EXTENDED MATH
PACKAGE

for SUPER-FORTH 64™
By Bruce Jordan

©COPYRIGHT PARSEC RESEARCH 1985, all rights reserved.
“This software has a traceable serial number embedded within the system. This manual and the computer programs on
the accompanying floppy disks which are described by this manual are copyrighted and contain proprietary information
belonging to Parsec Reserarch.
This manual may not be copied, photocopied, reproduced, translated or reduced to machine readable form, in whole or
in part, without the pricr written consent of Parsec Research.
The accompanying floppy disks may not be duplicated, in whole or in part, for any purpose. No copies of the floppy

disks or this manual or the listings of the programs on the floppy disks may be sold or given to any person or other
entity. Notwithstanding the above, the accompanying disks may be duplicated for the sole use of the original purchaser.

SUPERFORTH 64 is a TM of PARSEC RESEARCH

Available at the Vintage Volts website

http://www.vintagevolts.com

SUPER-FORTH EXTENDED MATH PACKAGE

INTRODUCTION

The SUPER-FORTH Math Extension Package is a group of mathematical
utility packages designed to enhance SUPER-FORTH. These utilities
are provided as source screen to be loaded into the SUPER-FORTH

system.

THE PACKAGE CONTAINS:

1. Extensive floating point math package.

2. 2-dimensional matrix word set.

3. Multi-dimensional matrix word set.

4. The ALGEBRAIC EXPRESSION EVALUATOR.

5. An extended flecating point algebraic word set.

NOTE : The s¥mbol <CR> appears throughout this manual. This
symbol indicates that you are to type a carriage return.

FLOATING POINT MATH
PACKAGE

for SUPER-FORTH 64™
By Bruce Jordan

©COPYRIGHT PARSEC RESEARCH 1985, all rights reserved.

*This software has a traceable serial number embedded within the system. This manual and the computer programs on
the accompanying floppy disks which are described by this manuat are copyrighted and contain proprietary information
belonging to Parsec Reserarch. ‘

This manual may not be copied, photocopied, reproduced, translated or reduced to machine readable form, in whole or
in part, without the prior written consent of Parsec Research.

The accompanying floppy disks may not be duplicated, in whole or in part, for any purpose. No copies of the floppy
disks or this manual or the listings of the programs on the floppy disks may be sold or given to any person or other
entity. Notwithstanding the above, the accompanying disks may be duplicated for the sole use of the original purchaser.

SUPERFORTH 64 is a TM of PARSEC RESEARCH -3 -

SUPER~FORTH EXTENDED MATH PACKAGE . FLOATING POINT PACKAGE

SUPER FORTH FLOATING POINT PACKAGE

The SUPER-FORTH Floating Point Package is a quality floating
point system that contains the standard floating point word set
plus many higher level mathematical functions and FORTH oriented
extensions that make it a valuable programming companion for
SUPER-FORTH. The SUPER-FORTH Floating Point Package combines the
features of fast execution time, flexibility, minimum memory
requirements and high accuracy.

LIST OF FEATURES

RAPID EXECUTION.

LOW MEMORY REQUIREMENTS.

EASY NUMBER CONVERSION: single to floating point numbers
floating point to single numbers

double to floating point numbers
floating point to double numbers
strings to floating point numbers
floating point numbers to strings

NUMBERS CAN BE ENTERED IN STANDARD DECIMAL FORM OR
SCIENTIFIC NOTATION FORM.

WIDE NUMBER RANGE.

approximately +-2E+38 to +-3E-39
ACCURACY TO EIGHT DECIMAL PLACES.

HIGHER LEVEL MATH FUNCTIONS.

FLOATING POINT STACK MANIPULATION WORDS.

FLOATING POINT BOOLEAN OPERATORS.

NUMBER CONVERSION

F->5 FLOATING POINT TO SINGLE NUMBER
S5->F SINGLE TO FLOATING POINT NUMBER
F->D FLOATING POINT TO DOUBLE NUMBER
D->F DOUBLE TO FLOATING POINT NUMBER
$->F STRING TO FLOATING POINT NUMBER
F->$ FLOATING POINT NUMBER TO STRING

-4 -

FDROP FLOATING POINT DROP

FDUP FLOATING POINT DUP

F2DUP FLOATING POINT 2DUP

FOVER FLOATING POINT OVER

FPICK FLOATING POINT PICK

FROLL FLOATING POINT ROLL

FROT FLOATING POINT ROT

FSWAP FLOATING POINT SWAP

F. PRINT A FLOATING POINT NUMBER
E! ENTER EXPONENT

MATH FUNCTIONS

F+ ADD
F- SUBTRACT

F* MULTIPLY

F/ DIVIDE

F~ POWER FUNCTION
1/F RECIPROCAL
FABS ABS

FMAX MAXIMUM
FMIN MINIMUM

FNEGATE NEGATE

FRAC DECIMAL FRACTION
FSQR SQUARE ROOT

FCoSs COSINE

FSIN SINE

FTAN TANGENT

FACOS ARC COSINE

FASIN ARC SINE

FATN ARC TANGENT

FE"X ‘e’ TO THE X POWER
FSGN SIGNUM FUNCTION
FLOG NATURAL LOG .
FLOGX LOG TO THE BASE X
PI CONSTANT FOR PI

- -

EX CONSTANT FOR e

FLOATING POINT MEMORY WORDS

FVARIABLE CREATE FLOATING POINT VARIABLE
FCONSTANT CREATE FLOATING POINT CONSTANT
F@ FETCH FLOATING POINT VARIABLE
Fl STORE FLOATING POINT VALUE

-ll'.A._

LOGICAL AND COMPARISON WORDS

FOR FLOATING POINT OR
FAND FLOATING POINT AND
F< FLCATING POINT <
= FLOATING POINT =
F> FLOATING POINT >

STACK MANIPULATORS

?FDEPTH FLOATING POINT ?DEPTH
FDEPTH FLOATING POINT DEPTH

_aB-

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

Tb load the SUPER-FORTH Floating Point Package... —_
1. Load and run SUPER-FORTH.
2. Insert the SUPER-FORTH EXTENDED MATH-I/0 UTILITY DISK

into your disk drive.
3. Type: 2 LOAD

This will load the entire Floating Point Package.

USING THE SUPER-FORTH FLOATING POINT PACKAGE

Every attempt has been made to make the SUPER-FORTH Floating
Point Package as easy to use and trouble free as possible.
However, there’s one thing that you should always remember:
Always type FLP-INIT or FLP-EXIT immediately after any reset that
occurred while in Floating Point Mode. A reset from Floating
Point Mode leaves you someplace between FLP-INIT and FLP-EXIT;
and things can get weird out there. FLP-INIT or FLP-EXIT will
restore everything properly.

Now, let’s try out the SUPER-FORTH Floating Point Package.

"'-\

First, type:

FLP-INIT
You are now in Floating Point Mode. This allows you to enter
floating point numbers, and use them in calculations and colon
definitions.
Now, type:

123. 45. F~ F.
You just got an error message, right? I had you do this to show
you that there is limits to the size of the numbers you can use.
The fortyth power of one hundred and twenty three is a big
number! Far too big for the Floating Point Package to handle. The
general rule is a result of a calculation can be no greater than
+-1.70141183E+38, or less than +-2.93873588E-39.
Before you go any farther, type FLP-INIT once again. Yol are now
back in Floating Point Mode.
Now, let’s try a few simple floating point operations. First,
let s enter a few floating point numbers. .

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

EXAMPLE
1.2 3.4 5. <CR> OK

There are now 3 floating point numbers on the stack. Let s print
the top floating point number:

F. <KCR> 5 OK

Next, we’ll add the remaining two floating point numbers
together:

F+ <CR> OK (1.2 AND 3.4 ARE ADDED ON THE STACK.)
If we print the result, we get:

F. <KCR> 4.6 OK
You can see that math operations with The Extended Floating Point
Math Package are carried out much the same as when doing math

operations in fixed-point form. The only difference is that each
operation (+ - * / ,..) is preceded by the letter F (F+ F- F* F/

Here’s another example. We will subtract one number from another,
and then multiply the result by a third number.

EXAMPLE :
FLP-INIT
4.5 2.3 F- 10.11 F* F. <CR> 22.24 OK

Next, let’s try using some of the floating point routines within
a colon definition.

The main things to remember when using floating point numbers
within colon definitions are:

1. Make sure you're in Floating Point Mode.

2. FLP-INIT and FLP-EXIT should not be used within a colon
definition.

Other than these restrictions, using floating numbers is alot
like using double numbers in SUPER-FORTH.

Let ‘s try a definition:

SUPER-~-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

We’ll define a word that takes the square root of the numbers
1-10.

FLP-INIT

: 10SQROOT

CR 11 1 DO I S->F (CONVERT INDEX TO FLOATING #)
FSQR F. (GET SQUARE ROOT AND PRINT IT)}
CR LOOP ;

Now, when we type :
10SQROOT <CR>
1

1.41421356
1.73205081
2

2.23606798
2.44948974
2.64575131
2.82842713
3

3.16227736

Notice that we first had to convert the single number index of
the loop to a floating point number before using it with floating
point math routine routine FSQR.

Now let’s define a word that displays the flexibility of the
Extended Floating Point Math Package. We ll define a word that
illustrates entering floating point numbers from the keyboard,

FLP-INIT (YOU DON'T HAVE TO TYPE THIS EVERY TIME YOU)
(DEFINE A WORD, JUST SO LONG AS YOU KNOW)
(YOU'RE IN FLOATING POINT MODE.)

¢ LOGGER

CR ." GIVE ME A NUMBER >0 "

$INPUT (GET A STRING FROM THE KEYBOARD)

CR

$->F (CONVERT IT TO A FLOATING POINT NUMBER)
FDUP

FLOG FSWAP CR
." THE NATURAL LOG OF " F.
MIS "™ F.

Now try...

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

LOGGER <CR> GIVE ME A NUMBER >0 21. <CR>
THE NATURAL LOG OF 21 IS 3.04452244 OK

It s possible to use floating point numbers in the setting of
control parameters of control words such as DO loops:

LOOPIT (LOOP N NUMBER OF TIMES)

F->S (CONVERT FLOATING NUMBER TO SINGLE NUMBER)
0 DO I . LOOP ;

Give LOOPIT a floating point number for the limit, and...

23.456 LOOPIT <CR> 01234567 891011 12 13
14 15 16 17 18 19 20 21 22 OK

The next example shows how to us the Floating Point Comparison
words. The example tests to see if one floating point number is
the same as another floating point number.

FLP-INIT (JUST CHECKING)

: TESTER (TEST A NUMBER)

FDUP

123.00021 F< IF ." GO BIGGER " FDROP
ELSE 123.00021 F= 1IF .™ YOU GOT IT!!I"
ELSE ." GO SMALLER "

THEN

THEN ;

Let s try our test.

123. TESTER <CR> GO BIGGER OK

1000. TESTER <CR> GO SMALLER OK
123.00020 TESTER <CR> GO BIGGER OK
123.00021 TESTER <CR> YOU GOT IT!!! OK

Floating point numbers can be entered into colon definitions
without being in floating point mode. The easiest example for
this is in the definition of a floating point constant. What we
want is a word that when called will leave some value on the
stack. We can do this in several different ways.
First, we could define a constant using FCONSTANT:

FLP-INIT (YEAH, YEAH. I KNOW...)

6.626 -34 E! FCONSTANT PLANK’'S <CR>

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

Now, whenever we type PLANK 'S, we get...
PLANK 'S <CR>
F. <CR> 6.62599999E-34 OK

NOTE : There’s a slight inaccuracy in the Floating Point
Package. However, this error is so small that it should

not be a problem for most applications.

The second way to create a constant is to define a word who’s
definition is just the value to be left on the stack:

: TEMP1 3.0

Now, when we type TEMPl, we get...

TEMP1 F. <CR> 3 OK
But, let’s say you're not in Floating Point Mode, and you want to
define a word that will return a floating point number. How do

you do it? Easy, just enter three single numbers that are
equivalent to the floating point value (See <FNUM>).

EXAMPLE :

First we find out what a floating point three looks like when
displayed as three single numbers.

FLP-INIT
3. .8 <CR> 0 192 130 OK
FLP-EXIT (LEAVE FLOATING POINT MODE.)

S0 our constant word will use the above three numbers:
: TEMP2 0 192 130 ;

When we use TEMP2 in floating point mode, we get:
FLP-INIT
TEMP2 F. <CR> 3 OK

This last example was merely intended to give a better

understanding of how the SUPER-FORTH Floating Point Package
handles floating point numbers.

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

ERROR MESSAGES

Some floating point operations will cause the SUPER-FORTH system
to reset if improper values are used. For instance, trying to
obtain the natural log of zero will cause a system reset. When
this happens, an error message will be displayed to give you an
idea of what it was you did wrong.

?ILLEGAL QUANTITY
An illegal operation was attempted such as taking the
root of a negative number, or evaluating the natural log
of zero.

?0VERFLOW ERROR :
An operation was attempted who’s result is larger than

the largest number allowed: 1.70141884E+38.

As a final reminder:

la Always enter floating point numbers with a decimal point,
even zero (0.).

2. Almost all floating point commands start with F. Watch
out for using DUP when what you want is FDUP, or DROP
when you really meant FDROP.

3. Always be sure of what mode you ‘re in.
4. Always re-enter or exit Floating Point Mode on a reset.
5. Colon definitions using floating point numbers must be

defined within Floating Point Mode.

6. Division by zero (0) will give erroneous results.

- 10 -

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

FLOATING POINT WORD SET

The following is a description of the SUPER-FORTH Floating Point

Package word set.

NOTE : It is not necessary to type FLP-INIT each time you
perform a floating point operation. At the risk of being
redundant, many of the examples contain the command
FLP-INIT. This was intended only as a reminder that you

must be in floating point mode to do floating point
operations.

FLP-INIT : INITIALIZE FLOATING POINT MODE

(——=)
This word places you in floating point mode.
This word replaces the number conversion routine <NUMBER> with
<FNUM>, replaces DLITERAL with FLITERAL, assigns INBUF as the
System Input Buffer and changes the system WARM-START vector.

FLP-EXIT : EXIT FLOATING POINT MODE

(===
This word is used to leave floating point mode.
This word restores <NUMBER> as the number conversion routine,
replaces DLITERAL, restores $100 as the Input Buffer area and
resets the WARM-START vector.

F- : FLOATING POINT SUBTRACTION

{ f1 £2 --- £3)
Subtract f2 from f1 leaving the difference f3 on the stack.
EXAMPLE :

-23.4 5.6 F- F. <CR> -29 OK

14. 2.5 F- F. <CR> 11.5 OK

- 11 -

SUPER-FORTH EXTENDED MATH PACEKAGE FLOATING POINT PACKAGE

F+ : FLOATING POINT ADDITION

{ f1 f2 --- £3)
Add f2 and leaving the sum f3 on the stack.
EXAMPLE :

3.2 1.5 F+ F. <CR> 4.7 OK

F/ : FLOATING POINT DIVISION

(£1 £2 ~--- £3)
Divide f2 by f1 leaving the quotient f3 on the stack.
EXAMPLE :

124.5 7.2 F/ F. <CR> 17.2916667 OK

NOTE : Division by zero will give erroneous results.

F* : FLOATING POINT MULTIPLICATION
(f1 £2 --- £3)
Multiply f2 by fl leaving the product f£3 on the stack.

EXAMPLE

-1.234 3.2 F* F. <KCR> -3.9488 OK

F. : PRINT FLOATING NUMBER

(£ -—)
Prints the flocating point number on the top of the stack.
EXAMPLE :

FLP-INIT

23.345 F. <CR> 23.345 OK

- 12 -

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

E! : ENTER EXPONENT
(fn-—f)
Allows the entering of an exponent for a floating point number.

EXAMPLE 1 :
1.665 -15 E! F. <CR> 1.665E~15 OK

EXAMPLE 2 :
23.221 24 E! <CrR>

F. <CR> 23.221E+24 OK

FABS : FLOATING POINT ABSOLUTE VALUE
(£ --- £)

Returns the absolute value of the floating point number on the
stack.

EXAMPLE

FLP-INIT

-1.234567 FABS F. <CR> 1.234567 OK

FNEGATE : FLOATING POINT NEGATE

(£ — -£)
Leaves the negative of the floating point number on the stack.
EXAMPLE :

~123.456 FNEGATE F. <CR> 123.456 OK

123.456 FNEGATE F. <CR> -123.456 OK

FMAX : FLOATING POINT MAXIMUM

(fl £2 --- £3)

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

Leaves the greater of two floating point numbers on the stack.
EXAMPLE :

12.003 12.001 FMAX F. <CR> 12.003 OK

FMIN : FLOATING POINT MINIMUM

(f1 £f2 —— £3)
Leaves the lesser of two floating point numbers on the stack.
EXAMPLE :

.0321 1.23 FMIN F. <CR> .0321 OK

FINT : RETURN INTEGER
(£ == £)
Returns the integer portion of a floating point number.

EXAMPLE

12,3456 FINT F. <CR> 12 OK

FRAC : RETURN FRACTION

(£ --—- £)
Returns the fraction portion of a floating point number.
EXAMPLE :

123.456 FRAC F. <CR> .45599997

FCOS : RETURNS COSINE
(£ -— £)

Returns the cosine of the floating point number, where the
floating point number represents an angle in radians.

EXAMPLE :

- 14 -

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

,:x
1.34 FCOS F. <CR> .228752808 OK
FSIN : RETURNS SINE
(£f -—— £)
Returns the sine of the floating point number, where the
floating point number represents an angle in radians.
EXAMPLE
1.34 FSIN F. <CR> .973484542 OK
FTAN : RETURNS TANGENT
(£ ~--—-£)
Returns the tangent of the floating point number, where the
floating point number represents an angle in radians.
EXAMPLE :
1.34 FTAN F. <CR> 4.25561789 OK =
FACOS : RETURNS ARC COSINE
(£ -—-- £)
Returns the arc cosine of the floating point. The result is in
radians.
EXAMPLE :
.221 FACOS F. <CR> 1.34795662 OK
@(FASIN : RETURNS ARC SINE)
{ £ -——— £)
Returns the arc sine of the floating point. The result is in
radians.
EXAMPLE :
.221 FASIN F. <CR> .222839705 OK -

- 15 =

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

FATN : RETURNS ARC TANGENT
(£ -—— £)

Returns the arc tangent of the floating point number. The result
is in radians.

EXAMPLE :
.221 FATN F. <CR> .217503939 OK

FSQR : FLOATING POINT SQUARE ROOT

(£ -—= £)
Returns the square root of a floating point number.
EXAMPLE

64. FSQR F. <CR> 8 OK

F® : POWER FUNCTION
(£f1 £2 --—- £3)
Raises fl to the f2th power leaving the result f3 on the stack.
EXAMPLE

2. 5. F® F. <CR> 32 OK

FE"X : e TO THE POWER OF X
(£ ---£)

Returns e (2.71828183) raised to fth power, where f is a floating
point number.

EXAMPLE :

21. FE"X F. <CR> 1.31881573E+9 OK

FLOG : NATURAL LOG FUNCTION

- 16 -

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

P}
{ £ —— £)
Returns the natural log of a floating point number.
EXAMPLE :
1.31881573 9 E! FLOG F. <CR> 21 OK
FLOGX : LOG TO BASE X
(£1 £2 -—- £3)
Returns the log of f1 to the f£2 base, leaving the result £3 on
the stack.
EXAMPLE :
5. 2. FLOGX F. <CR> 2.32192809 OK)
FSGN : SIGNUM FUNCTION
(£ -— £) 3
Returns -1 if f is less than 0, +1 if f if greater than 0 and 0
if £ equals 0.
EXAMPLE :

-123.456 FSGN F. <CR> -1 OK

FAND : FLOATING POINT LOGICAL AND
(f1 £2 --- £3)

ANDs two floating point numbers in the range of +-32767,
returning the result on the top of the stack.

EXAMPLE :

123.456 37.5 FAND F. <CR> 33 OK

FOR : FLOATING POINT LOGICAL OR
(f1 £2 --- £3)

- 17 -

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

ORs two floating point numbers in the range of +-32767, returning
the result on the top of the stack.

EXAMPLE

123.456 37.5 FOR F. <CR> 127 OK

1/F : RECIPROCAL

(£ -— £)
Returns the reciprocal of a floating point number.
EXAMPLE :

100. 1/F F. <CR> .01 OK

F< : FLOATING POINT <

(f1 £2 --- flag)
Returns a single number 1 if fl is less than £2, and a 0 if fl is
equal to or greater than f2.

F= : FLOATING POINT =

(f1 £2 --- flag)
Returns a single number 1 if fl is equal to f2, and a 0 if fl is
less than or greater than f2.

F> : FLOATING POINT >

(f1 £2 --- flag)
Returns a single number 1 if fl is greater than £2, and a 0 if fl
is less than or equal to f2.

PI : CONSTANT

(===)

Returns the value of pi on the stack.

- 18 -

SUPER-FORTH EXTENDED MATH PACKAGE

EXAMPLE :
PI F. <CR> 3.14159265 OK

EX : CONSTANT

(~-=)
Returns the value of e on the stack.
EXAMPLE :

EX P. <CR> 2.71828138 OK

FCONSTANT : FLOATING POINT CONSTANT

(£ -—-)

FLOATING POINT PACKAGE

Creates a floating point constant, who’'s value is placed on the

top of the stack when its name is called.

EXAMPLE :
1.234 FCONSTANT ABC <CR>

ABC F. <CR> 1.234 OK

FVARIABLE : FLOATING POINT VARIABLE
(-——)
Creates a floating point variable.

EXAMPLE

FVARIABLE VAR1 <CR>

Created a floating point variable named VARL.

F! : FLOATING POINT STORE
(£ addr ---)

Stores a floating point number in memory.

_19-

SUPER-FORTH EXTENDED MATH PACKAGE

EXAMPLE :
FVARIABLE VARl <CR> (CREATE A VARIABLE.
123.456 VARl F! <CR>

Stores 123.456 in floating point variable VARI.

F@ : FLOATING POINT FETCH

(addr --- f)
Fetches a floating point value from memory.
EXAMPLE :

FVARIABLE VARl <CR>»

123.456 VARl F! <CR>

VARl F@ F. <CR> 123.456 OK

FDROP : FLOATING POINT DROP

(f1 £2 ---f1)
Drops the top floating point number from the stack.
EXAMPLE :

123.45 23.45 FDROP <CR>

Leaves 123.45 on the stack and drops 23.45.

FDUP : FLOATING POINT DUPLICATE
(fl f2 --- f1 £2 £2)

Duplicates the top floating peint number on the stack.

EXAMPLE

1. 2. FDUP F. F. F. <CR> 2 2 1 OK

- 20 -

FLOATING POINT PACKAGE

)

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

F2DUP : FLOATING POINT DOUBLE DUPLICATE

(f1 £2 --- f1 f1 £2 £ 2)
Duplicates the top two floating point numbers on the stack.

EXAMPLE :
1. 2. F2DUP F. F. F. F. <CR> 2 2 1 1 OK

FSWAP : FLOATING POINT SWAP
(£1 £2 -—- f2 f1)}
Swaps the two top floating point numbers on the stack.

EXAMPLE :
1. 2. FSWAP F. F. <CR> 1 2 OK

FOVER : FLOATING POINT OVER
{ £1 £2 -—- f1 £2 f1)

Leaves a copy of the second floating point number on the top of
the stack.

EXAMPLE :
l. 2, FOVER F. F. F. <KCR> 1 1 2 0K

FPICK : FLOATING POINT PICK

(n--—-f)

Returns the contents of the nth fleoating point value on the
stack.

EXAMPLE
1. 2. 3. 4. 2 FPICK F. F. F. F. F. <CR>

3 4 3 2 1O0K

FROLL : FLOATING POINT ROLL

- 21 -

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

(n-—--£f)
Rotates the nth stack value to the top of the stack. All other
floating point numbers are moved down to fill the vacated
position.

FROT : FLOATING POINT ROTATE

(£f1 £2 £3 --- £2 £3 £f1)

Rotates the third value on the stack to the top of the stack.

EXAMPLE

l. 2. 3. FROT F. F. F. <CR> 1 3 2 OK

*

?FDEPTH : FLOATING POINT ?DEPTH
(n-—)

If depth of stack in floating point numbers is less than n,
before n was entered, ABORT" is called printing EMPTY STACK.

EXAMPLE :
123.456 <CR>
§ ?FDEPTH <CR>
EMPTY STACK
FDEPTH : FLOATING POINT DEPTH
(-=-—-n)
Returns the depth of the stack in floating point numbers.

EXAMPLE

123.456 45,001 FDEPTH . <CR> 2 OK

D->F : DOUBLE NUMBER CONVERSION
{d-——f)

Converts a double number on the stack to a floating point number.

- 22 =

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

AN

EXAMPLE :

FLP-INIT

123.456 D->F F. <CR>
Result is 123456. being displayed.

F->D :; FLOATING NUMBER CONVERSION

(£ ——— a4)
Converts the integer portion of a floating point number on the
stack to a double number. If the number is less than zero, and
contains a decimal fraction, then the number will be rounded down
to the next whole integer. In the interest of speed of execution,
this word does not check the floating number for being within the
range of a double number (+-2147483647). It is left to the user
to be aware of range.
EXAMPLE 1 :

-

FLP-INIT

123.456 F->D D. <CR> 123 OK
EXAMPLE 2

-123.456 F->D D. <CR> -124 OK

F->S : FLOATING NUMBER CONVERSION

(£ -—— n)
Converts the integer portion of a floating point number between
-32767 and 32767 to a single length integer number. If the number
is less than zero, and the number contains a decimal fraction,
then the number will be rounded down to the next whole integer.
EXAMPLE 1 :

FLP-INIT

32000 F->S . <CR>

- 23 =

SUPER-FORTH EXTENDED MATH PACKAGE

Results

EXAMPLE

Results

EXAMPLE

Results

EXAMPLE

Results

in 32000 being displayed.
2 :

-32000 F->S . <CR>

in -32000 being displayed.
3 :

123.456 F->S . <CR>

in 123 being displayed.

4

-123.456 F->S . <CR>

in -124 being displayed.

S->F : SINGLE NUMBER CONVERSION

(n--—1f)

FLOATING

POINT PACKAGE

Converts a single length number to a floating point number.

EXAMPLE

Results

FLP-INIT
132 S->F F. <CR>
in 132. being displayed.

$->F : CONVERT STRING TO FLOATING POINT NUMBER

({ addr --- £)

Converts a numerical string at address addr to its fleoating point
equivalent, and places the result on the stack.

EXAMPLE

FLP-INIT

20 S$SVARIABLE STR1 <CR>
STR1 $CLR <CR>

- 24 -

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

P]
STR1 " 1.23401E+24" SCONCAT <CR>
STR1 S$->F F. <KCR> 1.23401E+24 OK
Note: if a string has an exponent, such as 1.01E-05, then the
exponent must be two numbers long, e.g., If the string value
equals 1.009E-9, then the string must read: 1.009E-09. In other
words, for our example, -09, not just -9, must be used as the
exponent within the string. Also, the mantissa of the number must
contain a decimal point, e.g., If the string value is 1E+24, the
string must read 1.0E+24. The reason for this is the decimal
point signals the number handling routine of SUPER-FORTH to treat
the mantissa as a floating point number.
F->$: CONVERT FLOATING POINT NUMBER TO STRING
(£ --- addr)
This word converts a floating point number on the stack to a
string variable, places it in the PAD and leaves the address of
the PAD on the stack.
EXAMPLE :
—
123.456 F->$ <CR>
$. <CR> 123.456 OK
<FNUM> : FLOATING POINT NUMBER CONVERSION ROUTINE
(ADDR --- f)
This routine replaces the standard system number conversion
routine { <NUMBER>)} when FLP-INIT is invoked. This allows
standard single number input, and automatic double number to
floating point number conversion, so that words may be defined
while in floating point mode.
Floating point numbers are 6 bytes long (3 cells } and are
arranged on the stack as follows:
BYTE1l FLOATING POINT EXPONENT
BYTE2 SIGN BYTE FOR THE MANTISSA
BYTES 3-6 THE MANTISSA
In this way, a full four bytes are available for the mantissa,
providing greater accuracy and speed.
-

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

Results in 32000 being displayed.
EXAMPLE 2

-32000 F->S . <CR>
Results in -32000 being displayed.
EXAMPLE 3 :

123.456 PF->S . <KCR>
Results in 123 being displayed.
EXAMPLE 4 :

-123.456 F->S . <CR>

Results in -124 being displayed.

S->F : SINGLE NUMBER CONVERSION
{ n -——— £)

Converts a single length number to a floating point number.
EXAMPLE

FLP-INIT

132 s->F F. <CR>

Results in 132. being displayed.

$->F : CONVERT STRING TO FLOATING POINT NUMBER
{ addr --- £)

Converts a numerical string at address addr to its floating point
equivalent, and places the result on the stack.

EXAMPLE :
FLP-INIT

20 SVARIABLE §STR1 <CR>
STR1 SCLR <CR>

- 24 -

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

STR1 " 1.23401E+24" $CONCAT <CR>
STR1 $->F F. <CR> 1.23401E+24 OK

Note: if a string has an exponent, such as 1.01E-05, then the
exponent must be two numbers long, e.g., If the string value
equals 1.009E-9, then the string must read: 1.009E-09. In other
words, for our example, -09, not just -9, must be used as the
exponent within the string. Also, the mantissa of the number must
contain a decimal point, e.g., If the string value is 1E+24, the
string must read 1.0E+24. The reason for this is the decimal
point signals the number handling routine of SUPER-FORTH to treat
the mantissa as a floating point number.

F->$: CONVERT FLOATING POINT NUMBER TO STRING

(£ --- addr))
This word converts a floating point number on the stack to a
string variable, places it in the PAD and leaves the address of
the PAD on the stack.
EXAMPLE :

123.456 F->$ <CR>

$. <CR> 123.456 OK

<FNUM> : FLOATING POINT NUMBER CONVERSION ROUTINE

(ADDR --- f)
This routine replaces the standard system number conversion
routine (<NUMBER>) when FLP-INIT is invoked. This allows
standard single number input, and automatic double number to
floating point number conversion, so that words may be defined

while in floating point mode.

Floating point numbers are 6 bytes long { 3 cells) and are
arranged on the stack as follows:

BYTE1 FLOATING POINT EXPONENT
BYTE2 SIGN BYTE FOR THE MANTISSA
BYTES 3-6 THE MANTISSA

In this way, a full four bytes are available for the mantissa,
providing greater accuracy and speed.

SUPER-FORTH EXTENDED MATH PACKAGE FLOATING POINT PACKAGE

FLITERAL : FLOATING POINT LITERAL
(£ ==)

If compiling, then compile the stack value f as a 48-bit literal,
which when later executed will leave f on the stack.

EXAMPLE
FLP-INIT

TEST [123.456] FLITERAL ; <CR>

TEST F. <CR> 123.456 OK

MATRIX WORD SET

for SUPER-FORTH 64™
By Bruce Jordan

©COPYRIGHT PARSEC RESEARCH 1985, all rights reserved.

"This software has a traceable serial number embedded within the system. This manual and the computer programs on
the accompanying floppy disks which are described by this manual are copyrighted and contain proprietary information
belonging to Parsec F!eserarph.

This manual may not be copied, photocopied, reproduced, translated or reduced to machine readabie form, in whole or
in part, without the prior written consent of Parsec Research.

The accompanying floppy disks may not be duplicated, in whole or in part, for any purpose. No copies of the floppy
disks or this manua! or the listings of the programs on the floppy disks may be sold or given to any person or other
entity. Notwithstanding the above, the accompanying disks may be duplicated for the sole use of the original purchaser.

SUPERFORTH 64 is a TM of PARSEC RESEARCH - 27

SUPER-FORTH EXTENDED MATH PACKAGE

To load
1.
2.

3.

To load

LOADING INSTRUCTIONS

the MATRIX WORD SET,
Load and run SUPER-FORTH.

Insert the SUPER-FORTH EXTENDED MATH-I/0 UTILITY DISK
into your disk drive.

Type 60 77 THRU
the LATTICE WORD SET, type:
78 82 THRU

USING MATRIX WORDS

The following is a few examples on using the MATRIX word set.

First, let’s try creating a 2-dimensional matrix of 3 rows and

columns.

EXAMPLE

3 3 MDIM Ml

We now have a matrix called M1.

Next, we might want to put some values into our matrix. We do

this by

EXAMPLE

using the word MAT!:

M1 MAT! <CR> OK
Ml MAT! <CR> OK
M1l MAT! <CR> OK
M1l MAT! <CR> OK
Ml MAT! <CR> OK
M1 MAT! <CR> OK
M1 MAT! <CR> OK
Ml MAT! <CR> OK
Ml MAT! <CR> OK { WHEW!)

WO~ U LN
NHFOMNMFONN O
NN OO S

MATRIX/LATTICE WORD SET

3

Now that wasn’t so easy was it. Notice that first number was the
value you were storing in the matrix element, and the second and

- 28 =~

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

third numbers were the X and Y coordinates of the elements. Also
notice that the X and Y coordinates (row and column location)
range from 0 to 1 minus the number of rows and columns.
Now, we can use MAT? to print out what we have in our matrix.
EXAMPLE :

M1 MAT? <CR> (PRINT OUT MATRIX)

1 2 3

4 5 6

7 8 9

OK
We can fetch any element within Ml by using MAT@. Let ‘s try
fetching the value at coordinates X=0, Y=1.

0 1 MAT@ . <CR> 4 OK
Next, let’s create another matrix:
EXAMPLE :

3 3 MDIM M2 <CR> OK _—
This time, we want all of the values in M2 to be the same, so
we ll use MFILL:
EXAMPLE :

5 M2 MFILL <CR> QK (FILL M2 WITH 5's }
If we print M2, we get...

M2 MAT? <CR>

5 6§ 5

5 5 5

5 5 5

OK
Next, we 11 add the contents of matrix M2 to Ml. This will result
in five being added to every element of Ml. However, we must
first define a third matrix to hold the result of the addition:

3 3 M3 MDIM <CR> OK
Since we are using M3 only tc hold the result of the addition of
M1 and M2, we really don’'t care what is initially stored in M3.
Therefore, we won’'t store anything in M3 for now.

=

- 29 -~

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

Now, we can perform our matrix addition.
EXAMPLE :

M3 M2 Ml MAT+ <CR> CK
If we print out M3, we see that we have:

M3 MAT? <CR>

6 7 8

9 10 11
12 13 14
OK

Note that this result is:

1 2 3 5 5 5 6 7 8

4 5 6 + 5 5 5 = 9 10 11

7 8 9 5 5 5 12 13 14
M1 + M2 = M3

As our final example, we will transpose matrix Ml. This means
that we will swap rows for columns and visa versa. The result of
this will be stored in matrix M2.
EXAMPLE :

Ml M2 MTRN <CR> OK (TRANSPOSE Ml.)
If we print out M2 and Ml, we get:

M2 MAT? <CR>

1 4 7

2 5 8

3 6 9

OK

Ml MAT? <CR>
1 2 3

4 5 6

7 8 9

OK

Notice that the rows of M1 have become the columns of M2, and the
columns of M1l have become the rows of M2.

30

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

ERROR CHECKING

There are a number of error checking words used by the various
MATRIX and LATTICE words to make sure that operations performed
on matrices stay within bounds, and do not over-write other areas
in memory. These words are characterized by a question mark at
the beginning of their names. These words may be removed from the
definitions of the MATRIX and LATTICE words to increase speed of
execution. However, if the error checking words are removed,
extreme care must be exercised.

LIST OF ERROR CHECKING WORDS

?=, ?TRN, ?MAT123, ?2?MAT23, 2123+, ?L=

NOTE : MAT? IS NOT AN ERROR CHECKING WORD.

RE-DIMENSIONING MATRICES

Certain matrix words will automatically re-dimension a matrix.
Therefore, the user should make certain to keep aware of any
changes in the size of the dimensions of his or her matrices. For
instance, if a matrix was dimensioned as 5 rows and 4 cclumns,
and if a particular operation re-dimensions the matrix to 2 rows
and 2 columns, then it no longer makes sense to refer to the
coordinates of any element greater than X=1, Y=1 within the
re-dimensioned matrix.

LIST OF WORDS THAT CAN RE-DIMENSION A MATRIX

MAT*, MAT/, MAT=, MAT+, MAT-, MTRN

MATRIX AND LATTICE STRUCTURE

This section is intended only as a reference work for the
convenience of the advanced hacker. It is not necessary for the

- 31 -

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

beginner to read this section in order to use the MATRIX word
sets,

A two-dimensional matrix is set up in memory with the following
structure:

X coordinate first, then Y coordinate, and finally, the body of
the matrix. The matrix body is arranged in memory such that the
element are stored in memory from left to right and top to
bottom.

EXAMPLE :

If we have a matrix...

1 23 4 5
0 13 17 2
55 14 19 3
6 2 8 12

Then the matrix resides in memory like this:
XY1l23 4501317 2551419 36 28 12
Where X=4 and Y=4.

Also, remember that each number in the matrix resides in a CELL
of memory (2 bytes). Therefore, the above example takes up 4
bytes for the dimension sizes and 32 bytes for the body of the
matrix. A total of 36 bytes for the entire matrix. The rule for
matrix size is:

2*X*Y+4=MATRIX MEMORY USAGE.

The structure of a LATTICE is a little different. In a LATTICE,
the first two bytes hold the number of dimensions, followed by a
series of 2-byte cells containing the size of the particular
dimensions, and finally, the body of the LATTICE. The storing of
the LATTICE body in memory is rather difficult to visualize. The
body of the LATTICE is stored from left to right and top to
bottom as with a MATRIX, but then the LATTICE is stored from
front layer to back layer. If the LATTICE has more than three
dimensions, then these dimensions are also taken into account in
the positioning of the elements in memory. It can get complicated
really fast! Fortunately, the LATTICE words have been written
such that this storing process is taken care of for the user.

EXAMPLE :

- 32 -

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

A four dimensional LATTICE is structured like this:
ND X Y Z T 0000 0001 0002 0003

Where

ND=the number of dimensions

X, ¥, 2, and T=the size of the dimensions

0001, 0002, 0003,...000N=coordinates of the elements.

The equation for finding the offset into an n-dimensional matrix
for a particular element is:

OFFSET=DXy+DXDYz+DXDYDZt+. ..+DXDYDZDT. .. (DN-1)n+x+2ND+2
Where

DX, DY, DZ, DT, DN=size of dimensions

X, Y 2, t, n=ccordinates within the LATTICE, and

ND=number of dimensions.

The rule for determining the size of a LATTICE in terms of
memory usage is:

2*RX*Y*Z*, , *N+2%*ND+2=LATTICE MEMORY USAGE
Where
X, ¥, Z, N=size of dimensions, and

ND=number of dimensions'

33

SUPER-FORTH LEXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

2-DIMENSIONAL MATRIX WORD SET

Whenever a word uses [NAME], the word is a CREATING word and
requires that a name be typed in after the creating word and
before the carriage return is typed. [NAME] is the stack notation
for this name. [NAME] is not left on the stack, as the stack
notation might suggest.
EXAMPLE

CREATE SPOT <CR> OK (SPOT=[NAME])

This example creates an entry in the system dictionary called
SPOT. Notice that the name of the area was typed in after the
FORTH word CREATE, and not before it. The stack notation for
CREATE would be as follows:

(—— [NAME])
The following is a list of the 2-dimensional matrix words and
their usage.

MDIM : CREATE A 2 DIMENSIONAL MATRIX.

(XY --- [NAME])

Creates a two dimensional matrix with dimensions (COLUMN and ROW)
X and Y.

EXAMPLE

5 4 MDIM LEDGER <CR> QK
Creates a two dimensional matrix with size X=5 (COLUMNS) and Y=4
(ROWS}.

MELEMENT : RETURNS ADDRESS OF ELEMENT IN MATRIX.
(X Y ADDR --- ADDR }

Returns the address of an element of a two dimensional matrix,
where X and Y are the coordinates of the element. Note that the

34

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

TN

coordinates range from zero to the size of the particular
dimension minus one, eg: If a matrix was dimensioned as X=5 and
¥Y=4, then the coordinates of the first element of the matrix
would be 0 and 0, and the coordinates of the last element would
be 4 (5-1) and 3 (4-1).
EXAMPLE :

1l 3 LEDGER MELEMENT <CR> OK

Returns the address of the element of LEDGER in the second column
and fourth row.

?= : DIMENSION TEST

(M1 M2 --- M1l M2)
This word is a test to determine whether or not matrix M2 is
larger than or equal to Ml. If no, then execution is aborted, and

error message "MATRIX MISMATCH" is printed. This word is used in
error checking in MAT=.

MAT= : SET MATRIX2 EQUAL TO MATRIX1

(M1 M2 ——-)
Sets the contents of matrix M2 equal to the contents of matrix
Ml. The number of rows and columns in matrix M2 must be equal to
or greater than the number of rows and columns of matrix M1l. Care
should be exercised in the use of this word, because matrix M2
will be re-dimensioned to the dimensions of matrix Ml.
EXAMPLE :

LEDGER1 LEDGER2 MAT= <CR> OK

Sets the contents of LEDGER2 equal to the contents of LEDGERI.

MATE@ : FETCH A VALUE FROM A MATRIX
(X Y ADDR ---)

Fetches a value from an element of a matrix, and places it on the
stack.

EXAMPLE

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

0 0 LEDGER MAT@ <CR> OK

Fetches the value stored in the first element of matrix LEDGER.

MAT! : STORES A VALUE INTO MATRIX
(N X Y ADDR ---)

The value n is stored in the element of a matrix at location X,
Y.

EXAMPLE :
123 0 0 LEDGER MAT! <CR> OK

Stores the value 123 into the first element of matrix LEDGER.

GRAB : COPY FOURTH STACK VALUE
(N1 N2 N3 N4 --— N1 N2 N3 N4 N1)

Leaves a copy of the fourth value on the stack on the top of the
stack.

EXAMPLE
1 2 3 4 GRAB <CR> CK

Leaves 1 2 3 4 1 on the stack.

MFILL : FILL A MATRIX

(N ADDR -~-~-)
Fills all elements of a matrix with the value N.
EXAMPLE :

23 LEDGER MFILL <CR> OK

Fills all elements of matrix LEDGER with 23.

?TRN : DIMENSION TEST

36

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

(M1 M2 --- M1 M2)
Test to see if matrix transposition is legal. This word tests for
matrix M2 being of same absolute dimensions (ROWS*COLUMNS) as

matrix M1, if not execution is halted and the error message
"MATRIX MISMATCH" is printed.

TRNSET : SET DIMENSIONS

(M1 M2 --- M1 M2)
This word re-dimensions matrix M2 such that the number of rows of
matrix M2 is equal to the number of columns of matrix M1, and the

number of columns of matrix M2 is equal to number of rows of
matrix Ml. This word is used by MTRN.

MTRN : TRANSPOSE A MATRIX

(M1 M2 -—-)
This word performs a transposition on matrix Ml (exchanges row
elements with column elements), and leaves the result in matrix
M2. The size of matrix M2 must be greater than or equal to matrix
Ml. This word re-dimensions matrix M2 to the dimensions of matrix
Ml.
EXAMPLE :

LEDGER1 LEDGER2 MTRN <CR> OK

LEDGERZ2 becomes the transposition of LEDGERI.

SCALAR+ : ADD VALUE TO MATRIX
{ N ADDR --—-—)

This word adds a scalar (numeric) value N to all elements of a
matrix.

EXAMPLE :
65 LEDGER SCALAR+ <CR> OK

65 is added to the contents of all elements of LEDGER.

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

SCALAR* : MULTIPLY MATRIX BY VALUE
{ N ADDR ---)

This word multiplies all elements in a matrix by a scalar
(numeric}) value N.

EXAMPLE
3 LEDGER SCALAR* <CR> OK

The contents of all elements of LEDGER are multiplied by 3.

SCALAR- : SUBTRACT FROM MATRIX

(N ADDR ---)
Subtracts a scalar value N from all elements in a matrix.
EXAMPLE :

2 LEDGER SCALAR- <CR> OK

2 is subtracted from the contents of all elements of LEDGER.

SCALAR/ : DIVIDE MATRIX BY VALUE

(N ADDR =---)
Divides all elements in matrix by a scalar (numeric) value N.
EXAMPLE :

2 LEDGER SCALAR/ <CR> OK

The contents ofall elements of LEDGER are divided by 2

?MAT123 : DIMENSION TEST
(M1 M2 M3 --- M1 M2 M3)

Matrix test to see if legal to perform matrix multiplication.
Checks if number of rows of matrix M3 is equal to number of rows
of matrix Ml, and number of columns of matrix M3 is equal to
number of columns of matrix M2. If not, execution is halted, and
the error messages "COLUMN MISMATCH" or "ROW MISMATCH" will be

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

printed.

?MAT23 : DIMENSION TEST

(M1 M2 --- M1 M2)
Matrix test to see if matrix multiplication is legal. Tests if
number of rows of matrix M2 is equal to number of columns of
matrix Ml. If not, execution is halted, and the error message
“COLUMN/ROW MISMATCH" will be printed.

K : RETURN LOOP INDEX

(--- N)

Returns index of third outer loop of three nested loops.

EXAMPLE :
: TEST
10 0 DO
3 0 DO
3 0 DO
I J K . . +. CR
LOOP
LOOP
LOOP ;

Will print the indexes of the DO-loops

MAT* : MATRIX MULTIPLICATION
{ M1 M2 M3 ---)

Multiplies matrix M3 by matrix M2, the result is left in matrix
Ml. Matrix Ml is re-dimensioned to the number of rows of M2 and
the number of columns of M3. Matrix M! must have a number of rows
greater than or equal to matrix M2, and matrix Ml must have a
number of columns greater than or equal to matrix M3. Also,
matrix M3 must have a number of rows equal to the number of
columns of matrix M2.

EXAMPLE :

LEDGER]1 LEDGERZ2 LEDGER3 MAT* <CR> OK

- 39 -

SUPER~FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

Multiplies (using matrix multiplication) LEDGER3 by LEDGER2, and
leaves the result in LEDGERI1.

MAT/ : MATRIX DIVISION
{ M1 M2 M3 ---)

Divides matrix M3 by matrix M2, the result is left in matrix M3.
Matrix M3 is re-dimensioned to the number of rows of M2 and the
number of columns of M3. Matrix M1 must have a number of rOws
greater than or equal to matrix M2, and matrix Ml must have a
number of columns greater than or equal to matrix M3. Also,
matrix M3 must have a number of rows equal to the number of
columns of matrix M2.

EXAMPLE
LEDGER1 LEDGER2 LEDGER3 MAT/ <CR> OK

Divides (using matrix multiplication) LEDGER3 by LEDGER2, and
leaves the result in LEDGERI.

?123+ : DIMENSION TEST
(M1 M2 M3 --- MI M3 M2)

Tests to see if matrix addition is legal. This word checks if
matrix M2 is equal to matrix M3, and if matrix Ml is greater than
or equal to matrix M2. If not, then execution is halted, and one
of three error messages, "COLUMN MISMATCH", "ROW MISMATCH" or
"MATRIX MISMATCH" will be printed.

MAT+ : MATRIX ADDITION

(ML M2 M3 ---)
Adds each element of matrix M2 to each corresponding element of
matrix M3. The result is left in matrix MI1. The number of rows
and columns of matrix M2 must be equal to the number of rows and
columns of matrix M3, Also, the number of rows, and columns of
matrix Ml must be greater than or equal to the number of rows and
columns of M2 or M3.

EXAMPLE :

LEDGER1 LEDGER2 LEDGER3 MAT+ <CR> OK

...40_..

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

Adds the contents of each element of LEDGER2 to the contents of
the corresponding element in LEDGER3, leaving the result in the
corresponding element of LEDGERI.

MAT- : MATRIX SUBTRACTION

(M1 M2 M3 ---)
Subtracts each element of matrix M2 from each corresponding
element of matrix M3. The result is left in matrix Ml. The number
of rows and columns of matrix M2 must be equal to the number of
rows and columns of matrix M3. Also, the number of rows and
columns of matrix Ml must be greater than or equal to the number
of rows and columns of M2 or M3.
EXAMPLE :

LEDGER1 LEDGER2 LEDGER3 MAT- <CR> OK

Subtracts the contents of each element of LEDGER2 from the

contents of the corresponding element in LEDGER3, leaving the
result in the corresponding element of LEDGERI.

MAT? : PRINT A MATRIX

{ ADDR ---)}
This word prints the contents of a matrix on the screen.
EXAMPLE :

3 3 MDIM LEDGER <CR> OK(CREATE A MATRIX)

5 LEDGER MFILL <CR> OK{ FILL THE MATRIX WITH 5°s)

LEDGER MAT? <KCR> (PRINT MATRIX)
5 5 5

5 5 5

5 5 5

OK

- 4] -

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

MULTI-DEMENSIONAL MATRIX WORD SET

These words are used to create and manipulate matrices of three
or greater dimensions. To distinguish them from the two
dimensional matrix words, a matrix of three dimensions or more
will be referred to (though not accurately) as a LATTICE.

LDIM' : CREATE AN N DIMENSIONAL LATTICE

{ DX DY DZ...DN N —--- [NAME])
This word creates an N dimensional (3 or more dimensions}
lattice, where DX through DN are the sizes of the particular
dimensions, and N is the number of dimensions. '
EXAMPLE :

3 5 6 7 4 DIM TIMECUBE <CR> OK

The above example will create a 4-dimensional lattice, with X=3,
¥=5, %2=6 and fourth-dimension equal to 7 (T=7).

LELEMENT : RETURN ADDRESS OF ELEMENT OF A LATTICE
{ N...Z Y X ADDR —--- ADDR)

This word returns the address of an element of an N-dimensional

lattice, where X through N are the coordinates within the lattice

of the particular element.

NOTE : Coordinates range from zero to one minus the size of the
dimensions. In other words, if the lattice was
dimensioned at X=3, Y=3 and Z=3, the coordinates of the
elements would range from (0, 0, 0) to (2, 2, 2).

EXAMPLE

The lattice TIMECUBE has been dimensioned to X=3, ¥=5, Z=6 and

T=7. Therefore, the coordinates of the last element of TIMECUBE

would be: X=2, Y=4, Z=5 and T=6.

6 5 4 2 TIMECUBE LELEMENT <CR> OK

Returns the address of the last element of lattice TIMECUBE.

SUPER-FORTH EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

et
LFILL : FILL A LATTICE
(N ADDR ---)
Fills all elements of an n-dimensional lattice with value N.
EXAMPLE :
234 TIMECUBE LFILL <CR> OK
Fills all elements of lattice TIMECUBE with 234.
?L= : CHECK LATTICE EQUALITY
(Ll L2 --- L1 L2)
Checks to see if lattice Ll is equal to lattice L2, if not then
execution is halted, and error message: "LATTICE MISMATCH" is
printed. This word is used in error checking by LAT=.
—

LAT= : SET TWO LATTICES EQUAL

(L1 L2 -—-)
Copies the contents of lattice L1 into lattice L2. The two
lattices must be of equal number of dimensions and equal size of
dimensions.
EXAMPLE :

TIMECUBEl TIMECUBE2 LAT= <CR> OK

Copies contents of TIMECUBEl into TIMECUBEZ2.

LAT@ : FETCH ELEMENT FROM LATTICE

{ N...Z Y X ADDR --- VAL)
Returns the contents of an element of an n-dimensional lattice.
EXAMPLE :

0 0 0 0 TIMECUBE LAT@ <CR> OK

- 43 -

SUPER-FORTI EXTENDED MATH PACKAGE MATRIX/LATTICE WORD SET

Returns the contents of the first element of the lattice
TIMECUBE.

LAT! : STORE VALUE IN LATTICE ELEMENT
(VAL N...Z Y X ADDR ---)

Stores a value into an element of an n-dimensional lattice.

EXAMPLE :
123 0 0 0 0 TIMECUBE LAT! <CR> OK

Stores 123 in first element of the lattice TIMECUBE.

44

ALGEBRAIC EXPRESSION
EVALUATOR PACKAGE

for SUPER-FORTH 64™
Program written by Michael Stolowitz

Adapted by Bruce Jordon 1984
®PARSEC RESEARCH

©COPYRIGHT PARSEC RESEARCH 1985, all rights reserved.

*This software has a traceable serial number embedded within the system. This manual and the computer programs on
the accompanying floppy disks which are described by this manual are copyrighted and contain proprietary information
belonging to Parsec Reserarch.

This manual may not be copied, photocopied, reproduced, translated or reduced to machine readable form, in whole or
in part, without the prior written consent of Parsec Research.

The accompanying floppy disks may not be duplicated, in whole or in part, for any purpose. No copies of the floppy
disks or this manual or the listings of the programs on the floppy disks may be sold or given to any person or other
entity. Notwithstanding the above, the accompanying disks may be duplicated for the sole use of the original purchaser,

SUPERFORTH 64 is a TM of PARSEC RESEARCH
- 45 -

SUPER~FORTH EXTENDED MATH PACKAGE ALGEBRAIC EXPRESSION EVALUATOR

LOADING INSTRUCTIONS

To load the ALGEBRAIC EXPRESSION EVALUATOR,
1. Load and run SUPER-FORTH.

2. Insert the SUPER-FORTH EXPANDED MATH-I/0 UTILITY DISK
into your disk drive.

3. Type 83 LOAD

As the ALGEBRAIC EVALUATOR loads, will will see several "ISN'T
UNIQUE" messages printed on the screen.. Don’t worry about this.
The SUPER-FORTH arithmetic word set is simply being re-defined.

After loading the ALGEBRAIC EVALUATOR and the Extended Floating
Point Math Package (Both contained on this disk.), you may set
the ALGEBRAIC EVALUATOR to work with fleoating point numbers. For
instructions on how to do this, see the section on using the
ALGEBRAIC EVALUATOR with floating point numbers.

ALGEBRAIC NOTATION_WITB SUPER-FORTH

The Algebraic Expression Evaluator, is a FORTH extension that
allows the inputing of functions in Algebraic form, rather than
the standard FORTH Reverse Notation form.

Before Algebraic Notation arithmetic can be performed, the
standard FORTH math words (* / + - =_,.) must be re-defined.
Consider the following expression:

3 =5+ 2

We would solve this problem, by first multiplying 3 by 5, then
adding 2 to the result, would arrive at 17 as our answer. Note
that if we first added 2 to 5, and then multiplied by 3, we would
get 21 as our answer. However, In this case, we say that
multiplication has a higher precedence than addition, and is
usually performed first. Therefore, 17 is the correct answer. As
another example, consider:

2*3 /(4-1)

— 46 -

SUPER-FORTH EXTENDED MATH PACKAGE ALGEBRAIC EXPRESSION EVALUATOR

In this example, 2 is multiplied by 3, then the result is divided
by 4-1. The parentheses set off the difference of 4 and 1 so that
they ‘re considered as one number. Parentheses say: "Do what’s
inside me before deing anything else!" As a result, parentheses
set another level of precedence.

To assign a PRECEDENCE VALUE to a mathematical operator, we use
the word INFIX. This PRECEDENCE VALUE is used to determine the

order in which operations will be performed within an algebraic
expression.

EXAMPLE 1
7 INFIX * * <CR> OK
This sets the precedence value of multiplication to 7.

EXAMPLE 2 :
6 INFIX + + <CR> OK

This sets the precedence value of addition to 6. Note that this
is a lower precedence value than multiplication, and if

encountered within an algebraic expression, addition will be
performed after multiplication.

Once the precedence value of a FORTH math word has been defined,
it may be used within an algebraic expression. The precedence
values for many of the standard FORTH words have already been set.

However, these values may be changed to fit the particular needs
of the user.

Next, a way is needed to signal the operating system that the
following mathematical expression should be evaluated in
algebraic form. We have a special FORTH word for this: A[(
Pronounced A BRACKET); and the word for ending algebraic
evaluation is]A (Pronounced BRACKET A), of course.
EXAMPLE 1 :

A[f 3+ 4 ~5* (8 /2) JA <CR> OK
Leaves -13 on the stack.
EXAMPLE 2 :

Al { 3 *5) - (2* 3)]JA <CR> OK

- 47 -

SUPER~-FORTH EXTENDED MATH PACKAGE ALGEBRAIC EXPRESSION EVALUATQOR

Leaves 9 on the stack. Notice that the parts of the expression
enclosed in parentheses are calculated first.

USING FLOATING POINT WITH ALGEBRAIC EVALUATOR

Floating point math functions of the Extended Floating Point Math
Package (contained on this disk) may be used with the Algebraic
Expression Evaluator. Keep in mind that the precedence of the
floating point words must be set. loading screens B6-87 from the
SUPER-FORTH Extended Math disk will automatically set the
precedence of the floating point words.

To use the ALGEBRAIC EVALUATOR with floating point numbers,

1. Load and run SUPER-FORTH.

2. Insert the SUPER-FORTH Extended Math disk into your disk
drive.

3. Load the ALGEBRAIC EVALUATOR by typing:
83 LOAD

4. Load the Extended Floating Point Math Package by typing:
2 LOAD

5. Finally, lcad in the re-defined flcating point word set
by typing:
86 LOAD

The floating point words may now be used with the ALGEBRAIC
EXPRESSION EVALUATCR.

Keep in mind the change in syntax when using the ALGEBRAIC
EVALUATOR. For instance, if in floating point mode, FCOS may
be used to obtain the cosine of a number:
EXAMPLE :

FLP-INIT <CR> OK

1.234 FCOS <CR> OK

- 48 -

SUPER-FORTH EXTENDED MATH PACKAGE ALGEBRAIC EXPRESSION EVALUATOR

However, in Algebraic Notation it would be done like this:
FLP-INIT <CR> OK
Al FCOS 1.234]A <CR> OK

As another example, the floating point exponent of a number is
entered in standard FORTH Notation like this:

FLP-INIT <CR> OK
4.5 2.0 F” <CR> OK (RETURNS 4.5 TO THE SECOND POWER.)

However, in Algebraic Notation we would use the form:

FLP-INIT <CR> OK

A{ 4.5 F" 2.0 JA <CR> OK (RETURNS 4.5 TO THE SECOND)
(POWER. }

CONSTANTS WITH ALGEBRAIC EVALUATOR

Besides single numbers and floating point numbers, FORTH
constants may also be used with the Algebraic Expression
Evaluator. This allows the creation of code that resembles the
familiar letter-number look of algebra.

EXAMPLE :
5 CONSTANT X <CR> OK
6 CONSTANT Y <CR> OK
11 CONSTANT Z <CR> OK

Al 2 * X+ 3 *Y + Z JA <CR> OK

Leaves 39 on the stack.

THINGS TO REMEMBER

1. Math words must have a precedence value assigned to them
by INFIX before they can be used with the Expression

- 49 -

SUPER-FORTH EXTENDED MATH PACKAGE ALGEBRAIC EXPRESSION EVALUATOR

Evaluator.
2. Algebraic Expressions must begin with A[and end with]A.
3. Constants may be used, as well as numbers.
4. The Algebraic Expression Evaluator supports the use of

many of the floating point words.

5% As usual, you must be in floating point mode to use
floating point numbers within algebraic expressions.

6. Parentheses may be used to separate operations.
7. After being INFIXed, some of the FORTH math words may
react strangely if not used within algebraic Mode. For

this reason, it’s not a good idea to go back and forth
between algebraic and standard modes.

LIST OF SUPPORTED MATH OPERATION WORDS

The following is a list of SUPER-FORTH math words, and their
precedence values. These words can be used within an algebraic
expression.

PRECEDENCE WORD
FSQR

FE"X
FLOG
FLOGX
FCOS
FSIN
FTAN
FACOS
FASIN
FATN

O ~] -1~ ~100COCO 0 WO Moo

...50_

SUPER-FORTH EXTENDED MATH PACKAGE ALGEBRAIC EXPRESSION EVALUATOR

6 -
5 F<
5 F>
5 =
5 <
5 >

5 =
4 NOT
3 FAND
3 AND
2 FOR
2 OR

- 51 -

SUPER-FORTH EXTENDED MATH PACKAGE

Index

S=>F 24
(F2DUP 21
1/F 18
<fnum> 25
2123+ 40
?= 35
?DEPTH 22
?L 43
?MAT123 38
?MAT23 39
?TRN 36

addition 12

ALGEBRA EVALUATOR with CONSTANTS 49

ALGEBRA EVALUATOR with floating point numbers 48
arccosine 15

arcsine 15

arctangent 16

Al 47

Compiling floating point numbers as literals 26
cosine 14

D->F 22

dimensioning a lattice 42

dimensionihg an array 34

division 12

double to floating point number 22

e to the X power 16

E! 13

entering exponents 13

error checking 30

error messages 10

EX 19
F! 19
F* 12
F+ 12
F- 11
F->$ 25
F=->D 23
F->S 23
F. 12
F/ 12
F< 18
F= 18

- K2 -

SUPER-FORTH EXTENDED MATH PACKAGE

F> 18

F@ 20

FABS - 13

FACOS 15

FAND 17

FASIN 15

FATN 16

FCONSTANT 8, 19

FCOS 14

FDEPTH 22

FDROP 20

FDUP 20

FE"X 16

filling a lattice 43

filling a matrix 36

FINT 14

FLITERAL 26

floating point boolean operators 17
floating point colon definitions 6
floating point comparison words 8, 18
FLOATING POINT CONVERSION 9
floating point math words 13
floating point memory words 19
Floating point number structure 25
floating point number to string 25
Floating point numbers on the stack 25
floating peoint stack words 20
floating point to double number 23
floating point to single number 8, 23
FLOG 16

FLOGX 17

FLP-EXIT 11

FLP-INIT 11

FMAX 13

FMIN 14
FNEGATE 13
FOR 17

FOVER 21
FPICK 21
FRAC 14
FROLL 21, 22
FSGN 17

FSIN 15

FSQR 16
FSWAP 21
FTAN 15
FVARIABLE 19
F® 16

GRAB 36

53

SUPER-FORTH EXTENDED MATH PACKAGE

INFIX 47

K 39

LAT! 44

LAT= 43

LAT@ 43

lattice memory offset 33

lattice memory usage 33

lattice structure 32

LATTICE WORDS 42

LDIM 42

LELEMENT 42

LFILL 43

LIST OF SUPPORTED FORTH WORDS 50
loading Floating Point Package 4
loading MATRIX/LATTICE word set 28
Loading the ALGEBRAIC EXPRESSION EVALUATOR
logarithm to the base X 17

MAT! 36
MAT* 39
MAT+ 40
MAT- 41
MAT/ 40
MAT= 35
MAT? 41
MAT@ 35

matrix addition 40
matrix division 40
matrix memory usage 32
matrix multiplication 39
matrix structure 31
matrix subtraction 41
MDIM 34

MELEMENT 34

MFILL 36

MTRN 37

multiplication 12
natural logarithm 16
number conversion 22
number range 4, 5

PI 18 ‘

power function 16
PRECEDENCE 47, 50
printing floating point number 12
printing matrices 41
re-dimensioning 31
Re-starting floating point package 5
reciprocal 18

S->F 24

scalar arithmetic 37

- 54 -

46

SUPER-FORTH EXTENDED MATH PACKAGE

SCALAR* 37
SCALAR+ 37
SCALAR- 38
SCALAR/ 38

setting lattices equal 43

setting matrices equal 35

signum function 17

sine 15

single to floating point number 7, 24
square root 16

String conversion 24

String to floating point number 7, 24
subtraction 11 -

tangent 15

TIPS 10, 49

transposing a matrix 37

TRNSET 37

Two dimensional matrix words 34

1A 47

- 55 -

