IF (CHECK IF SCREENS <= #BUFF)
7) DO 0 I #BUFF + I COPYBUF

8) #BUFF +LOOP ELSE DDROP THEN

9) COPYBUF ;

10)

11) : BACKUP (---)
12) 1 0 169 PCOPY ;
13)

14) : SOURCE-BACKUP (---)

15) 0 0 130 PCOPY :

221

SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #114

0) (ASSEMBLER: CONSTANTS INDEX)

1) LATEST HERE 36864 DP ! (SET UP FOR ASSEMBLER REMOVAL)
2) VOCABULARY ASSEMBLER IMMEDIATE

3) HEX ASSEMBLER DEFINITIONS

4) (REGISTER ASSIGNMENTS SPECIFIC TQ THIS IMPLEMENTATION)
5) 83 CONSTANT XSAVE 81 CONSTANT W

6) 04 CONSTANT IP 87 CONSTANT N

7)

8) (NUCLEUS LOCATIONS SPECIFIC TQ THIS IMPLEMENTATION)
9) 0884 CONSTANT POP 0882 CONSTANT POPTWO

10) 088B CONSTANT PUT 0889 CONSTANT PUSH
11) 0890 CONSTANT NEXT 0871 CONSTANT SETUPN

12)

13} VARIABLE INDEX -2 ALLOT

14) 0909 , 1505 , 0115 , 8011 , 8009 , 1DOD , 8019 , 8080 ,

15) 0080 , 1404 , 8014 , 8080 , 8080 , 1COC , 801C , 2C80 . DECIMAL

SCREEN #115
0) (ASSEMBLER: MODE ADDRESSING MODES BOT SEC RP> UPMODE)

1) HEX
2) VARIABLE MODE 2 MODE !

3) : AOMODE ! ; : # 1 MODE | ; : MEM 2 MODE ! ;
4) : ,X 3 MODE ! ; : ,Y 4 MODE ! ; : ,X) 5 MODE | ;
5) : },¥Y 6 MODE ! ; :) F MODE ! ;

6)

: ; (ADDRESS THE BOTTOM OF DATA STACK)
8) : SEC ,X 2 ; (ADDRESS SECOND ITEM ON DATA STACK)
X 101 ; (ADDRESS BOTTOM OF RETURN STACK)

9) : RP>

10}

11) : UPMODE IF MODE @ 8 AND 0= IF 8 MODE +! THEN THEN
12) 1 MODE @ OF AND ?DUP IF 0 DO DUP + LOOP THEN

13) OVER 1+ @ AND 0= ;

14)

15) DECIMAL

SCREEN #116
0) (ASSEMBLER: CPU)

1)

2) HEX

3) : CPU CREATE C, DOES> C@ C, MEM ;

4) 00 CPU BRK, 18 CPU CLC, DE CPU CLD, 58 CPU CLI,
5) B8 CPU CLV, CA CPU DEX, 88 CPU DEY, E8 CPU INX,
6) C8 CPU INY, EA CPU NOP, 48 CPU PHA, 08 CPU PHP,
7) 68 CPU PLA, 28 CPU PLP, 40 CPU RTI, 60 CPU RTS,
8) 38 CPU SEC, F8 CPU SED, 78 CPU SEI, AA CPU TAX,
9) A8 CPU TAY, BA CPU TSX, 8A CPU TXA, 9A CPU TXS,
10) 98 CPU TYA,

11)

12) DECIMAL

13).

14)

15)

222 SUPER FORTH 64 {TM)

SUPER-FORTH 64 User Source Screens

SCREEN #117
0) { ASSEMBLER: M/CPU)

1) HEX

2) : M/CPU CREATE C, , DOES>

3)
4)
o)
6)

pUP 1+ @ 80 AND IF 10 MODE +! THEN OVER

FF00 AND UPMODE UPMODE IF MEM CR

ABORT" INCORRECT ADDRESSING" THEN C@ MODE C@
INDEX + C@ + C, MODE C@ 7 AND IF MODE C@

OF AND 7 < IF C, ELSE , THEN THEN MEM ;

1C6E 60 M/CPU ADC, 1C6E 20 M/CPU AND, 1C6E CO M/CPU CMP,
1C6E 40 M/CPU EOR, 1C6E A0 M/CPU LDA, 1C6E 0 M/CPU ORA,
1C6E E0 M/CPU SBC, 1C6C 80 M/CPU STA, 0DOD 1 M/CPU ASL,
0Cc0C C1 M/CPU DEC, 0COC E1 M/CPU INC, 0ODOD 41 M/CPU LSR,
0DOD 21 M/CPU RQL, ODOD 61 M/CPU ROR, 0414 81 M/CPU STX,
0486 E0 M/CPU CPX, 0486 CO M/CPU CPY, 1496 A2 M/CPU LDX,
0C8E A0 M/CPU LDY, 048C 80 M/CPU STY, 0480 14 M/CPU JSR,
8480 40 M/CPU JMP, 0484 20 M/CPU BIT, DECIMAL

SCREEN #118

0)
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

{

.
»

DO CONSTANT 0=

ASSEMBLER: BEGIN, UNTIL, IF, THEN, ELSE, NOT BRANCHES)
BEGIN, HERE 1 ;
UNTIL, >R 1 ?PAIRS R> C, HERE 1+ - C, ;
IF, C, HERE 0 C, 2 ;
THEN, 2 ?PAIRS HERE OVER C@
IF SWAP ! ELSE OVER 1+ - SWAP C! THEN ;
ELSE, 2 ?PAIRS HERE 1+ 1 JMP,
SWAP HERE OVER 1+ - SWAP C! 2 ;

HEX

NOT 20 + ; REVERSE ASSEMBLY TEST)

ASSEMBLER TEST FOR EQUAL ZERO)

: (

90 CONSTANT CS (ASSEMBLE TEST FOR CARRY SET)
(
(

10 CONSTANT 0<

ASSEMBLE TEST FOR LESS THAN OR EQUAL ZERO)

90 CONSTANT >= (ASSEMBLE TEST FOR GREATER OR EQUAL ZERO)

(

.= IS ONLY CORRECT AFTER SUB, OR CMP,)

50 CONSTANT VS DECIMAL

SCREEN #119

0)
1)
2)
3)
4)
3)

(

ASSEMBLER: AGAIN, WHILE, REPEAT)
AGAIN, 1 2?PAIRS JMP, ;
WHILE, >R DUP 1 ?PAIRS R> IF, 2+ ;

REPEAT, >R >R 1 ?PAIRS JMP, R> R> 2 - THEN, :

223 SUPER-FORTH 64

(TM)

SUPER-FORTH 64 User Source Screens

SCREEN #1120
0) (ASSEMBLER: END-CODE ENTERCODE ;CODE CODE)
1) : END-CODE CURRENT @ CONTEXT { SP@ 2+ =

2) IF SMUDGE
3) ELSE ." CODE ERROR;, STACK DEPTH CHANGE"
4) THEN ;

5) FORTH DEFINITIONS
6) : ENTERCODE [COMPILE] ASSEMBLER SP@ ;
7) : CODE CREATE SMUDGE HERE DUP 2- !

8) ASSEMBLER MEM ENTERCODE ; IMMEDIATE
9) : ;CODE ?CSP COMPILE <;CODE> [COMPILE] [ENTERCODE ; IMMEDIATE
10) EXIT

11)

12)
13)

14) (THIS 6510 FORTH ASSEMBLER WAS WRITTEN BY WILLIAM F. RAGSDALE)
15) (IT WAS PUBLISHED IN "FORTH DIMENSIONS", VOL. III # 5)

SCREEN #1211

0) (ASSEMBLER: A-REMOVE)

1) DP ! (RESET DP TO PRE-ASSEMBLER AREA)

2} : A-REMOVE (CAUSES REMOVAL OF ASSEMBLER FROM DICTIONARY)
3) LITERAL { 0 LATEST PFA LFA] LITERAL ! ; DROP

224 SUPER~FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #123
0) (SPRITES DEMO)
1) : INIT-SID
2) SOUND.INIT

3) V3 65535 V-FREQ (SET RANDOM)
4) NOISE V-CTRL

5) 0 0 MODEVOL ;

6)

7) : INIT-SPRITES

8) 8 0 DO

9) I SPRITE ! ON S-ENABLE

10) I 2* S-COLOR

11) 49152 DRAGON1 49216 DRAGON2
12) I 4 / S-POINTER

13) LOOP ;

14)
15)

SCREEN #124
0) { SPRITES DEMO)
1) : MOVE-SPRITES

2) 8 0 DO
3) I SPRITE !

4) 0SC3@ 0SC3@ S-POSITION
5) LOOP ;

6)

7) : SPRITE-OFF

8) 8 0 DO

9) I SPRITE !
10) OFF S-ENABLE

11) LOOP ;

12)

13)

14)

15)

SCREEN #125
0) (GRAPHICS DEMOS)

1) : LINES { COLORl COLOR2 ---)
2) DRAW FS

3) B-COLOR-FILL
4) 320 0 DO

5) 0 0 B-PLOT

6) I 199 B-LINE
7) 4 +LOOP

8) 0 199 DO

9) 0 0 B-PLOT
10) 319 I B-LINE
11) -2 +LOOP

12) 180 WAIT ;

13)

14)

15)

225 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #126
0) (GRAPHICS DEMOS)

1) : SDEMO

2) INIT-SID DRAW FS INIT-SPRITES

3) 240 20 DO

4) I 100 U* SQRT 20 -

5) I 1 RSHIFT 80 + SWAP

6) I 3 RSHIFT DUP 15 10 */ ELLIPSE
7) MOVE-SPRITES

8) 6 +LOOP

9) 180 WAIT SPRITE-OFF ;
10)
11)
12)
13)
14)
15)
SCREEN #127

0) (JESU)

1) : O+ 12 ' 0@ +! ; : O~ -12 ' 0@ +! ;
2) ¢+ J1 SOUND,.INIT 02 120 TEMPO !

3) V1l 1/8 TRIPLET 0 9 V-AD SONG.INIT

4) GO+ GA
5) BO+DC

6) CED
7) D G F¢

8) GDO-B

9) GAB

10) O+ C D E
11) DCO-B
12) A BG

13) F$ G A

14) D F# A

15) O+ C O- B A ;
SCREEN #128

0) (JESU)

l) : JESO

2) Jl

3) BGA

4) B O+ DC

5) CED

6) D G F#

7) G DO-B

8} G AB

9y E O+ D C O-
10) BAG

11) D G F§

12) WHOLE G O- ;
13)

14)

15)

226 SUPER-FORTH 64 (TM)

SUPER-FORTH 64 User Source Screens

SCREEN #1298
0) (TURTLE DEMOS)
1) : SQUARE

2) 4 0 DO
3) DUP FD 90 RT LOOP DROP ;

4)

5) : FAN

6) RED CYAN CATNIB 133 C!

7) 18 0 DO 20 SQUARE 20 RT LOOP
8) 18 0 DO 40 SQUARE 20 RT LOOP
9) 18 0 DO 60 SQUARE 20 RT LOOP
10) WHITE PC

11) 168 90 100 CIRCLE ;
12)
13)
14)
15)

SCREEN #1230
0) (DEMO EXECUTIVE)
1) : DEMO
2) BLACK ORANGE LINES
3) JESU 180 WAIT
4) 8 2 C-CURVE 180 WAIT
5) SDEMO DRAW
6) ." SUPER FORTH 64 TURTLE GRAPHICS DEMO "
7) FAN 180 WAIT TS
8) 9 2 D-CURVE 180 WAIT
9) SPRITE-OFF
10) TS 2067 GO ;

227 SUPER-FORTH 64 (TM)

SUPER-FORTH Dictionary List

III. SUPER-FORTH Dictionary List

The following list contains all of the words defined in the SUPER-FORTH
64 system. As with VLIST, the order is from highest level to lowest
level definitions. The list is broken up into the three vocabularies,
FORTH, EDITOR and ASSEMBLER.

III-1 SUPER FORTH 64 Main Vocabulary Word Set
TEXTSCREEN SPLITSCREEN SETHEADING RIGHT PENUP
FPENDOWN PENCOLOR LEFT FULLSCREEN FORWARD
CLEARSCREEN BACKGROUND BACK BK FD
DRAW FS SS TS BG
PC HOME Cs LT RT
SETY SETX PM PD PU
PENFLG SETXY SETH HEADING S-EDITOR
TIE R B B\ A#
a A\ G# G G\
F# F E E\ D#
D B\ C# cC PLAY.WAIT
SONG. INIT NCALC READY NEXT.NOTE NDEF
TRIPLET 1/64 1/32 1/16 .1/16
1/8 .1/8 1/4 .1/4 1/2
.1/2 WHOLE DURATION TEMPO 07
06 05 04 03 02
Ol 00 0! od T!
T@ SOUND, INIT V-DEFAULT PLAY.NQTE ‘WAVE
HC! H! HCd H@ PATCH
DIR ENDCASE i OF CASE
WAIT SETTIM RDTIM FRE R§8232
PUT# GET# PRINTER SINPUT PRINT#
INPUT# INPUT CMDI CMD ARC
CIRCLE ELLIPSE B-CLINE B-LINE LSETUP
<B-LINE> B-CPLOT CHAR M-PLOT R-PLOT
M-ORIGIN BKGND BORDER L.DIST S,DIST
B-MFLAG M-Y M-X 2ARRAY 1ARRAY
S-DEF COLOR~MEM UPORT JOY2 JOY1
ON OFF V3 V2 V1
30FF NOTE@ NOTE-VALUES NOTCH HIGHPASS
BANDPASS LOWPASS FILTEX FILT3 FILT2
FILT1 SYNC RESET RING NOISE
PULSE SAWTOOTH TRIANGLE 58 57
S6 S5 S4 S3 52
51 LT.GRAY LT.BLUE LT.GREEN MED.GRAY
DK.GRAY LT.RED BROWN ORANGE YELLOW
BLUE GREEN PURPLE CYAN RED
WHITE BLACK FMAX F> FMIN

228

SUPER-FORTH 64 (TM)

SUPER-FORTH Dictionary List

FNEGATE
FSQRT

FIX

F+

E.

FOV

FBASE
EASY-BITS
QSIN
TSCALE
GIN
CHKLIN
(']

EMPTY
2DUP

'S
<EMIT7>
-——>

DMIN

Dpa

DO=

<ROT

.58

V-AD
S-MULTI
S—-FSET
S-B-COLLISION
S-MULTIR
F~APPEND
FILE-MODE

ﬁ:

SVAL
<SCONCAT>
LOADRAM
SETNAM

THRU

I-INIT
ENV34

SID!

B-PLOT

B-X
'CHARBASE
SWAPQUT
APPLICATION
SPLIT '
]

WORD
VOCABULARY
UPDATE

U.
T&SCALC
SYSDEV

FABS
FCOS
DFIX
ALIGN

E!

FNE

FPSW

D2*

S180
DECOMPILE
LIST

; CODE
U.R
>BINARY
2DROP
VLIST
TRIAD
?LOADING
DMAX

D>

D_

. INDEX
MODEVOL
V-PW
S-PRIORITY

B-COLOR-FILL

F-NUMBER
F~NEW
FR/W
$>
<">
SRIGHT
SCONSTANT
CLRCHN
SETLFS
I-CLEAR
D-CLEAR
0sC3@
VCICE
B-DRAW
CHARBASE
'BITMAP
FBIT

SAVE-FORTH

CATNIB
(COMPILE]
WIDTH
VOC-LINK
UpP

U*

TIB
STATE

FEXIT
FSIN
LSCALE
F/

E@

FZE

SQRT

Cos

<COS>
<DECOM>
EDITOR
CODE

H
2VARIABLE
2CONSTANT
VTAB
TITLE
INDEX
DOVER
DSWAP
SCOPY

.S
RESFILT
V-FREQ
S-YEXP
B~COLOR

5-5-COLLISION

F-LOAD
WRITEB
F-OPEN
$<

SCLR
$MID
SVARIABLE
CLALL
-TEXT
I-SET
D-READ
PADDLE@
SID
B-ERASE
BITMAP

' SCREEN
CBIT
SAVENAME
8

{

WHERE
VARTABLE
UNTIL
TYPE
THEN
SPACES

2293

FINIT
FLOAT
RSCALE

F*

SFN

FER
1'S-BIT
SIN

<SIN>
GCHK

PP
ENTERCODE
FLUSH
2SWAP

2@
VLEN
'TITLE
PAUSE
DCONSTANT
MAX-BUFFS
COPY

.SR
V-CTRL
S-COLOR
S-XEXP
B-FILL

F-SAVE
READB
FNAME
SCMp

$.

SLEFT

ST

CLOSE
RECURSE
I-SYSTEM
D~-FPOSITION
F-FREQ
S-POSITION
B-PEN
SCREEN
'BANK
SBIT

5¥YS

XO0R
WHILL
USER

U<
TRAVERSE
TEXT
SPACE

<FNUM>
DFLOAT

F—.

F.

SFZ
FRESET
2'S-BIT
QCOs
SINTABLE
GIN+

LINE
ASSEMBLER
ERASE
20VER

2!

ID.

DUMP
DVARIABLE
DU<

D=

BMOVE

+SL

V-SR
S-POINTER
S-ENABLE
B-GRAPHICS
MULTI-COLOCR
F-EDIT
F-EXIT
SFIND
SLEN
SCONCAT
DOs
OPEN
SYSCALL
I-USER
D-SPLIT
Vi

SPRITE
B-Y

BANK
SWAPIN
MASK

SAVE

3

WARNING
USE
U/MOD
TOGGLE
SWAP
SP@

SUPER-FORTH 64

{TM)

SUPER-FORTH Dictionary List

SPO Sp!
SET-DRX SEC/BLK
S~->D RWTS
ROLL REPEAT
R/W RSHIFT
PREV PICK
OVER OUTLFN
NUMBER NOT
MODE MOD

MAX M/MOD
M* LSHIFT
<LIT> LIST
LATEST KEY
INIT-FORTH INPLFN
I HOQLD

GO FREEZE
FLAST FIRST
EXPECT EXIT
EMPTY-BUFFERS

DUAL DROP
DR1 DRO
DOES> DO
DEPTH DEFINITIONS
DABS D<

D+ DI

CR COUNT
CONFIGURE COMPILE
CHARIN CHANGE
(&r C!
BPDRV BLOCK
BEGIN BASE
ABS ABORT"
?STREAM ?STACK
?CSP ?CONFIGURE
>IN ' >
<VOCABULARY79>
<PAGE> <NUMBER>
<KEY> <INTERPRET>
<EMIT> <DO>
<BLOCK> <ABORT">
<; CODE> </LOOP>
<# <

2/ 2-

1- 1+

0= 0<

/ .R
-TRAILING =FIND
+BUF +-

*/ *
'T&SCALC 'STREAM
"LOAD 'KEY
'CR ' BLOCK
i #S

SMUDGE
SCR

RP!

Rd

R#

PFA
ouT

NFA
MIN

M/

LOOP
LIMIT

J
IMMEDIATE
HLD
FORTH
FIND
EXECUTE
EMIT
DR4

DPL
DNEGATE
DECIMAL
D.R
CURRENT
CONVERT
COoLD
CFA

BYE

BLK

AND
ABORT
?PAIRS
?COMP
<WORD>
<LOOP>
<FIND>
<CR>
<ABORT>
<, ">

+1

'R/W

' INTERPRET
'ABORT
#BUFF

230

SIGN
SAVE-BUFFERS
RP@

R>

QUIT

PAGE

OR

NEGATE
MAX-DRV
M+

LOAD

LFA
INTERPRET
IF

HEX
FORGET
FILL
ENCLOSE
ELSE

DR3

DP
DLITERAL
DDUP

D.

CsP
CONTEXT
CMOVE

ca

BUFFER
BLANK
ALLOT

a

?DUP

?
<VOCABULARYFI
<T&SCALC>
<LOAD>
<FILL>
<CMOVE>
<?TERMINAL>
<-FIND>
2%
OBRANCH
/MOD

r

+
'"WORD

' PAGE
'EXPECT
'?TERMINAL
#>

SECTRKT
S0

ROT

RO

QUERY
PAD
OFFSET
MOVE
MAX-BLKS
M* /
LITERAL
LEAVE
INIT-USER
I]

HERE
FLD -
FENCE

DUP

DR2
DOSERR
DIGIT
DDROP
D+-
CREATE
CONSTANT
CLEAR
C/L
BRANCH
BL

AGAIN
?TERMINAL
?DEPTH
>R

a>

<R/W>
<LINE>
<EXPECT>
<CMOVE
<<CMOVE>
<+LOOP>
79—-STANDARD
2

0>

/Loop

+LOQP

* /MOD
'VOCABULARY
'NUMBER
'EMIT
'=FIND

#

SUPER-FORTH 64

(T™)

SUPER-FORTH Dictionary List

SM

LL
12)
7}
2)

END-CODE
=
ELSE,
BIT,
LDX,
ROL,
STA,
CMP,
TXS,
SEI,
PLP,
INY,
CLI,
UPMCDE
Yo X

#

NEXT

N

ITI-2

IIT-3

REPEAT,
0<
THEN,
JMP,
CrY,
LSR,
SBC,
AND,
TXA,
SED,
PLA,
INX,
CLD,
RP>
+X)
Y-
PUSH
IP

Editor Vocabulary Word Set

P
M
15)
10)
5)
0)

W
X
13)
8)
3)
c .

Assembler Vocabulary Word Set

WHILE,
0=
IF,
JSR,
CPX,
INC,
ORA,
ADC,
TSX,
SEC,
PHP,
DEY,
CLC,
SEC
r Y
MODE
PUT
W

AGAIN,
Cs
UNTIL,
STY,
STX,
DEC,
LDA,
M/CPU
TAY,,
RTS,
PHA,
DEX,
BRK,
BOT

r X
INDEX
POPTWO
XSAVE

231

Vs
NOT
BEGIN,
LDY,
ROR,
ASL,
EOR,
TYA,
TAX,
RTI,
NOP,
CLV,
CPU

)

MEM
SETUPN
POP

SUPER-FORTH 64

(TM)

Various Articles of Implemented Screens

IV. Various Articles of Implemented Screens

232 SUPER-FORTH 64 (TM)

A FORTH ASSEVBLER
FOR THE 6302
by Willlsm F. Regedals

INTRODUCTION

This erticle should furthsr polerize the
sttitudes of thoss outelds the growing
community of FORTH ugars. Some will be
fascinoted by a lcbel-lecs, macro-
essemblor whoee source code is only 96
lincs long! Others will be vepslied by
reverey Polish syntax ond thy sbesnce of
Isbels.

The suthor immodest!y claims that this
io the best FORTH assembier sver distri-
buted. It io the only such smembler that
detects all errors in op-code generation
end conditional structuring. It is relessed
to the public domain g3 & deferwe mechan-
ism, Three good £502 sssemblers were
submitted to the FORTH Interest Group
but soch had some leck. Rather than
merge ond edit for publicetion, | chose to
publish mine with all the submitted fes-
tures plss severs! more,

Imagine kaving an assembler in 1300
bytes of object code with:

1. Unser macros (like 7, UNTIL,) de-
finable st eny time.

2. Literzsl values expresaed in eny
numeric base, alterable ot any
time. .

J. Ewpremions uning eny resident
computation capability.

4, Nested contro! structures without
labels, with srror control.

5. Amembler soyrce iteelf in & port-
sble high level language.

OVERVIEW

Fotth is provided with & machine Iang-
usge amembler to create execution pro-
cedures that would be time inefficient, if
written as colon-definitions. 1t is intended
that “tode™ be written similarly to high
level, for clority of expression. Functioms
may be written first in high-level, tested,
and then re-coded into assembly, with g
minimum of restructuring,

THE ASSEMBLY PROCESS

Code ssembly just consists of inter-
preting with the ASSEMBLER vocebulary
0 CONYEXY. Thus, cach word in the in-
put stream will be matched sccording the
Forth prectice of searching CONTEXT
firot then CURRENT.

ASSEMBLER {now CONTEXT)

FORTH {chained to ASSEMBLER)
wEar's (CURRENT if one oxits)
FORTH (chalned to user's vocab)

try for litarel rumber
slss, do srror sbart

The obove sequence iv the ums! sction
of Forth's text interpreter, which remains
in control during assembly.

Ouring casembly of CODE definitions,
Forth continues Interpretstion of sach
word encountered in the input stream (not
in the complis moda). These smembler
words specify opersnds, nddrems modes,
end op-codas. At the conclusion of the
CODE definition a final arror check veri-
fies correct completion by “uramudging™
the definition's name, to make it availoble
for dictionary searches.

RUN-TIME, ASSEMBLY-TIME

One must be careful to undurstand ot
what time a perticuler word definition
exscutes. During asssmbly, sach ms-
cembler word interpreted axscutes. Ite
function st that imstant is called ‘assemb-
ling’ or ‘smembly-time’. This function
may involve op-code generation, sddress
calculation, mode selection, ete.

The lster wxscution of the generated
code is called ‘run-time'. This distinction
is particulary importamt with the condi-
tionals. At emsembly time each such word
(i.e., IF, UNTIL, BEGIN, otc.) itsel! ‘runs’
to produce machine code which will Inter
execute at what is labeled ‘run-time’ when
its named code definition io used.

AN EXAMPLE

As a practical axample, here's a niﬁ:ln
call to the system monitor, via the NMI
address vector (using the BRIK epcode).

CODE MON (exit to monitor)
BRK, NEXT JMP, END-CODE -

The word CODE is first encountered,
pnd sxecuted by Forth. CODE btwilds the
following name "MON" into s dictionary
header snd calls ASSEMBLER as the
CONTEXT vocabulariy.

The X" is rext found in FORTH and
sxecuted to skip til ")". This method skips
over comments. Note that the name sfter
CODE and the ") after ™(* must be on the
saime text line.

OP-CODES

BRK, la next found in the asoembler as
the op-code. When BRK, sxscutes, it as-
semblea the dyte value D0 into the dic-
tionary me the op-code for "bresk to moni-
tor via "NMI".

Many asssembler words nemes end in
*" The significance of this is:

1. The comma shows thw conclusion
of s logical grouping that would be
ow line of clamsleal sssembly
souree cods.

2. " compliss Inte the dictionery;
mnnmmlwllumwm st
which code is generated.

3. The “" distinguishes op-codes
from pouibl- hex numbars ADC
and ADD,

NEXT

Forth ouscutes your word dafinitions
under eontrol of the address interpreter,
named NEXT. This short code routine
moves execution from one definition, to
the next. At the end of your code dafini-
tien, you must return control to NEXT or
aise to code which returne to NEXT,

RETURN OF CONTROL

Most 6302 wystems cen resurne execu-
tion after s break, since the monitor saves
tha CPU register contents. Thersfors, we
must return control to Forth sfter »
ratumn from the manitor. NEXT is a con-
stant that specifies the machine address
of Forth's addrems interpreter (say
$0242). Here it is tha operand for IMP,,
As P, executas, It sssembles s machine
code jump to the address of NEXT from
the sssembly time stack value.

SECURITY

Nurerous teats are made within the
nmembler for user efrors:

1. All pursmeters used in CODE
gefinitions must be removed.

2. Conditionsls must bs properly
nested and paired.

3. Addrem moder and operands must
be aliowable for the op-codes

Thase tests sre accomplished by
checking the steck position (in CSP) et the
crestion of the definition name ond
eomparing it with the position at END-
CODE. Legality of address modes snd
operands is insured by means of 8 bit maesk
associsted with each opersnd.

Remember that If an error occurs
during sssembly, END-CODE never esxe-
eutas. The result is thet the “smudged”
condition of the definition name remairs
in the “smudged” condition and will not be
found during dictionsry seerches.

The wer should be aware that one
error not trepped is referencing a defini-
tion in the wrong vocab risry:

Le., 0O=of ASSEMBLER when you want
0z of FORTH

Al

(Editor's note: tho listing sssumes thet
the ligFORTH srror mamages are already
available in the system, as follows

CSP isues the error ma *DEFI-
NITION NOT FINISHED”® if the stack
position differs from the vaius saved in
the user variable CSP, which is eat at tha
creation of teh dafinition name.

TPAIRS issues tha error message
"CONDITIONALS NOT IMPAIRED" if its
two srguments do not match.

3 ERROR prints the error message
"HAS INCORRECT ADDRESS MODE™.)

SUMMARY
The object code of our sxemple is:

305 983 4D oF CE COCE MON
305D 4D M0 Link field
JO5F 61 30 code field
3Dé1 0O BRK

3062 4C 42 02 IMP NEXT

OP-CODES, revisited

The bulk af the assembler consists of
dictionary entries for esch op-code. The
6502 one mode op-codes are:

BRK, CLC, CLD, CLI, CLv,
OEX, DEY, INX, NY, NOP,
PHA, PHP, PLA, PLP, RTI,

RTS, SEC, $SED, SEl, TAX,
TAY, TSX, TXS,. TXA, Tva,

When any of these are exscuted, the
curresponding op-code byt is sssembied
into the dictionery.

The multi-mode op-cades are:

ADC, AND, CMP, EOR, LDA,
ORA, $BC, STA, ASL, OEC,
INC, L5R, ROL, ROR, STX,
CPX, CPY, LDX, LDY, STY,
JSR, IMP, BIT,

These usually taks en operand, which
fmust already be on the steck. An address
mode moy also be wpecified. If none is
given, the op-code uses z-page or sbeolute
addressing. The address modes are deter-
mined by:

Symbol Mode Opetrand
A accumulater none
immedinte 8 bita only
X indexed X z-puge or
sbaciute
Y indexed Y Z-page or
obsoluts
,X) indexed indiroct X z-page only
}Y indirect indexed ¥ z-poge only
) indirect absolute only
nore memory Z-psge or
absolute

EXAMPLES

Hare are exmamples of Forth vs., con-
ventional asemblar. Note that the oper-
and comes first, followed by sny mode
modifier, end then the op-code
mnemonic. This makas best uce of the
stack st awembly time. Also, sach as-
ssmbler ward Is set off by blanks, ss is

‘required for all Forth sourcs text.

ROL A

LDY #1

STA DATA,X
CMP DATA,Y
ADC (08,%)
STA (POINT),Y
IMP (VECTOR)

A ROL,

1 #LDvy,
DATA ,X STA,
DATA ¥ CMP,
&,X) ADC,
POINT)Y 5TA,

(]

VECTOR ') JMP,
(.A distinguishes from hex number DA)

The words DATA snd VECTOR specify
machine acddresses. In the cass of "§)X
ADC," the operand memory address $0006
was given directly. This is ocessionally
done if the usage of g value doesn't justify
devoting the dictionary space to o symbol-
ic value,

6502 CONVENTIONS

Stack Addressing

The data stack is located in z-page,
usually addressed by "Z-PAGE,X". The
stack starts near $009E and grows down-
ward. The X index register is the data
stack pointer. Thus, incrementing X by
two removes a data stack valus; decre-
menting X twice makes room for one new
dats stack velue.

Sixteen bit values are placed on the
stack according to the §502 convention:
the low byte is at low memary, with the
high byte following., This allows "indexed,
indirect X" directly aoff a stack vaiye.

The bottom and second stack valuss
are referenced often enough that the sup-
port words BOT and SEC are included.
Lising

BOT LDA, assembies LDA 0,X and

SEC ADC, amembles ADC 2,X

BOT ieaves D on the stack snd sats the
address mode to ,X. SEC leaves 2 on the
stack glso setting the address mode to ,X.

Here is a pictorial representation of
the stack in z-page.

sec high

sec low

bot high

bot low <x=X pffset
above $0000

Here is an exsmples of code to "or” to
the sccumnulator four bytes on the steck:

BOT LDA, (DA 0,X
BOT 1+ ORA, ORA 1,X
SEC ORA, DORA 2,X
SEC 1+ ORA, ORA 3,X

To obtsin the 14-th byte on the stack:
BOT 13 + LDA,

RETURN STACK

The Forth Return Stack is locsted in
the 6502 machine stack in Page 1. It
starts at $O01FE and buiids downward. Na
lower bound is set or checked as Page 1
has sufficient capacity for all (non--
recursive) applications.

By 6502 convention the CPU's registar
pointa to the next free byte beiow the bot-
tom of the Return Stack. The byte order
foliows the convention of low significance
byts at the lower address,

Return stack values may be obtained
by: PLA, PLA, which will pull the low
byte, then the high byte from the raturn
stack. To operate on aribitrery bytes, the
method is:

1) save X in XSAVE

2) execute TSX,
register to X.

to bring the §

3) use RP) to acdress the lowest
byte of the return stack. Offset
the vslue to address higher
bytes. (Address made 19

sytomatically set to ,X.)
4) Restore X from XSAVE.

As sn example, this definition non-

_destructively tests that the second item

on the return stack (miso the machine
steck) is zero.

CODE IS-IT { zero?)
XSAVE 5TX, TSX, .{setup for
return stack)
RP) 2+ LDA, RP) 3 +« DRA,
{ or 2nd item’s two bytes
together)
0= IF, INY, THEN, { if zero, bump
Y to one)
TYA, PHA, XSAVE LDX, (save
low byte, rstore data stack)
PUSH JMP, END-CQDE (push
booiean)

Return Stack

hi byte second

PR) =$0101,X~> | lo byte item
hi byte bottom
o byte item

-} free byte

A2

FORTH REGISTERS

Sevaral Forth registers sre avalloble
only ot the smembly leve] ond have been
given names that return their memory ad-
dretses. Thass are:

P addrema of the Interpretive
Pointer, specifying the next Forth
addrem which will be interproted
by NEXT.

W address of the pointer Lo the code
field of the dictionary definition
just interpreted by NEXT, W-1
contrins $6C, the pp-code for in-
direct jump. Therefore, jumping
to W-1 will indirectly jump via W
to the machine tode for the def-
inition.

UP Uwer Ppinter containing ad-
dress of the bace of the user
erea.

N utility sres in z-page from
N-1 thru Ne7.

CPU Registers

When Forth execution leaves NEXT te
execute 8 CODE definition, the following
ctnventions epply:

1. The Y index register bs zero. It
may be freely used.

Z. The X index register defines the
{ow byte of the botiom date steck
item relative to machine address
$0000.

3. The CPU) stack pointer 5 points
one byte below the low byte of the
botiom return steck item. Exe-
cuting PLA, will pull thia byte to
the accumulator.

4. The sccumulmtor may be freely
uvsed. . ’

5. The processor is in the binary
mode and mus! be returned in Lhat
mode.

XSAVE

XSAVE is a byte buffer in z-page, for
termnporary storage of the X register.
Typical usage, with a call which will
change X, ig

CODE DEMO
XSAVE 5TX, USER'S J5R,
{ which will change X)
XSAVE LDX, NEXT IMP,
END-CODE

N Ares
Wher gbiolute memory registers are

required, wse the W Ares’ in the base
'age. These registers may be umd =9

pointers for indexed/indirect addressing or
for temporory values. As an example of

use, see CMOVE in the oystem wource

code.

The amembler word N returmns the
base addre The N Ares
cpans % bytes, from N-1 thru N<7. Con-
ventionglly, N-1 holds one byto snd N,
Nel, Nad, N+& aro psirs which may hold
16-bit valuves. See SETUR for help on
maving velues to the N Area.

It ls very importent to note that maony
Forth procedures use N. Thus, N may onjy
be used within s gingle code definition.
Never sxpect that » value will remain
there, cutside & single definition

CODE DEMO HEX
E #LDA, N1 - STA,
{setup a counter)

BECIN, 8001 BIT,
(tickle a port)

N 1 - DEC,
(decrement the counter)

0= UNTIL, NEXT JMP, END-CODE
{loop till nagetive}

SETLP

Often we with to move stack valuss to
the N area.
been provided for thils purpose. Upon en-
tering SETUP the sccumulator specifies
the quantity of 16-bit steck values to be
moved to the N ares. That is, A may
be 1, 2, 3, or & only:

3 # LOA, SETUP XR,

stack before N after stack after

" H high o}

G low bot--> G_
F F
E E_
D D
sec--> C_
B -}
bot--> A N—> A

CONTROL FLOW

Forth discards the ucus! convention of
amsembler lebels. Instead, two replace-
ments are vaed. First, each Forth defini-
tion name is permpnrently included in the
dictionary, This silows procedures to be
located ond executed by name at sny time
as wel! as be compiled within other defini-
Lions.

Secondly, within s code definition,
execution flow is controlled by lebei-less
branching eccording Lo "structured pro-
gramming”. This method (s identical to
the form used in colon-definitions. Branch
celculations are done st assembly time by
termporery stack velues placed by the con-

The sub-routine SETUP has

trol worde:

BEGIN,
THEN,

UNTIL, ¥, ELSE,

Here sgain, the assembier words end
with o eomma, to indicate that code is
being produced and to closrly diffaren-
ticte from the high-level form.

One major difference occure Hhagh-
jevel flow {s controlled by run-time
boolean values on the dats stock. As-
sembly flow in instend controlled by pro-
cussor atatus bils. The programmer must
indicate which status bit to test, just be-
fore & conditional branching word (IF,
and UNTIL,).

Examples are:

PORT LDA, D= F, <> THEN,
{read port, if equal to zero do <>)

PORT LDA, 0= NOT IF, <> THEN,

{resd port, if not equsl to zero
do <>)

The conditiona! specifiers for £502 sre:

cs tast carry set Cx=] in
processor
status
1.4 byte leas than zero Nzl
D= equal to zero 2=l
CS NOT test corry clesr Cas0
D<CNOT test positive NzD

0= NOT test not equal zero Z=0

The overflow stetus bit is so rarely
used, thet it is not included.
desited, compile:

ASSEMBLER DEFINITIONS HEX
50)CONSTANT VS - (test overfiow
et

CONDITIONAL LOOPING

A eonditionsl loap is formsd st as-
sembler level by placing the portion Lo be
repeated between BEGIN, and UNTIL,:

6 # LDA, N STA,
(define loop counter in N)
BEGIN, PORT DEC,
(repested action!
N DEC, 0= UNTIL,
{N resches rerc}

First, the byte st saddress N is loade?
with the value 6. The beginning o the
loop is marked (st sssembly time' by
BEGIN,. Memory at PORT 1s decrement-
ad, then the loop counter in N is decre-
meanted. Of course, the CPL) updates 119
siatun register as N i3 decrementec.
Finally, a tes: for Z=1 is made; if N hasn’t
resched zerop, execution returns to
BEGIN,. When N reaches zero (sfter exe-
cuting PORT DEC, 6 times' execution
continues ahead after UNTIL,. Nole that

It s

A3

BEGIN, generates no machine cods, but is
only an amsembly time locator.

CONOITIONAL EXECUTION

Paths of execytion may be chosen at
assembly in a similer fashion and done in
calon-definitions. In thio case, the branch
is chosen based on a processor status con-
dition code.

PORT LDA, 0= F,
THEN, . (continuing code)

(for zero cet)

In this example, the accumuiator is
losded from PORT. The zero status is
teated if set (Z=1). If so, the code (for
zero set) is executed. Whether the zoro
status :s set or not, execution will resume
at THEN,.

The conditional branching aleo aliows &
specific action for the false case. Here
we gee the addition of the ELSE, part.

PORT LDA, 0=IF, ¢ for zera set>
ELSE, <for zero cleard
THEN, <continuing code>

The tast of PORT will select one of
two execution peths, before resuming
execution after THEN,. The next
example increments N based on bit D7 of
a port:

PORT LDA, { fetch one byte)
X IF, N DEC, { if D7=1, decrement
N3
T ELSE, NINC, {if D7=0, increment
N)
THEN, { continue ahecd }

CONDITIONAL NESTING

Conditionals may be nested, according
to the conventions of structured pro-
grammung. That is, esch conditional se-
quence begun (IF, BEGIN,} must be ter-
minated [THEN, UNTIL,) before the next
earier conditional is terminated. An
ELSE., must pair with the immedistely
preceding IF,.

BEGN, < code alwaya executed>
CS IF, <{code if carry set>

ELSE, <code if carry clear>
THEN,
0= NIT UNTIL, { loop till condition

flag is non-zero)
<code that continues onward>

Next is an error that the assembler
security will reveal

BEGIN, PORT LDA,
G=1F, 80T INC,
0= UNTIL, TueN ;

The UNTIL, will not complete the
pending BEGIN, since the immediately
preceding IF, is not completed. An error
trep will ococur at UNTIL, saying "condi-
tionals not paired™.

RETURN OF CONTROL, revisited

When concluding a code definition,
several common stack manipulations often
are needed. Thess functions are already
in the nucieus, so we may share thair use
just by knawing their retumn points. Esch
of these returna control to NEXT,

PoP remove one l6-bit stack
valuss.

POPTWO remove two 16-bit stack
velues.

PUSH add two bytes to tho data
stack, .

PUT write two bytes to the
dote stack, over the
present bottom of the
gtack.

Our next exarmple complements a byte
in mamory. The bytes’ address is on the
stack when INVERT is executed.

CODE INVERT (a memory byte) HEX

BOT X} LDA, (fetch byte addressed
by stack}
FF & EOR, (complement sccumu-
lator}

BOT X) STA, (replace in memory)

POP IMP, END-CODE (discard
pointer. from stack,
return to NEXT)

A rew stack value may result from a
code definition. We could program placing
It on the stack by:

CODE ONE (put 1 on the stack)
DEX, DEX, { make room on the
data steck)
1 # LDA, BOT STA, (store low byte)
BOT 1+ STY, { hi byte stored from Y
since = zero)
NEXT JMP, END-CODE

A simpler v_erlion could use PLISH:

CODE ONE
1 ¢ LDA, PHA, (push low byte to
machine stack)
TyAa, PUSH IMP, { high byte to
sccumulator, push to date stack)
END-CODE -

The convention for PUSH and PUT is:
1. push the low byte onto the
machine stack,
2. leave the high byte
gccumulator.
3. jumpto PUSH or PUT.

In the

PLUSH will place the twa bytes as the
new bottom of tha dota stack, PUT will
Over-write the present bottom of the
stack with the two bytes. Failure to push
exactly one byte on the machine steck will
diarypt execution upon usege!

FOOLING SECURITY

Occasionslly we wish to generate
unstructursd code. To sccomplish this, we
cen control the sssembly time sscurity
checks, to our purpose. First, we muat
note the parameters utilized by the
control structures at assembly tims. The
notation below is taken from the oe-
sembler glomary. The — indicetes as-
sembly time execution, and separate input
stack values from the output stack valuen
of the words execution.

BEGIN, ==> - addrB 1
UNTIL, ==> addrB 1 ce —
v, == cc -- addr! 2
ELSE, ==> addr] 2 -— addrE 2
THEN, ==> addrl 2 -—
© or addrE 2 —
The wsddress values indicate the
machine location of the corresponding

"B'EGIN, TF, or E'LSE,. cc representa the
condition code to select the processor
status bit referenced. The digit 1 or 2 18
tested for conditional pairing.

The general mathod of security contra!l
is to drop off the check digit and manipu-
late the addresses at assembly time. The
security againet errors is less, but the pro-
gremmer ia uvauslly paying intense atten-
tion to detail during this effort.

To generate the squivalent of the high
lavei:

BEGIN <a> WHILE <h> REPEAT
we write 1n assembly:

BEGIN, DROP (the check digit
1, leaving addrB)

(@

{ leaves addrl and digit

2)

CsIF,

<p>
ROT { bring addrB to bottom)
IMP, (to addrB of BEGIN,)
THEM (compiete false for-
’ ward branch from IF,)

It is essential to write the assembly
time steck on paper, and run through the
assembly steps, to be sure that the check
digits are dropped and re-inaerted at the
correct points and addresses are correctly
available.

ASSEMBLER GLOSSARY

’ Specify ‘'immediate’ addressing
mode for the next op-code gener-
ated.

Ing Specify ‘indirect indexed Y' ad-

dressing mode for the next op-
code generated.

A4

"

R

0¢

Co0E

ASSEMBLER

BECIN,

Spacify ‘indaxsd X' eddroming
mode for the naxt op-code goner-
stad

Spocify ‘Indexsd Y' waddiressing
mode for the maxl op-code gener-
atod,

Specify mctumuistor oddressing
mode Tor the mext op-code gener-
ated.

- et (mrambling)

Spacify that the immediately fol-
lowing conditions! will brench
based on the procemar status bit
being regative (- . ' Lo, lewm
than zero. The flag et is feft at
smembly time; there B no run—
time pffect on the nock.

= gt (mssembling)

Specify thet the immedistely fol-
lowing econditione] will branch
based on Lhe procemor statun bit
being cqua! to rero (Zel). The
flag oc is left ot amembly time;
there is no run-time effect on the
s ack.

Used to eonclude s colon-defini-
ton n the form:

H {name> ... 1CODE
Csmembjv coded END-CODE
Stop compilation and terminate &
rew defining word <mome> . Set
the CONTEXT vocabulery to AS-
SEMBLER, amembling to machine
code the foliowing nmenonics. An
existing defining word rus? exist

in name prior to ;CODE.
When <name> later executes in
the form:

<{named> <namex>

the cdefinition <namex> will be
crested with its execution proced-
ure given by the machine code fol-
lowing <name> . That is, when
<nomex> s executed, the address
interpreter jumps Lo the code fol-
lowing ;CODE in <name> .

in FORTH
ASSEMBLER the CON-
TEXT vocebulsry. It will be
searched firsl when the input
stream in Interpreted.

Mgke

— wddr 1 {amembling)
- {run-time}
Occurms in 8 CODE definition in

the form:

BEGIN, . . . oo UNTL,

At run-time, BECIN, marks the
stert of an amsembly sequence re-
pestedly executed. It serves m
the retum peint for the torres-
ponding UNTIL, When resching
UNTLL, » brureh to BEGIN, will
ocour if the processor status bit
given by c¢c s falee; otherwise

cs

ELSE,

sxecvtion contimms chead.

At essermbly time, BEGIN, lsaves
the dictionary pointar address
oddr ond the valte 1 for later
testing of conditignary pairing by
UNTL,. ‘

— n (amsembling}
Uned during code amembly In the
form:

BOT LDA, or BOT 1+ X} §TA,

Adcrecems the bottom of the dats
ctack (containing the low byte! by
selecting the ,X mode and leaving
n=0, at smsombly time. This value
of n may be modified to snother
byte offsst into the dets stack.
Must be followed by & multi-mode

op-code MaRMonic.
A dafining word uead in the form:
CODE <neme> END-CODE

to ctreate 8 dictipnary entry for
<{nema> in the CLRRENT vocebu-
lary. Name's tode field containg
the oddrems of its paremeter
field. When Jmame> is lster
executed, the machine code in this
parameter field will execute.
The CONTEXT vocebulary is
mede ASEMBLER, to make
available the op-code mnemonice

ft — (complling amembler)
An omembdler defining word ysed
to erete emembler mnemonics
that have only one addressing
mode:

EA CPU NOP,

CPU crestes the work NOP, with
its op-code EA s & parameter.

When NOP, lster executes, it
sssembles EA g o one bByte o
code.

—- gt (nsmembling}
Specify that the immediately fol-
lowing conditional will brench
based on the processct cafrty ik set
(Cel). The flag cc is left at »e-
sembly time; there is no run-time
effect on the stack.

— (run-time!
- pddrl 2
{smembling'
Decurs within a code definilion in
the form:
et ¥, {true part> F15E,
<falee party THEM,
At run-time, If the condition code
wecified by ec ia false, eawcu-
tion will sikip to the machine code
following ELSE,. At smembly
time ELSE, smaembles 8 forward
jump to just sfter THEN, snd re-

edcrl 2

solves a pending forward branch
from IF. The values 2 are wed for
loﬂ't:u' checking of conditiona! pair-
ng.

END-CODE

| [

An error check word marking the
ond of 8 CODE definition. Suc-
cemsful execution to end including
END-CODE will unsmudge the
most recent CURRENT vocebu-
lary definition, making it avaiiable
for execution. END-CODE mlso
exits the ASSEMBLER meking
CONTEXT the ame as
CURRENT, This word previously
was nemed C:)

€C «-- addr
time)

=== addr % (mssembly-
time}

2 {mmsembly

Oeccurs within 3 code definition in
the form:
ec IF, <true part> ELSE,
false part THEN,

At run time, IF, branches based on
the condition code cc, (O or Os
or CS). If the wecified proceasor
wtatus is true, eascylion continues
ahend, otherwise branching occurs
to just sfter ELSE, (or THEN,
when ELSE, in not present), At
ELSE, execution resumes at the
corresponding THEN,.

When smembling, IF, creates an
unresolved forward brench based
on the condition code ecc, ond
leaves ader and 2 for resolution
of the branch by the corresponding
ELSE, or THEN,. Conditionais
mey be nested.

—- pddr (essembdling’
An array used within the smsem.
bier, which hoids bit pstterns of
aliowabie addressing modes.

—- addr {assembling’
Used in » code defimition in the
form:
IPSTA, or IP)Y LDA,
A constant which leaves ot s
sembly time the agdress of the
pointer to the mext FORTH eae-
cution sddress in 8 colon-gdefin.-
tion to be interpreted.

At run.time. NEXT moves [P
shead withun a8 tolon-defimtion,
Thetefore, I® points just after the
axecutlion eddress bewng inter-
preted. 1If an in-line data struc-
ture has been comp:led {ie., ®
charscter strinc’, indexing ahead
by TP cen stcess this data:

P STA, or 1P)Y LDA,

A5

loeda the third byte shead in the
calon-definition being interpretad.

M/CPU nl n2 —- {compiling assembler)

MEM

MODE

NEXT

poo

An smembler defining word used
to creale amembler mnemonics
that have multiple address modes:

1C5E 60 M/CU ADC,

M/CPU crestes the word ADC,
with two parameters. When
ADC, later executes, it uses
these parameters, along with
stack values and the contents of
MODE to calculate and sssemble
the correct op-code and operand.

Used within the assembler to set
MODE to the default value for
direct memory addressing, z-page.

— addr
A variable used within the
amembler, which holds & flag
indicating the addressing mode of
the op-code being generated.

=« addr {assembling)
Used in & code definition in the
form:
ar N 2+

N1l - Y

ADC,

STA,

A constant which leaves the ad-
drems of a 9 byte workspace in z-
page. Within a single code defini-
tion, free use mey be made over

the range N-1 thru N+7, See
SETUP,

~- addr (sssembling)
A constant which leaves the

machine address of the Forth ad-
dress interpreter. All code defini-
tions must return execution to
NEXT, or code that returns to
NEXT (i.e., PUSH, PUT, PGP,
POPTWO),

cel —- cel (assembly-time)
When assembling, reverse the con-
dition code for the following con-
ditional, For examplme:

0= NOT F, <{trve part> THEN,

will branch based on ‘not equai to

zero'.

addr (zssembling}
{run-time)

N ee-

A constant which leaves (during
ssmsembly) the machine address of
the returmn point which, at run-
time, will pop & 16-bit value from
the dats stack and continue inter-
pretation.

POPTWO

PUSH

RP>

SEC

THEN,

=== skir (assembling)

nl n2 {run-time}

A constant which leaves (during

assembly) the machine address of

the return point which, at run—

time, will pop two lé-bit valuss

from the data stack gnd centinue
interpretation.

--- oddr (assembling)

- n {run-time}
A constant which leaves {during
sssembly) the machine address of
the returm point which, at run—
time, will add the sccumulator (as
high-byte} end the bettom
machine stack byte (as low-byte)
to the data stack.

»-- addr {assembling)

nl --- n2 (run-time)
A constant which leaves {during
sssembly) the machine address of
the returmn point which, at run--
time, will write the accumulstor
(as high-byte) and the bottom
machine stack byte (as low-byte)
over the existing datc stack 16-bit
value (nl).

-—— (ussembly-time}
Used in a code definition in the
form:

RP) LDA, or RP) 3. STA,

Address the bottom byte of the
retum stack {contaiming the low
byte) by selecting the ,X mode and
leaving n=z$10l. n may be modi-
fied to another byte affset. Be-
fore operating on the return stack
the X register must be ssved in
XSAVE and TSX, be executed; be-
fore returning to NEXT, the X
register must be restored.

-— n (assembling)
ldentical to BOT, exceot that
n=2. Addresses the low Syte of
the second l6-bit data stack velue
(third byte on the deta stack).

-e= {run-time)
eddr 2 --- (pssembly-time)
Occurs in a code definition in the
form:

co TF, <true part> ELSE,
<{folee par> THEN,

At run-time THEN, marks the
concliusion of & conditional struc-
ture. Execution of either the true
part or false part resumes fol-
lowing THEN,. When assembling
addr and 2 are used to resolve the
pending forward branch to THEN,.

UNTLL,

up

x)

XSAVE

e (run-time}
addrl ¢e¢ -— (amembling)
Occurs in 8 CODE definition in

the form:

BEGIN, . . . cc UNTIL,

At run-tims, UNTIL, controls the
conditional branching back to
BEGIN,. If the processor status
bit mpecified by cc is false, exe-
cution returns to BEGIN,; other-
wise execytion continues shead,

At assembly time, UNTIL, as-
sembles a conditional relative
branch to sddr based on the cond-
tion code cc. The number | is
used for error checking.

=== addr (assembling)
Used in & code definition in the
form:

UP LDA, or UP J,Y STA,

A constant feaving &t assemb'y
time the sddress of the pointer to
the base of the user ares. i.e.,

17 # LDY, UP}¥ LDA,

load the low Dvte of the sixth user
variable, DP,

-~ eddr {assembling)
Used in a code definitian in the
form:

W le STA, or W1 -JIMP, or
w)'Y ADC,

A constant which leaves at as-
sembly time the address of the
pointer to the code field exe-
cution address} of the Forth dic-
tionory word being executed. In-
dexing relative to W can vield
sny byte in the definition's
parameter field. ie.,

24L0Y, W)'Y LDA,

fetches the first byte of the
perameter field.
Specify 'indexed indirect X' ad-
dressing mode for the next op-
code generated.

— adir {mpsembling}
Used in 8 code definition in the

form:
XSAVE STX, or XSAVE LDX,

A constant which leaves the ad-
dress at assembly time of a tem-
porery buffer for saving the X
reqister. Since the X register in-
dexes Lo the data stack in z-page,
it must be saved and restored
when used for other purposes.

Ab

Fioating Point FORTH

One of the first things most pro-
grammers find missing in FORTH is
floating point arithmetic. While most
implementers of FORTH probably
weigh the advantages and adversities
of floating point for their version, they
usually decide 1o forego it for various
reasons. On the other hand, some
excellent floating point systems have
been developed in FORTH. This arti-
cle overviews some major problems
with floating point numbers, and
examines a very rudimentary floating
point system. written entirely in high
level FORTH. ,

The first major problem with float-
ing point numbers is that no computer
can work with numbers that are truly
floating point. Instead. quite often they
are stored as two separate numbers,
mantissa and exponent. This leads to

The greatest advantage of a
floating point math system
comes in ease of use

the second major problem, that of
speed. Because each floating point
number is stored as two separate
numbers, each function requires that
two numbers be dealt with, costing
quite a bit in speed. One of the most
common solutions for speed problems
is to buy a dedicated processor chip to
do all the arithmetic. This is impossi-
ble on some computers, and costly on
others. _

Another problem. that of accuracy,
is a prime consideration. While float-
ing point numbers can have a greater
range, their precision suffers a little.
The system outlined in this article has
precision to only six full decimal
digits. bul the decimal point can be
moved 127 places in either direction.
This compared to a normal 32 bit dou-
ble length number, where the range
ond accuracy are +/-2,147,483,647.

The greatest advantage of a floating
point math system comes in ease of
use: there is no need lor the program-
mer to worry about where the decimal
point should be, as it is handled inter-
nally by the floating point operators
themselves. This saves time program-
ming and debugging, and usually
saves some memory too.

By MICHAEL JESCH
Aregon Systems, Inc.

cell 1

esll 2

ceee osse ammm mmmm |

[mmmm mmmm mmmm mmmm

| scaler gad sign |

Figure 1: Floating Point Representation. “'s” is the sign bit; “'e" is a
scaler, or exponent, bit; “m" is 8 mantissa bit.

mantisca znd aign

This floating point system is written
in high level FORTH as an educational
tool. Once the machine language of the
targel machine is understood, it
should be rewritten in low level to
capitalize on speed. One important
side effect/advantage of this approach
is transportability: It has since been
implemented on two other computers,
under different FORTH systems
(polyFORTH and MMSFORTHY}; one
with a different CPU (an LS}-11/23).
This approach does. however, cost a
lot of execution time.

As can be seen in Figure One, the
floating point number is represented
in two 16-bil cells on the stack. The
high cell (cell 1) contains the 8-bit
exponent [containing one sign bit) and
the high 8 bits of the mantissa, includ-
ing the mantissa sign. while the low
cell (cell 2} contains the lower 16 bits
of the mantissa. In this manner, the
existing double length stack and
memory operators can be used to
manipulate the vaiues.

The error detection is handled by the
systemn. but the recovery is left up to
the programmer. A special condition
code 'register’ is used to return infor-
mation about the last operation. Cur-
rently, three of these bits are used: One
each to indicate the occurrence of a
zero value. 8 negative value. and most
overflow/underflow conditions These
flags can be tested, as in a FORTH IF
.. . THEN structure. with words
delined in the package (FZE FNE and
FOV). The word FER will return a
true if any error existed.

The scaler is used to tell where the
decimal point is. relative to the ones'
column of the mantissa. during all
math operations and outpui. A
positive value indicates that the radix
point is actually to the right of the
ones' column and by how many digits,

while a negative value means to move
it to the left. It could be considered a
‘times BASE to the SCALER’ type of
suffix to a number. For addition and
subtraction, the scalers must be made
egual (the word ALIGN does this).
This means shifting the mantissa the
number of places equal to the dil-
ference of the exponents. which
causes most of the imprecision pro-
blems present in this system. Further-
‘more, if one number was entered in
Thexadecimal (base 16} and the other in
decimal, the scalers would be incom-
patible. To help circumvent this, a
floating point base value is kept
separate from the FORTH base value,
and all internal scaling oprations use
this value for the number base. The
floating point base is set to the current
FORTH base when the floating point
system is initialized (with FINIT). It
can also be explicitly set by the pro-
grammer, but be careful with this; if
you output 8 number in a different
base than you did arithmetic, the
results will not be correct.

Number formatting is left up to the
programmer, as it is in most FORTH
systems. A double length number may
be converted to [loating point by inser-
ting the desired scaler (number scaler

£1 ~}, To change a number
from floating point to integer, the
word FIX will scale the mantissa to
zero. The scaler of the top fleating
point number can be extracted with
the word E@ which
leaves the double precision mantissa
below, unmodified. F. and E. are used
to output the top floating point
number. F. prints in floating point for-
mat (i.e., 123.45). while E. prints in
scientific notation (i.e., 12345 E -2).

The four basic arithmetic functions,
add. subtract, multiply and divide. are
called F +, F— F* and F/, respectively.

Bl

RSCALE and LSCALE are used to
change the position of the least signifi-
cant digi! in the mantissa. RSCALE
decrements the scaler and multiplies
the mantissa by base (changes 12.3 to
12.30), while LSCALE increments the

scaler and divides the mantissa by
base (changes 12.34 to 12.3). Be careful
with these words, however. If the
number is close lo the limit of preci-
sion, the number will probably lose

Other miscellaneous words are
FABS, FNEGATE, FMIN, F>, and
FMAX; these are the floating point
counterparts to ABS, NEGATE, MIN,
>, and MAX, respectively.

accuracy.

A Recursive Decompiler

Robert Dudley Ackerman

Edilor's Nole: A FORTH “‘decompiler”
is a too! thot scans through o compiled
dictionary entry and tells you whot has
been compiled. In the case of a colon
definition, it prints the names of the
words that are pointed to inside the
definition. In an ideal programming
environment, in which you have the
source for your system right on your
disk, you may not need a decompiler.
But otherwise, it beats all the hit and
miss “ticking” and dumping you would
have to do. Decompilers can also be
useful learning tools.

A very thorough decompiler was writ-
ten by Raoy Duncan of Loboratory
Microsystems and published in Doclor
Dobbs, September 1981. The following
decompiler, while not as complete as
Ray’s {and not as elegantly written -
beware of long definitionsl. introduces

a clever feature: recursive descent. In
this version, pressing the space bar
steps you through each name used in
a colon defintion, but pressing carriage
return insteod couses the word whose
name was just printed to be itself
decompiled. This allows you to weave
yvour way through the threaded inter-
pretive code down lo any level you
wanl. '

On occasion it is desirable to know
what words a given word is made up
of and what words those words are
made up of in turn. Thus the word
Cecomaik which naturally calls for
recursion.

GIN keeps track of indentation (Goes
IN). DIN does an indentation (Does IN-
dent). GCHK does special cases, par
ticulary where a word is followed by
e literal

The main word,
{UE.w1P> is straight-forward For a
culon definition, it goes through each
code field printing a name and waiting

for a key.

A 'Q" ends execution; a carriage
return calls <PEcuMy recursively,
printing out the names in the last word
shown; any other key continues until
e4 T signals the end of a colon defini-
tion, ar £CODE > signals a drop into
machine language from high level.

One improvement | envision is be-
ing able to back up one level, rather
than quiting altogether. This would
avoid the problem of having to avoid
‘error’ and other words which use
words which use themselves. You
could back up one level rather than
quiting, not being able to finish the
original word. Another improvement
would be to use a fence to avoid see-
ing low level words of no immediate
interest.

To use this utility with a Starting
FORTH system, change the ticks to
bracket-ticks. ' —-> {'].

Robert Dudley Ackerman is heod of

the Sen Francisco Apple Core

FORTH Users. 0
B2

TRACING COLON-DEFINITIONS

Paul van der Eijk
5480 Wiepconsin Avenue, #1128
Chevy Chase, MD 20015
(301) 656-2772

This short article describes & few
simple worde to trace colon definitionms.
When 1 am completely lost trying to find a
bug in & FORTH program, I wuse colon
tracing to get & print-out of all words
executed together with a few parameters on
the data-stack. Such a print-out is often
enough to spot the bug; in additiom, it
gives some insight how many times certain
words are executed which can help to
improve the execution time of a program.

How it works:

A technique to trace colon
definitions is to insert & tracing word
directly after the colon.

i.e., ¢ TEST Tl T2 ; TEST can be traced by
having & definition compiled as if it
were:

¢ TEST <TRitz> Tl T2;

When { TRACE> executes, the address of
the word tollowing it is on the return
stack. Subtracting two from this address
will give the parsmeter field address,
from which we can reach the name field
address using the word NFA. In order to
enable/disable the trace ouput, the varia-
ble TFLAG is used; & non-zerc value will
enable the output and a zero value will
suppress the trace output.

The insertion of the {TRACE} word can
be automated if we redefine the definition
of the colon.

The colon is redefined to insert the
runtime procedure for the colon followed
by the address of {TRACEY.

Note that the address of the colon
runtime procedure is obtainmed by takinmg it
‘rom the code field address of the word
{TRACE) .

Improvements:

1. If we save in (TRACE) the value of the
variable OUT and direct output to the

line-printer, words doing formatted
terminal . output can be debugged
effectively.

2. A variable TRACE is introduced to

control the insertion of the word
(TRACE) in the new definition for the
colon.

~ If the wvalue of TRACE eguals zero,
(TRACE) is not inserted, if the value is
non-zerc (TRACE) will be inserted.

This enables tracing code to be
inserted in a selective way by changing
the value of TRACE preceding a colon
definition.

i.e.:

OEF TRACE | : TEST1 T11 TI12 ;3 (TEST! will
not be traced)

ON TRACE | ¢ TEST2 T21 T22 3 (TEST 2 can
be traced)

cl

@)

Fixed Point Square Roots

As you learn the FORTH approach
1o problem solving. you are soid on the
virtues of fixed-point arithmetic. Con-
fidently armed with the neat little
techniques for adapting integers to
nearly any application. you set out to
write s numeric-type program.

While translating the requisite for-
mulae into postfix notation, however,
you run into a radicel sign — a square
root. In vain, you try to sneak around
it or tunne! underneath; there's no way
o avoid it. What can you do? Pile K
upon K of floating point routines into
your dictionary, fust s0 you can use the
SQRT function? Give up and go back
to BASIC?

This can happen to you, whether
your field is statistics, electronics,
praphics, or special relativity. Square
roots are everywhere, in all kinds of
famous equations. Of all the “irra-
tional” functions in mathematics, this
is the most common — and the
simplest to implement.

Loading the Screens.

The program is listed as screens 33
through 84 . Of course, you may put
them anywhere your mass storage
allows. All three screens load in base
ten; all are FORTH-79 Standard.

If your FORTH system is nonstan-
dard, the source code will require only
minor modification. The FORTH-79
word R@ must be replaced by R {in
fig-FORTH} or I (in pelyFORTH). You
may have 1o code 1— as 8 separate 1
and —.

Additionallv, some systems may
omit the FORTH-79 required words
D< snd U<, If yours is one of them,
just define (with BASE set to DECI-
MAL):

:D< ROT2DUP = -
F ROT ROY DNEGATED+ D<
ELSE SWAP < BWAP DROP
THEN SWAP DROF ;

U< 32768 + SWAP 32768 + SWAP < ;

Make SURE 32000 -32000 <
returns 0 on your system. If not,
demand s refund.

Trying it Out.

With ell screens loaded. enter:

168 0 BORT .

This should print 13, which is the

By KLAXON SURALIS

square root of 169. Note that we had
to put an 0 on top of 169, since SQRT
demands a double-precision operand.
Most systems would have sccepted
168. , taking the decimal point as a
signal to extend the value to 32 bits.
Thus. you could try:
430249, SORT .
&nd see the result: 693. Omitting the
decimal poin! from 480249 , however,
would print a garbage value and
possibly a “'steck empty"” message.
SQRT works only for integers, drop-
ping any fractional component in the
root. So, if you type: '
3. BORT .
the system will respond with 1 , even
though you know the answer should
be something like 1.7320508... . But

after all, this is fixed point arithmetic.

However, you can take the squere
root of 3 million:
3000000. SORT .
end sneek 8 peek at three more root
digits: 1732 . This is the principle em-
bodied in the word XX defined on
screen 224. Type:
3 XX
and there you have 1.732 . XX will
type the square root of any integer up
to 4095 . Since it takes a single-
precision argument, you don't have to
type a decimal point. Try & {ew roots
of your own.

If you compare XX's resulis to a
scientific calculator’s. you'll see that

SQRT's 32-bit radicand
makes it perfect for finding
hypotenuses, standard
deviations, RMS values,

and lots of other “‘root-of-
sum-of-squares’’ procedures.

XX is always accurate to three decimal
places, although it never rounds up-
ward. Round-to-nearest, while possi-
ble. usually does not justify the added
compiexity.

Now look st the definition of XX.
Right off, it multiplies n by one
million. Then, after calling SQRT. it
performs & special numeric conver-
sion, which puts the three low-order
root digits on the fraction side of a
decimal point (ASCH code 46).

This combination of scaling and out-
put formatting is the standard FORTH
technique for ersatz floating point.
The only wrinkle with SQRT is:

If you multiply SQRT's radi-
cand by a scale fector s, the
root will emerge scaled by the
square root of s.

Meore concretely, you've seen how
XX shifts the radicend left six deci-
mal digits, while the root is offset by
only three places. Square root of
1,000,000 = 1,000. Get it?

Using SQRT in Your Application.
XX is included merely for demonstra-
tion purposes. In normal use, SQRT is
the only word the rest of your applica-
tion will need 1o know:. It will work for
any double number you feed i1, and
harbors no surprises or special cases
{as far as I can tell).

SQRT's #2-bit radicand makes it
perfect for finding hyvpotenuses, stan-
dard deviations, RMS values, and lots
of other “root-of-sum-of-squares” pro-
cedures. If the input data are all like-
sceled 16-bit integers, simply squere
them with M* or U* and accumulate
them using D+ (or D= il you need
subtractions). Apply SQRT to this
double-precision sum, and the root
will be a 16-bit integer with the same
scale factor as your original data.

Of course. it's up o vou to ensure
that D+ won't overflow and that
D— doesn't hand SQRT a negative
number.,

Since SQRT takes an unsigned radi-

cend. your application is free to han-
dle imaginary roots as appropriate. If
you like, you may install simple error
checking for negative radicands. or
integrate SQRT into a complete fixed-
point (!} complex numbers package.
But How Does It Work?
On big machines, square roots are
extracted by a technigue from calculus
celled "Newton's Method.” Jt is best
suited to CPUs with full floating-point
arithmetic hardware.

The alternative approach. used in this
SQRT. works by addition. subtraction.
and shifting. The result is constructed
bit by bit. in a feshion quite similar to
classical binary long division.

As in quotient generation, we set up

D1

Fixed Point Square Roots

a partial remainder (initially equal to
the radicand) and proceed to chip
away at it. If we take away too much,
we put it back and shift a *'O" into the
root; otherwise, the root gets a "'1".
Sixteen such trials take place, one for
each bit of the root.

What's different is the quantity sub-
tracted/added 1o that remainder. In-
stead of an unchanging divisor, we
must use the root itself — as many bits
of it as are already determined — with
a binary “01" stuck on the end. As the
calculation advances, this subtrahend

‘gets wider and wider.

For all but the last two trials, 16-bit
addition and subtraction are wide
enough to cover the action. This 87,5%
share of the job is done by EASY-BITS
(screen 33). As it churns along,
EASY-BITS uses left shifts to keep root
and remainder aligned under the
optimal 16-bit window.

Within EASY-BITS, the phrases
“2* 1-"&nd " 2* 3+ " may bewil-
der you. They are sneaky, optimized
equivalents for " 1- 2® 1+ " and
"1+ 2° 1+ ", respectively. In two
brief steps, they shift a new bit into the
root and reestablish the 01" suffix.

Now, if you look at the definition of
SQRT (screen 24), you'll see the 14
easy bits extracted in two chunks: first
eight bits, then six more. There is a
very good reason for this: it saves us
from defining and using a 48-bit shif-
ting operator, which would run slow
as molasses.

You see, we needn’t look at the radi-
cand's low-order 16 bits until the root
is half finished. At that point, the
“ROT DROP" throws awey a cell
cleared to zerces by 8 EASY-BITS"".
With the rest of the radicand thus
exposed, we're ready to crank out six
more root bits.

The last two bits are coaxed out by
2'S-BIT (screen 33) and 1'S-BIT

{(screen 34). As usuel in computer
arithmetic, it's the down-to-the-last-bit
accuracy that really costs. The pro-
blem here is that the remainder and
root become too wide for plain old
+ , — .and 0<. We heve to worry
about overflow.
Both 2'S-BIT and 1'S-BIT use
* DUP O<IF " to test » high bit
before D2* shifts it into oblivion.
Moreover, since * — 0<" can no
longer be trusted, we must resort 1o
unsigned comperisons { U< and
DU<). These definitions wouldn't be
so ugly if FORTH had the “carry bit”
found on most microprocessors.
The principles of SQRT may be
applied 1o roots of greater precision —
32 bits, frinstance. In fact, you could
use this technique in a program to
extract the square roots of floating
point numbers!
You Demand Proof?
A forma! derivation of SQRT's algo-
rithm would waste a lot of F1G"s paper
on something nobody would read. So,
I'll supply a hint, if you supply your
own paper. Letl:
N = the 32-bit radicand
r = the 16-bit root under construc-
tion, initisally zero
b = the binary place velue of the
root bit to be found [initially
32768, always a power of 2)
Then, for each value of b from 32768
down to 1, DO.
F (r+b) <= N
THEN odd b tor;
In this epproach, b is the only quantity
that gets shifted. Now, simple algebra
rewrites the condition as:
d@r+b) <= N-P
The changing value N — r* is our
partial remainder. Note that the com-
parison is 32 bits wide, remember that
multiplying by 2 and b are simple
binary left shifts, and the rest is mere
optimization.

Alternatively, you may find this

algorithm described in any thorough
treatment of computer arithmetic,
Not Fast Enough?
If SQRT runs too slow for your ap-
plication. there's not much you can do
without delving into machine CODE.
If you don't need full 16-bit accuracy
in your roots. you can substitute:

>R 2DROP R> 1-
for the final * 2'S-BIT 1'S-BIT "in
the definition of SQRT. The two low-
order root bits will then always be
zero. The payoff: roughly 10% faster
execution, depending on your system.
Perhaps more importantly, you can
throw out DU<, 2'S-BIT, and
1'S§-BIT, cutting the program size in
half,

H you have a FORTH assembler. the
first thing you should try is defining.
2* and D2* in low level On my
homebrew 6808 FORTH, this, by
itself, nearly doubles execution speed
Actual mileage may vary, yours will
probably be less.

Beyond this, ell you can do is
translate the whole mess into CODE.
This task is straightforward, but; of
course, CPU dependent. ‘

Of those high-level programming
languages which give you a choice.
most make you accept a lot of unneces-
sary garbage just 1o get one function
you really want. Floating point
arithmetic and function packages
serve as cases in point. -

FORTH exhibits the opposite atti-
tude. Jt lets you order a la carte, as this
fixed-point square root program
demonstrates. Such freedom and eff)-
ciency, however, cannot be divorced
from the added responsibility of know-
ing exactly what you're doing and
exactly what you want.

b2

rixed-Point Trig by Table-Lookup

By JOHN S. JAMES

Colon Systems San Jose, California

Here is an easy way to get sine and
cosine on your FORTH system, even
if it does not have floating point. The
precision is good enough for graphics

and many other applications, and the-

routines are fast.

The principle is to use 1able lookup
to return the sine of 0 through 90
degrees. Simple compuations can
express the sine or cosine of any
integer number of degrees, positive or
negative, in terms of the sine of 0-90.
Since only integers are available, the
values returned are sine or cosine
multiplied by 10,000.

Because the results are scaled up,
you can use the FORTH scaling opera-
tion */ (multiply and then divide)
to get the results you want. For exam-

ple. to multiply a number on the stack
by the sine of 15 degrees. use

15 SIN 10000 °/

)

=——JUST IN CASE

Dr. Charles E. Eaker

Even though FORTH provides a variety
of program control structures, a CASE
structure typically has not been one of
them. There is no particular reason
for this since, as we shall soon see,
it is pnot difficult to implement
one.

There are two different approaches
one can take to implementing a CASE
structure: vectored jumps and nested
IF...ELSE...THEN structures. Vectored
jumps provide the greatest speed at
run-time but produce enormous compiling
camplications. So, taking the path of
least resistance, here is a proposal
for implementing a CASE structure for
FORTH which is really just a substitute
for nested IF structures. But, even
though the proposal is logically
redundant, there are a number of
practical benefits whicn make it worthy
of consideration.

To help this discussion, consider a
word which might appear in an assembler
vocabulary with a glossary entry as
follows:

GEN operand, opcode, mode selector ——

Used by the ASSEMBLER vocabulary
to generate opcodes. 'Mode selector’
is the value which indicates which
addressing mode has been specified.
‘Opcode’ is the value placed on the
stack by the preceding mnemonic, and
‘operand’ is the value to be used as
the argument of the opcode.

Here is one way of coding GEN.

: GEN O OVER =
IF DROP IMMEDIATE .
EISE 10 OWER =
IF DROP DIRECT
ELSE 20 OVER =
IF DROP INDEXED
ELSE 30 OWER =
IF DROP EXTENDED
ELSE DROP MODE-ERRCR
ENDIF
ENDIF
ENDIF
ENDIF RESET ;

GEN is defined to expect a 16-bit
number on top of the stack. For each
IF, this number, the "select value," is
copied and tested against a constant,
the "case value."™ If the select value
equals the case value the appropriate
code is executed. If all tests fail,
MODE-ERROR is executed. Notice that
GEN meticulously keeps the stack
clean.

Depending on the select value,
some action is performed on the opcode
and operard, and GEN removes them from
the stack. Consequently, before each
test, GEN must copy (OVER) the select
value, and if the test is successful,
the select value must be dropped from
the stack to expose the data values
prior to the appropriate routine being
called.

But wouldn't you rather code this
thing this way?

: GEN CASE
0 OF IMMEDIATE ENDOF
10 OF DIRECT ENDOF
20 OF INDEXED ENDOF
30 oOF EXTENDED ENDOF
MIDE-ERROR
ENDCASE RESET ;

It is certainly easier to see what
this routine is doing, so camments are
not- as necessary, and changes and
repalrs are far easier to do., Here are
the required colon definitions of CASE,
OF, ENDOF, and ENDCASE.

F1l

1 CASE conp CSP 2 !CSP 4 ; IMREDIATE

t OF 4 7PAIRS COMPILE OVER COMPILE = COMPILE OBRANCH
BERE 0 , COMPILE DROP 5 IMHEDIATE "

: EMDOF S MPAIRG COMPILE BRANCH HERE 0 ,
S4AP 2 (COMPILE| ENDIF 4 : IBMMEDIATE

1+ ENDCASE 4 TPAIRS COMPILE DROP
SEGIN 5P C5P 2 = Q=
WHILE 2 [COMPILE. ENDIF REPEAT
5P 1 7 IMMEDIATE

It so happens that with these
definitions both versions of GEN
compile the identical code into
the dictionary. Let's look at the
compiling details,

CASE makes sure that it is in a
colon definition. Then it saves the
value of CSP (which contains the
position of the stack at the beginning
of this case structure) and sets CSP
equal to the present position of the
stack. The new value of CSP will be
used later by ENDCASE to resolve
forward references. Finally, it throws
a four onto the stack which will be
used for checking syntax., CASE com—
piles no code into the dictionary.

OF first checks that it has been
preceded either by CASE or an ENDOF.
If the syntax is in order, then code
is compiled into the dictionary to
duplicate the select value (OVER)
and test its equality to the current
case value {=). Next, code for a
conditional branch is compiled into the
dictionary followed by oode for DROP.
Notice that at run-time the DROP is
executed only if the select value
equals the constant for this OF...ENDOF

pair.

ENDOF first checks that an OF has
gone before, " If so, then it compiles
an absolute branch to whatever code
follows ENDCASE. However, the address
to branch to is not yet known, so a

dummy null is compiled into the address
and its location is left on the stack
so ENDCASE will know where to stick the
address once it is known. But there is
already an address on the stack just
under the one which ENDOF just pushed.
This address was left by OF and it
points to an address that should hold a
branch address to the code which
follows the code generated by ENDOF.
So, ENDOF swaps the addresses and calls
ENDIF to resolve the address at the
address left by OF. Finally, ENDOF
leaves a four on the stack for syntax
checking.

ENDCASE makes sure it has been
preceded by either a CASE or ENDOF.
Otherwise an error message is issued
and campilation is aborted. Code for
a DROP is campiled into the dictionary,
then all the unresolved forward
branches left by each ENDOF are
resolved. Since there may be any
number Of them, including none, ENDCASE
checks the current stack position
against what it was when CASE was
executed, and performs a fixup by
calling ENDIF until the stack no longer
contains addresses left by previous
ENDOF's. Notice that all of these
branches are resolved to point to the
code after the DROP generated by
ENDCASE. In the case of GEN this is
RESET.

It doesn't take long to notice
that OF generates an enormous ampunt of
code (10 bytes). This is a classic
example of a situation that cries out
for a machine language primitive. If a
run-time word could be defined, let's
call it (OF), then each OF would
generate just 4 bytes two to point to
(OF) and two for the branch address.
What (OF) would have to do is pull the
top stack item (the current case value)
and test it for equality with the new
top stack item (the selcct value) If
the test for equality is true then the
next item on the stack the select
value 1is also popped and execution
continues after the (OF) If the test
is false execution branches using the

F2

branch value following the pointer to
(Of), and the select value is left on
the stack.
copt (oF}) A PUL B PrUL 75X

1.X B 3CB 0.X A S3C ABA Q=

IF INS INS * BRANCY IfA ¥ (L MEX 3 11 + Jup

THEN T BRANCH CFA 7 JNp
OF 4 TPAIRS COMPILE (CF) HERE 0 , 5 : IMMEDIATE

The M6800 code listed above is
straightforward except that is uses
code in BRANCH and OBRANCH. {OF)
should work in any FIG 6800 installa—
tion provided BRANCH and OBRANCH have
not been altered (it doesn't matter
where they are located). Non-6800
users will have to roll their own, but
the high~level OF should make it clear
what has to be done.

The disadvantages of this CASE
proposal are that execution is not as
fast as a vectored implementation, and
in some versions of FORTH, ENDOF and
ENDIF cannot be distinguished. These
seem minor compared to the advantages -
and there are several.

First, a CASE statement may contain
any number of OF.,,ENDOF pairs, and the
constants may be arranged in any order
whatever. Actually the constants need
mot be constants. Between an ENDOF and
the next OF the programmer may insert
as much code as he or she likes in~
cluding code which will compute the
value of the "constant.” CASE state-
ments may be nested; a CASE..,ENDCASE
pair may appear between an OF...ENDOF
pair., Furthermore, there need not be
any code between CASE and ENDCASE, nor
must there be code between OF and
ENDOF. There must be code which pushes
a 16-bit number to the stack prior to
each OF. Finally, this proposal
follows the fig-FORTH style of handling
control structures,

fig-FORTH GLOSSARY

CASE —— addr n (compiling)

Used in a colon definition in the
form: CASE...OF...ENDOF...ENDCASE.
Note that OF...ENDOF pairs may be
repeated as necessary.

At compile-time CASE saves the
current value of CSP and resets it to
the current position of the stack.
This information is used by ENDCASE to
resolve forward references left on the
stack by any ENDOF's which precede
it. n is left for subsequent error
checking.

CASE has no run-time effects.

OF — addr n (campiling)
nl n2 --- nl (if no match)
nl n2 —- (if there is a match)

Used in a colon definition in the
form: CASE...OF...ENDOF.. .ENDCASE.
Note that OF...ENDOF pairs may be
repeated as necessary.

At run-time, OF checks nl and n2
for equality. If equal, nl and n2 are
both dropped from the stack, and
execution continues to the next ENDOF.
If not equal, only n2 is dropped, and
execution jumps to whatever follows the
next ENDOF.

At campile-time, OF emplaces (OF)
and reserves space for an offset at
addr. addr is used by ENDOF to resolve
the offset. n is used for error
checking.

ENDOF addrl nl -— addr2 n2 (campiling)

Used in a colon definition in the
form: CASE...OF...ENDOF...ENDCASE.
Note that OF...ENDOF pairs may be
repeated as necessary.

At run-time, ENDOF transfers control
to the code following the next ENDCASE
provided there was a match at the last

F3

OF. If there was not a match at the
last OF, ENDOF is the location to which
execution will branch.

At compile-time ENDOF emplaces
BRANCH reserving a branch offset,
leaves the address addr2 and n2 for
error checking. ENDOF also resoclves
the pending forward branch from OF by
calculating the offset from addrl to
HERE and storing it at addrl.

ENDCASE addrl...addrn n —— (campiling)
n —- (if no match)
—_— (1f match was found)

Used in a colon definition in the
form: CASE...OF...ENDOF...ENDCASE.
Note that OF...ENDOF pairs may be
repeated as necessary.

- At run-time, ENDCASE drops the
select value if it does not equal any
case values., ENDCASE then serves as
the destination of forward branches
from all previous ENDOF's.,

At compile-time, ENDCASE compiles
a DROP then computes forward branch
offsets until all addresses left by
previous ENDOF's have been resolved.
Finally, the value of CSP saved by CASE
is restored. n is used for error
checking.

(OF) nl n2 = nl (if no match)
nl n2 — (if there is a match)

The run-time procedure campiled by
OF. See the description of the run-
time behavior of OF.

This is an excellent development and
presentation of a key case statement
with single integer keys. The follow-
ing features make it immediately
useful:

l. The reader can easily understand
what the statement does and how
to use it. There are only four
words to learn, their functions
are immediately clear from the
example presented and their
names are not confused with each
other, {The ENDOF - ENDIF
similarity will go away when the
FIG model drops ENDIF in favor
of the Standards Team decision
to use THEN.)

2. One form of the statement can be
entered entirely in nigher-level
fig~-FORTH, and rur immediately
on any FIG system. An optional
code word (for 6B00) with
redefinition of one of the
four higher-level words saves
run-time memory and time.
Either way, the whole statement
fits easily on one screen,
including compile-time checking.

3. The narrative documentation is
excellent. The glossary defi-
nitions are detailed (appro-
priate for this forum). For
general distribution they could
be condensed to user-only
information.

This entry presents one kind of case
statement out of several that are
desired. We hope that this campetent
and straightforward work will serve as
a model to future development.

Fié

——————THE : CASE

Steve Munson

Having grown up on an ancient
version of FORTH Inc. micro FORTH, I
can appreciate the improvements ren-
dered by fig-FORTH's renames and
redefinitions. I was particularly
impressed by the source eguivalence of
HERE NWMBER DROP which functions the
same although in one case one is
dropping the address of the first
non-numeric delimiter, and in the other
case one 1is dropping the most signi-
ficant half of a double precision
number !

My one beef is why was : made
IMMEDIATE? Surely nobody wants a
header in the middle of a colon defi-
nition. By the way, as you probably
already know, this tends to mask an
error in the definition of ; on the
listing I have for the 6502 fig -
FORTH. There is no [COMPILE] before
the [which means compile mode is never
terminated. In fact, I am not sure I
see the point of the E property in your
glossary. All words ought to be
designed, at great pains if necessary,
50 that they can be compiled. My
definition of CASE denies the E pro-
perty of :, and I would be rash to
assume no one would ever want to
compile CASE.

Please find enclosed a listing,
documentation, glossary entries, and a
diskette. The diskette also contains
the assembler used to generate the
code, as it may be nonstandard If the
fig-FORTH does not run on your system
as it does on mine, feel free to edit
my ideas into polished fig-FORTH (I am
a novice figger) and re-list the
screens; however I believe they will
require no modification.

GLOSSARY ENTRIES

ZBYTECASE

Keycase defining word, used in the
form:

2BYTECASE ccce key

case, . . ., key cSse (dgfaul
case END-CASE. " Definef cccc as a
caseword which expects a 2-byte key
on the stack at run-time. If the
key equals key (a 2-byte key;,
case (a previously defined word;
will“execute; if it matches key, ,
case, will execute, and so On.
The Jdefault case will execute
on no match; if no default is
specified, NOOP is assumed. Cases
may be IMMEDIATE words, but no
campile-time execution will occur
within the case structure. The
Structure must be terminated by
END-CASE. (See END-CASE, BYTE-
CASE).

case key
t

BYTECASE

Keycase defining word, used in the
form:

BYTECASE cccc keyo case keyl
case, . . . Key_ case ENB—CASE.
Defi%es ccee as'a casBword which
expects a l-byte key (most signi-
ficant byte is ignored) on the
stack at run-time. 1If the key
equals key (a l-byte key), case

(a previoﬁ%ly defined word) wil

execute; if it equals key, , case,
will execute, and so 6n. Thé&
default case will execute on no
match; if no default is specified,
NOOP is assumed. Cases may te
IMMEDIATE words, but no campile-time:
execution will occur within the case
structure, The structure must b
terminated by END-CASE. ‘Cee
END-CASE, CASE).

F5

Recommended Books [available from Parsec]

V. Recommended Books (available from Parsec)

V-1 FORTH Programming

Starting FORTH by Leo Brodie, Prentice Hall pub.- A tutorial
introduction to FORTH.

The Complete FORTH by Alan Winfield, Wiley Press.-Easy-to-follow
examples, exercises and frequent comparisons to BASIC.

BEGINNING FORTH by Paul Chirlian, Matrix Publishers, A self-teaching
guide to FORTH, compares FORTH to other popular languages.

Discover FORTH by Thom Hogan, Osborne/McGraw-Hill- Introdutory learning
and programming the FORTH language.

FORTH Programming by Leo J. Scanlon, Howard W. Sams & Co.- Based on
both FORTH-79 and fig-FORTH. Programming is introductory to
advanced.

Understanding FORTH by . Joseph Reymann, Alfred Publishing Co.- An
introduction and overview.
V-2 FORTH Reference Guides

All About FORTH by Glen B. Haydon, Mountain View Press- An annotated
glossary of MVP FORTH words.

FORTH Encyclopedia by Mitch Derick & Linda Baker, Mountain View Press-
The complete FORTH programmers reference manual.

Pocket Guide to FORTH by Linda Baker & Mitch Derick, Addison-Wesley
Publications- Pocket reference quide for FORTH.
V-3 Commodore 64 Reference

Commodore 64 Programmer's Reference Guide, published by Commodore- A
complete technical reference guide to the Commodore 64 computer.

Your Commodore 64 by John Heilborn & Ran Talbot, Osborne/McGraw-Hill- '
An easy-to-understand, fully illustrated teaching guide to the
Commodore 64 computer,

What's Really Inside the Commodore 64 by Milton Bathurst, Datacap-
Commented listings of the BASIC and Kernel ROMs in the C64.

233 SUPER-FORTH 64 (TM)

Recommended Books [available from Parsec]

Indispensible to the machine language programmer who wants
when the ROM's routines are REALLY doing.

to know
The Master Memory Map for the C-64

by Paul Pavelko, Reston Pub. Co.-
Friendly guide to the inner workings of the C-64.

V-4 Commodore 64 Graphics/Sound Related

The Commodore 64 Music Book by James Vogel, Birkhauser Pub.- A guide to
programming music and sound on the Commodore 64.

Commodore 64 Graphics & Sound Programming by Stan Krute, TAB books-
Hands on learn-by-doing approach to mastering graphics and
the C-64.

sound on

V-5 Assembly Language Programming

6502 Assembly Language Programming by Lance Leventhal, Osborne/McGraw
Hill- Provides a comprehensive coverage of the 6502 microprocessor

assembly language. General assembly programming techniques covered

as well as specific examples for the 6502.

6502 Assembly Language

Osborne/McGraw-Hill,

Subroutines
subroutines.

by Leventhal and Saville,
code and descriptions common 6502
Programming the 6502, by Rodney Zaks, Sybex Inc.- A
guide to programming the 6502 in assembly language.
hardware oriented than Leventhal (above).

Slightly more

for

234 SUPER-FORTH 64 (TM)

Error Messages

VI. Error Messages

The following is a list of the more common error messages which occur
in the system. The word which generates the message is given along
with a possible explanation of why the error occured.

Message (Word) : Explanation

ATTEMPTED TO REDEFINE NULL (CREATE) : Probably entered a defining word
(such as ":" or "CREATE") with no word name following it on the line.

BLK NO. ERROR (<R/W>) : Block number passed to <R/W> was either less
than 0 or greater than the maximum number of blocks the system is
configured for.

BUFFERS FULL (BUFFER) : In File Mode the screen buffers are full. No
more can be added to the file being edited until more buffers are
allocated (the file must be saved before allocating new buffers).

COMPILE ONLY (?COMP) : A word which can only be entered within a
definition was entered interactively. Examples of "COMPILE ONLY"
words are DO, LOOP, IF, ELSE, THEN, etc.

CONDITIONALS NOT = PAIRED (?PAIRS) : An ending word of a program
structure (such as LOOP, ELSE, THEN, REPEAT) was detected with no
matching beginning word.

DEFINITION NOT FINISHED (?CSP) : The ending word in a program structure
(such as DO...LOOP or IF...ELSE...THEN) was not entered before ending

the definition.

EMPTY STACK (?STACK) : The stack had no parameter for a word which
required one.

EMPTY STACK (D.R) : Tried to print out a number but none was on the
stack.

FULL STACK (?STACK) : The stack is full. Probably caused by multiple
calls to a word which leaves too many values on the stack.

IN PROTECTED DICTIONARY (FORGET) : The word which the system was
requested to forget is in the protected part of the dictionary
(initially the FORTH Kernel)and cannot be forgotten.

ISN'T UNIQUE (CREATE) : Warning message to let the user know that the
word being created has a name which already exists in the dictionary,
If the definition is successful, any further references to the name
(within the current wvocabulary) will be to the word being defined.

235 SUPER-FORTH 64 (TM)

Error Messages

The variable WARNING is used to control printing of this message. 0
WARNING | will suppress the message while 1 WARNING ! will cause it
to be displayed.

INCORRECT ADDRESSING (ASSEMBLER) : An invalid addressing mode was
attempted during assembler word compilation.

INPUT > 255 (<WORD>) : The input stream being scanned by <WORD> was
larger than 255 characters without a delimiter being detected.

INPUT STREAM EXHAUSTED (?STREAM) : Probably caused by a comment which
was left undelimited when finished (no right parenthesis).

NOT FOUND (') : Word address not found by '. Possibly defined in
different vocabulary.

NOT FOUND ([COMPILE]) : Tried to [COMPILE] a word whose name was not
found in the dictionary.

NGT IN CURRENT VOCABULARY (FORGET) : The word which the system was
~ requested to forget is not in the current vocabulary. It may,
however, be in another vocabulary.

NOT RECOGNIZED (<NUMBER>) : Non-numeric character passed to <NUMBER>.
Usually means system tried to interpret a word which is not in the
dictionary.

OFF SCREEN (CHKLIN) : Tried to edit a line which was not on the editing
screen.

OUT OF RANGE (CONFIGURE) : Tried to confiqure more than five drives.

PICK ARGUMENT < 1 (PICK) : The argument passed to PICK was leés than
one and therefore undefined.

ROLL ARGUMENT < 1 (ROLL) : The argument passed to ROLL was 1less than
one and therefore undefined.

UNLOADABLE (LOAD) : Tried to 1load block 0. Block 0 is defined as
unloadable.

236 SUPER-FORTH 64 (TM)

INDEX

! 146

" 61
+ 65, 125

146

#> 146
#BUFF 146
#5 146

$. 125

$< 125

g= 126

$> 126

SCLR 126

SCMP 127
SCONCAT 127
SCONSTANT 128

SFIND 128
SINPUT - 128
SLEFT 129
SLEN 129
SMID 129
SRIGHT 130
$VAL 130

SVARIABLE 131

' 146

'-FIND 146
'?TERMINAL 146
'ABORT 146
'BANK 85

e 137

'BITMAP 85

r 137

"BLOCK 147
'CHARBASE 85
'CR 147

'"EMIT 147
'"EXPECT 147
"INTERPRET 147
'"KEY 147

"LOAD 147
'NUMBER 147
'PAGE 147

'R/W 147

'S 147

'"SCREEN 86

INDEX'STREAM 147

"T&SCALC 147
'"TITLE 147
'VOCABULARY 147
'"WORD 147

(147

* 148
x/ 148
*/MOD 148

+ 148
+! 148
+—- 148
+BUF 148
+LOOP 148

r 148

- 148

—-~> 148

-FIND 148
-TEXT 149
—-TRAILING 149

. 149
" 149
.1/16 121
.1/2 121
.1/4 121
.1/8 121
.INDEX 149
.LINE 149
LR 149

.5 11

, 80, 149
.SL 149
.SR 149
.SS 80

, 149

/149

SUPER-FORTH 64 (TM)

INDEX

JLOOP 149
/MOD 150

0 150
0< 150
0= 1590
0> 150
OBRANCH 150

1 150
1+ 150

1- 150
1/16 121
1/2 121
1/32 121
1/4 121
1/64 121
1/8 121
1ARRAY 140

2 150

2Y 150

2% 150

2+ 150

2~ 150

2/ 150

2@ 150

2ARRAY 140
2CONSTANT 150
2DROP 150
2DUP 150
20VER 151
2SWAP 151
2VARIABLE 151

4040 75
4040 brives 26

79-STANDARD 151
: 151

;7 151
i 712

238

;CODE 151
;¥ 151
;2 151

<"> 131
<$CONCAT> 131
<+LOOP> 151
<-FIND> 151
<."> 151
</LOOP> 151
<;CODE> 151
<<CMOVE> 152
<?TERMINAL> 152
<ABORT"> 152
<ABORT> 152
<BLOCK> 152
<CMOVE> 152

<COS> 144
<CR> 152
<DO> 152

<EMIT> 152
<EXPECT> 152
<FILL> 152
<FIND> 152
<FNUM> 141
<INTERPRET> 152

<KEY> 152
<LINE> 152
<LIT> 152

<LOAD> 152
<LOQP> 152
<NUMBER> 152
<PAGE> 152

<R/W> 152
<ROT 67
<SIN> 144

<T&SCALC> 153
<VOCABULARY79> 153
<VOCABULARYFIG> 153
<WORD> 153

= 153

> 153
>BINARY 153
>IN 153

>R 153

SUPER-FORTH 64 (TM)

i

INDEX

? 153

?2COMP 153
?CONFIGURE 153
2CSP 153
?DEPTH 67

?DUP 153
?PAIRS 154
?STACK 154
?STREAM 154
?TERMINAL 55

@ 154

A-REMOVE 67

ABORT 154
ABORT" 154
aABS 154
ADSR 172
AGAIN 154
ALLOT 154
AND 154

APPLICATION 11
r 21, 65, 67, 68
BRC 86

ASCII 55

r 57

Assembler 7

. 18, 67, 154

B-CLINE 86
B-COLOR 87
B-COLOR-FILL 87
B-CPLOT 87
B-DRAW 88
B—-ERASE 88
B-FILL 88
B-GRAPHICS 89
B-LINE 89
B-PEN 90
B-PLOT 90

B-X 90

r 91

B-Y 90

r 91

BACK 103
BACKGROUND 103
BACKUP 13

r 25, 51, 73

239

BANK 91
¢y 93
BASE 154

BASIC sprite data 82
BEGIN 154
BG 104
BITMAP 92
BK 104
BKGND 92
BL 154
BLANK 154
BLK 154
BLOCK 155
BMOVE 155
BORDER 92
BRANCH 155
BUFFER 155

BYE 155
C 44

Ct 155
C, 155
C/L 155
c@ 155
CASE 72

Cassette 4

s 10, 11, 23, 47, 63
CATNIB 19

;s 52

CBIT 52

CFA 155

CHANGE 8

r 20, 71, 155
CHARBASE 93

CHARIN 64
CIRCLE 93
CLALL 64
CLEAR 156
CLEARSCREEN 104
CLOSE 64
CLRCHN 64
CMD 55
CMDI 56
CMOVE 156
COLD . 156
Color 93

COLOR-MEM 94
Comments 171
COMPILE 156
CONFIGURE 25

SUPER-FORTH 64 (TM)

INDEX

r 156
CONSTANT 156
Constants 53
r 115

CONTEXT 156
CONVERT 156
COPY 44

, 156

COPYBUF 73
Cos 12

, 145

COUNT 156

CR 156
CREATE 157
CsS 104

CSP 157
CURRENT 157

D! 157
D+ 157
D+- 157
D- 157

D-CLEAR 136
D-POSITION 137
D-READ 136
D-SPLIT 137
D. 157

D.R 157

DO0= 157

D2* 74

D< 157

D= 157

D> 157

Da 157

DABS 157
DCONSTANT 157
DDROP 157
DDUP 157
DECIMAL 157
DECOMPILE §

r 74
DEFINITIONS 157
Demo &

r 171

DEPTH 158
DFIX 141
DFLOAT 142
DIGIT 158
DIR 75

Disk errors 26

240

DLITERAL 158
DMAX 158
DMIN 158
DNEGATE 158
DO 158

DOES> 158
DOs 75

r 125

DOSERR 75
DOVER 158

DP 158

DPL 158

DRO , DR1 , DRZ2 , DR3 , DR4
DRAW 104

DROP 159
DSWAP 159
DU< 159
DOUAL 75
DUMP 12

r 159

DUP 159

DURATION 120
DVARIABLE 159

E! 142

E-PROM'd SUPER FORTH 69
Editor 5

+ 8, 18, 19, 40, 44
ELLIPSE 93

r 94

ELSE 159

EMIT 56

, 59, 82, 159

EMIT7 56

EMPTY 159
EMPTY-BUFFERS 159
ENCLOSE 159

ENDCASE 72

Entering sprites 82
ENV3i@ 111

ERASE 159

Error Messages #2355
EXECUTE 159

EXIT 159
EXPECT 56
+ 160

F 44

F-APPEND 48

SUPER-FORTH 64 (TM)

159

INDEX

F~EDIT 40

; 49

F-EXIT 49
F-FREQ 112
F-LOAD 49
F-NEW 10

r 40, 50
F-NUMBER 50
F-SAVE 50
FBIT 53

FCOS 142

FD 105

FENCE 160
FEXIT 142
File Mode 9
10, 19, 23, 24, 40, 47, 59
FILE-MODE 51
FILL 160
FIND 160
FINIT 141
FIRST 160
FLAST 51

FLD 160
FLOAT 143
Floating Point 12
, 140

FLUSH 42

» 160

FNAME 51
FOPEN 51
FORGET 160
FORTH 160
FORWARD 105
FRE 57
FREEZE 160
F§ 105

FSIN 143
FSQRT 143
FULLSCREEN 105

GET# 57
GO 160
H 160
H! 138
HE@ 138
HC! 139
HC@ 139

HEADING 106

241

HERE 160

HEX 161

High RAM 12

» 15, 21, 78, 137
HLLD 161

HOLD 161

HOME 106

I 161

I' 161

I-CLEAR 134
I-FLAG 134
I-INIT 135
I-SET 134

r 135

I-SYSTEM 135
I-USER 135

¢ 136

I/0 Redirection 13
+ 54, 63

ID. 16l

IF 161
IMMEDIATE 161
INDEX 51

, 161
INIT-FORTH 161
INIT-USER 161
INPLFN 6

+ 56, 57, 58, 65
INPUT 58
INPUT# 58
INTERPRET 161
Interrupts 132

J 161
JOYl 58
JOY2 59

K 44
KEY 59
, 162

L 45
LATEST 162
LEAVE 162
LEFT 106
LFA 162

SUPER-FORTH 64 (TM)

INDEX

LIMIT 20
, 57, 162
LIST 40

, 45, 162
LIT 162
LITERAL 162
LOAD 162
LOADRAM 8

, 64 _
LOOP 162
LSHIFT 53
LT 107

M 45

M* 162

M*/ 162

M+ 163
M-QORIGIN 924
M-PLOT 95
M-X 95

M-Y 95

M/ 163
M/MOD 163
Machine language
MASK 53

Math 12
, 140
MAX 163

MAX-BUFFS 76
MAX-DRV 163
Memory Usage 21
MIN 163

ML routines 7
MOD 163

MODE 59

MODEVOL 112
MOVE 163
MULTI-COLOR 96

Music Editor 118

Music Notes 122
MYSELF 77

N 45

NCALC 121

ND 107

NEGATE 163
NEXT 163
NEXT.NOTE 121
NFA 163

NODRAW 107

NOT 163
NOTE-VALUES 112
NOTE@ 112
NUMBER 163

0O 46

o! 122

ofd 122

OFF 76
OFFSET 163
ON 76

OPEN 65

r 125

OR 164
0osc3g 112
ouUT 164
OUTLFN b

r 55, 59, 65
OVER 164

P 46

PAD 124

r 164

PADDLE@ = 59
PAGE 164
PATCH 8

r 76

PAUSE 75

r 164

PC 107

PCOPY 74

PD 108
PENCOLOR 107
PENDOWN 108
PENFLG 108
PENUP 108
PFA 164

PICK 164
PLAY.NOTE 113
e 172
PLAY.WAIT 122
PP 164

PREV 164
PRINT# 60
PRINTER 55

r 60, 65
PROM-QUEEN 69
PU 109

SUPER-FORTH 64 (TM)

INDEX

PUT# 61

QCOs 144
QSIN 144
QUERY 164
QUIT 164

R# 164

R/W . 164

RO 164

R> 165

R@ 165

Random numbers 112
RDTIM 77

REARDB 52
Reconfiguring screens 42
RECURSE 77

Recursion 17

r 77

REPEAT 165

RESFILT 114

RIGHT 109

ROLL 165

ROM'd SUPER FORTH 69
ROMming applications 69
ROT 165

RP! 165

RP@ 165

RS232 56

. 61

RSHIFT 53

RT 109

RWTS 62

S->D 165
S-B-COLLISION 96
S5-COLOR 97

S-DEF 82

r 97

S-EDITOR 82
S-ENABLE 99
S-FSET 99
S-MULTI 99
S-MULTIR 100
S—-POINTER 100
S-POSITION 100
S-PRIORITY 101
S5-5-Collision 101

243

S-XEXP 101
S-YEXP 101
S50 165

51 9¢

§2 96

53 96

S4 96

S5 96

S6 96

S7 96

S8 96

SAVE 65
SAVE-BUFFERS 42
; 165
SAVE-FORTH 11
, 62
SAVENAME 66
SBIT 54

SC 46

SCOPY 46
SCR 45

r 165

SCREEN 102
SEC/BLK 165
SECTRKT 63
SET-DRX 165
SETH 109
SETHEADING 109
SETLFS &5

, 66

SETNAM 65

+ 66

SETTIM 77
SETX 110
SETXY 110
SETY 110
SID 114

r 172

SID! 114
SID@ 115
SIGN 165
Sin 12

, 145

SM 46
SMUDGE 165
SONG.INIT 123

Sound 115
SOUND,INIT 115
, 116, 172

SOURCE~-BACKUP 74
SP! 165

SUPER-FORTH 64 (TM)

INDEX

SP0 165
SP@ 166
SPACE 166
SPACES 166
SPLIT 54
SPLITSCREEN
sprite 43
Sprite data
Square Root
85 111

ST 66
Standard Mode 9
r 10, 23, 24, 40,
STATE 166
Strings 124
Stripping System
SWAP 166

SWAPIN 78
SWAPOUT 78

SYs 78

SYSCALL 79
SYSDEV 47

; 63, 75

110

82
12

44,

21

T! 123

T&SCALC 166

Td 123

TEMPQO 123

TEXT 166

TFLAG 79

THEN 166

THRU 19

: 166

TIB 1lé6é

TITLE 166
TOGGLE 166
TRACE 79
Tracing 79
TRAVERSE 166
TRIAD 166

Trig Extensions
TRIPLET 121
Turtle Graphics
TYPE 166

143
102

u* 167
U. 167
U.R 167
U/MOD 167

47,

50,

59

244

U< 167
UNTIL
up 167
UPDATE 167
UPORT 63
USE 167
USER 167

167

117
1lls

V!
V-AD
r 172
V-CTRL 116
V-DEFAULT

¢ 172
V-FREQ 116
V-PW 117
V-8R 117
y 172
v1,v2,v3
VARIABLE
VLEN 80
VLIST 19
+ 80, 167
VOC-LINK
VOCABULARY
VOICE 118
VTAB 81

116

117
167

168
168

W47
WAIT 81
WARNING
WAVE 118
WHERE 168
WHILE 168
WHOLE 121
WIDTH 168
WORD 168
WRITEB 52

168

X 47
, 168
XOR

169
Zero Page 17

[169

SUPER~FORTH 64 (TM)

INDEX
| ['] 169
o [COMPILE} 169

| 169

245 SUPER~FORTH 64 (TM)

STACK MANPULATION

oue {A—=nn)
DROP (n=}

SWAP (ntn2-n2nt)
OVER (Mn2=-nn2m)
ROT (M nA2n3 -n2n3nl)
PICK (ml =n2)
ROLL (n=)

00P {n=ni)

>R (n—=1)

o> {=n)

R { =n}

DEPTH {=n}
COMPARISON

< {nin2 - flag)
- {ntn2 —Nag)
> {n1n2 -MNag)
0< (n="flag)

Ow {n—Nag)

0> (n—tiag) -
D (a1 d2 - flag)
U< {uni ~fisg)
NOT (fag — ~fag)

FORTH-7¢ HANDY REFERENCE

Stack inputs and outputs ars shown; top of stach on right. See operend key at bottom.

mmmsnc AND LOGICAL

D+ (d1 a2 ~ sum)

- (n1n2 - diff)

1+ (n-=n+1)

1= {n=n=)

24 {n—=n+2)

2= {n=n=2)

. {n1n2 — prod)

N (M n2 ~ quot)

MOD {nTn2 — rem}

400 {n1 n2 - rem quot)

*/MOD {1 n2n3 - rem quot)

*f {n1 n2 n3 = quot)

uw (unt un2 = ud)

WMOD { ud un — urem uquot)

MAX {nt n2 ~ max)

MM {nf n2 - min)

ABS {n=tnt)

NEGATE {n==n)

DNEGATE (d—~d)

AND {nln2 —-and)

[=;] {nin2 —-or)

XOR {1 n2 = xor)

MEMORY

] (mder - n)

! {noddr — }

ce (addr ~— byte)

[») {noddr = }

? { ador —)}

+ (nador —)

MOVE (adidr1 adce2 n =)

CMOVE { addr1 agdr2 n =)

FiLL { nddr n byts — }

CONTROL STRUCTURES

DO .. LOOP do: { eni+) stant - |

I { — index)

J { — index)

LEAVE [

D3 ... +LOOP do: { limH start —)
+oop: {(a - }

¥ (true).. . THEN i {fag ~)

¥ ... (true). .ELSE i (Mhag -

... (lalse). . . THEN

BEGIN ... UNTIL until- (flag — }

BEGIN .. WHLE while. (fag —)

.. REPEAT
exst (=1
EXECUTE {odar —)

Operand
nni, ...

{n1 n2 —sum)

key: d, g1,
10_-billiwwdmunm ']

PARSEC RESEARCH

Duplicate top of stack.

Mﬁloo.:w Drawer 1766
E.Im stack ems.

. Make copy of socond em on op. Fremont, CA 94538

Rotate third flem to top. “role”

Copy n1-4h item o lop. (Thus 1 PICK = DUP , 2 PICK = OVER }
mmmmtemnm-zm-swm J ROLL = ROT)
Duplicate only if non-1evp. “

Move top ftem 1o “return stack” lor temporery storage (use caution). “to-r"
Retrigve Rom from ratum sack, "r-rom”

Copy top of retum stack onto stack. "r-letch”

Gount number of itema on stack.

True i n1 less than n2. “lesa-than™

True i top two numbers are squal. “squale”

True i nt greater than n2. “graater-than”

True if top nUMbaer negative. “Terc-less™

Trua if top number zero. (Equivalent 1o NOT) “zerc-equals™
Trua f top number greater than Zero, “rero-greater”

True if dt less than d2. “d-leag-than"

Compare top two items s unsigned integers. “ueas-than”
Reverse truth value {Equivaient 1o Qm)

Add. “phis”
Add double-precision numbers. “d-plus”
Subtract (n1=n2). “minug”
Add 1 1o top numnber. “one~plus”
Subirect 1 from top number. “one-minus”
Add 2 to top number “two-plus”
Subtract 2 from top number. “two-minus™
Multiply. “times”
Dwkn (n1ln2] {Quotient rounded toward zerc) "divide
lo (Le., remainder from division n1/n2). Remainder has same sign a8 n1. "mod”
Divm piving remainder and quotient. “divide-mod™
Multiply, then divide (n1°n2/n3}, with double-precision intermediate. “times-divide-mod™
Like */MOD ., but give quotient only. rounded towsrd Zero, “tmaes-divide™
Multiply unsigned numbars, leaving unsigned double-preciaion result. “u-times™
Divide double number by single, giving remainder and quotient, alf unsigned “u-divide-mod™
Leave greater of two numbers. “max”
Leave lesser of two numbers. "min™
Absochute value. “absolute”
Laave two's complement
Laave two's complement of double-precision number
Bitwise logical AND
Bitwise logical OR.
Bitwige logicel exclusve-OR. “x-or"

“d-nagale”

Replace addross by number s sddresa. “fetch”
Store n at addr "store™

Fetch laast significant byts only. “c-letch”
Store least signhcant byte only. “c-store”
Displsy number at address. “guestion-mark”

- AGd f 10 number af sddr. “plus-store”

Move n numbers starting st addr! 1 memory starting at adde?, il n>0,
Move n byles starting at addr1 10 memory starting af adar2, # n>0. "c-move”
Fill n bytes in memory with byte baginning at addr, if n>0.

Sat up i0op, given mdex range

Place cument icop index on dats slach

Ratum mdex of nex! outer 100D In KaMe definiton,

Terminate loop al next LOOP or +LOCP . by seittng limit equal 1o index

Like DO LOOP ., but adds stack value (instead of always 1110 ndex Loop termmates when
mdex is graater than o equal 1o bmit (n>0), or when ndex o leas than bmit (n<0) “plus-loop™
N top of stachk (rue. execute

Same, but if taise. execute ELSE clause.

Loop back to BEGIN unti true at UNTIL

Loop white true st WHILE . REPEAT loops unconditionally 10 BEGIN When talze, confinue afier
REPEAT

Terminate axecution of colon definiton. (May nol be used within DO .. LOOP |

Execute dichonary eniry st compiiaton sddrese on stack (s . addreas retumed by FIND).

char 7-bH sacik character value
fiag boolean fiag

addr, addv1,
byte

addrenses

32-bit signed numbers
unaigned B8-bit byte

TERMINAL INPUT-OUTPUT

CR (=) Do a camage return and hne teed "c-r"

EmiT (char ~) Type aschi value from stack

SPACE =1 TyDe one soace

SPACES in=) Type n spaces. if n>0

TYPE {agdrn— | Tybe sinng of n characters baginning at addr if n>0

CoOuNT (aock = sgde+t n) Change address of sinng [prefixed by length byte at addr) 1o TYPE form

~TRAILING {ador nt — addr n2) Reduce character count of strng at addr to omnt irailing blanks ‘dash-trahng”

KEY { — char} Resd hey and 1eave agCIi value On siBch

EXPECY (oddrn—) Read n characters (o until camiage return) from terminal 10 address wh nuiks)-at end
QUERY {=) Read hne of up to BO characters from terminal 1o mpul butier

WORD (char — pddr) Read next word from input stresm using char as delmiter. or untinull Leave addr of lengtn byle
NUMERIC CONVERSION

BASE { — mgar) System variabie containing racix for numenc conversion

DECIMAL [=] Se1 decimal number base

. in=1}) Prnt number with one rading blank and sign f negatve “dot

115 {un— 1} Prnt top of stack as unsigned sumber with one frailing blank u-got™

CONVERT { dY ador1 — a2 addr2 } Convert stnng ataddr1+1 1o double number Addtodl leawng s.m d2 and addr? of first non-chgrt
< { =) Star! nurmanc outpu! string conversion "less-sharp”

» {udl —ud2) Corwert next digit of unsigned double number and add characte: 1o cutput stning “sharp”
a$ {ud -00) Convert all signihicant digits of unsigned double number 10 UIDU! $trng "SNarp-5~

HOLD (char ~) Add asce char 10 output string

SIGN fn=1 Add minu 8ign 1o output sinng f n<0

&> {d—addrn) Orop & and lerminate numeric outpu! strng. leaving aacr snd count lor TYPE “shiarg-grester"

MASS STORAGE INPUT/OUTPUT

LIST in=1)
LOAD in-—=
8CR (= nde)
BLOCK (A — adar}
UPDATE { -
BUFFER {n — addr)

SAVE-BUFFERS 1
EMPTY-BUFFERS (

DEFINING WORDS

-
-

XK {=)
H { =}
VARIABLE xxx {=

axx: [= addr)
CONETANT xxx (n=)

BAx | =n)

VOCABULARY xax | —)
CREATE ODOES> does | — addr)

VOCABULARIES
CONTEXY (
CURRENT (
FORTH {
DEFINITIONS {
fi31 {
FiND i
FORGET xxa |

COMPILER

ALLOT

MMEDIATE
LITERAL
STATE

|

1
COMPILE
ICOMPILE)

MISCELLANEOU

]

HERE

PAD

>IN

BLx

ABORT

our
T9-STANDARD

= Bodr
—~ agdr)

g e ———

=1

List screen n and set SCA 12 contam n

inlerprer acreen n, then resume mterpretalor of the current moUt stream

System vanabie contaming screen number most recently isleg

Laave memory addrass of block reading from mass storage * necessa-y

Mark |ast block relerenced as moamed

Leave poct of a froe bufier, aasigned 1o DIOCK 0, wite previous Contents ‘0 mass storage 1 LUPDATEd
Write all UPDATEd biocks lo maas storage

Mark all block butfers as empty. withoul writing UPDATES blocxs 2 mass storage

Begin colon dehnion of xxx “colon”
End colon definition “semi-colon”
Craate a two-byte variabie named xxx telurns address when gagcuied

Create a constant named xax with value n. returns value when gxecute:

Craate & vocabuisry named waa . becomes CONTEXT vocab.an wher execa’ec
Used 1o create a new detning worg with gxecution-time roLtne n high-leve. FORTH “does”

System variable pointing {0 voCabulary where word names ase sea'ched ‘o
System veriable pointing to vocabulary where ngw getinihons are put

Mam vocabutary. contaned in al! other vocabulanes Execution o FORTH sets context vocabulary
Sets CURRENT vocabulary 1o CONTEXT

Fing agdress of xxa i dictionary. * used in dehrinor compile agoress “ick’)
Laave compilahon address of next word w ingut stream Baotfounc = CONTEXT or FORTH ieave 0
Forge! sl defindions back 10 an@ including xux which myst ne r CURRENT or FORTH

Compiie 8 number 10 the JiICUONATY “COMMA~

AJY two Bytes to the parameter field ot the mogt recently-ge' red ward

Prinl message [termmated by 1 H used m detmition pert wher guaculed Jof-guole’
Mark last-defined word 1o be execuled when encounterad »» 3 gehniton rather than compieo
¥ compeing Save 6 m dichionary 10 be refumed (o Stack when getritior s sxecuted
System varubie whose value /3 non-zero when compilation 1S ocCuming

Stoo compring mpul text anc begin executing “laf-Dracker’

Stoo axecuting input taxt and begin compiing “right-bracke!

Compile the address of the next non-TIMMEDIATE worg ino e dichionary

Comptie the folibwing word. even i IMMEDIATE “bracket-compie

Begn comment terminaled by | o~ same hne or screen space afer) paren’, “close-paren”
Lesve address of neat avalabe dicionary iocation

Leave address of & scratch ares of al lonst 64 bytes

System varmbie comaining character oMset nie npy buMer Jsed e g by WDORD t-in
System vanabie contanmp biock numbDe! Curfgr ity Beng inleriveled or(” Homiermina -k’
Ciear dats ang retum stachs se? esec.l.on mogde retur™ COMTD. 'C 'erming’

Lhe ABORT gxcept does ng! clear Jata siack 0° pnnl any ~essage

Verty tha! system contorms 1o FORTH-73 Stangarg

FORTH INTEREST GROQUP, P.0. Box 1105, San Carios, CA 94070, USA

