ARTIFICIAL INTELLIGENCE
PACKAGE
EXPERT SYSTEM TOOLBOX

for SUPER-FORTH 64™
By Jack Park

© Copyright by Jack Park 1983, all rights reserved. SUPERFORTH 64 is a TM of PARSEC RESEARCH

Available at the Vintage Volts website

http://www.vintagevolts.com

EXPERT-2
A Knowledge-Based Consequent Reasoning Computer Program Toolkit

CONTENTS

Chapter 1
Introduction 3
The MVP-FORTH Environment 3
EXPERT=-2 3
This Document 3

Chapter 2
Expert Systems Overview 4
The Rule Base 6
The Inference Interpreter 8
The Expert System 10

Chapter 3
A Look at Knowledge Engineering 13
Some Simple Knowledge Engineering Examples 15
An Animal Expert 15
A Stock Market Expert 18
A Digital Circuit Analyzer 21

Chapter 4
EXPERT-2 2y
Computer Hardware 24
The Expert Program 24
Analytical Subroutines 26
IF-THEN Rules 26
EXPERT=-2 Syntax 26
The Inference Machine -~ EXPERT-2 30

Chapter 5
Beyond EXPERT-2 36

Appendix A
Bibliography 38
Appendix B

EXPERT-2 Source Listing 40

Acknowl edgements

EXPERT-2 is the original work of employees of NIMBLE, a company
located in Brownsville, California. Specifically, Jack Park created the
original EXPERT-1, with diagnostic and compiler contributicns of Dan Woed.

EXPERT~2 is the result of the lessons learned from EXPERT-1, and con-
tribution of valuable FORTH programming techniques from John Cassady, of

Oakland, Califernia,

CHAPTER 1

Introduction

Within the fleld to artificlal intelligence, one particular activity
has recently emerged as immediately applicable to a variety of users, and
transferable from the laboratory to the field. This activity focuses on
the creation, and use of so~called "expert" or "knowledge-based"™ computer
systems.,

Expert computer systems have the potential power to make available
human knowledge and expertise to a vast array of users. The possibility of
replicating concentrated human expertise has spawned an emerging industry
in knowledge engineering - a field devoted to translating human knowledge
into expert computer programs,

This document presents a brief overview of expert systems and know-
ledge engineering, and details the use of a small, but powerful inference
machine, a program which allows you to create and run expert programs.
EXPERT-2, the inference program presented here, is written in MVP-FORTH.
This document gives the source listing of EXPERT-2 in the Appendix.

The MVP=-FORTH Environment

EXPERT=2 is written in MVP-FORTH, one of several "standard®™ FORTH dia-
lects. EXPERT-2 is written in such a manner that any of the ambiguitles that
may arise out of use of this dialeect are reduced, or are obvious, and will be
caught by the compiler.

EXPERT-2

EXPERT-2 is intended to be a tool-kit for experimenters and developers
of expert computer systems, EXPERT-2 includes facilities for compling expert
rule programs, and for performing logic inferences - reasoning - on those
rules, Notes are included in the listing and in this document for possible
changes and extensilons to EXPERT-2 to ereate even more powerful expert in-
ference machines.

This Document

This document is intended to serve as an overview of expert systems,
and as an introduction to EXPERT-2. This document is by no means intended
to be a state-of-the-art dissertation on the field of knowledge engineer=
ing. Several good books are now available on that subject, and many
periodicals detail the development of various expert systems, A brief
bibliography is included to provide readers with some ideas on where to go
for more information,

EXPERT SYSTEM TOOLKIT

3

CHAPTER 2

Expert Systems Uverview

You are an entrepreneur, just starting your own business, Maybe you
are a farmer keeping track of your crops in the field. Or, perhaps you are
an investor - or speculator = tracking your investments. What do each of
these individuals have in common? They all need and use information; they
all make decisions based on that information., They may use the services of
a consultant to help in their decision process. Such a consultant might be

a knowledge-based expert computer system.

The mere idea of using a computer as a consultant is at once cour-
ageous, lofty, and scmewhat unthinkable, However, after many years of
artificial intelligence research, so—called expert systems are emerging as
useful, and popular.

Expert computer systems were first proposed in 1943, but it has
required recent developments in computer hardware technology and artifical
intelligence programming to bring expert programs to the operational,
rather than total experimental phase.

Artificial intelligence - as a computer science - has worked to model
the human mind in an effort to understand how humans think, how they learn,
and how computers might assist in these tasks. Expert computer programs
take a small slice of the artifical intelligence pie - that of mimicking
how humans reason to make certain types of decisions - and provide this
limited reasoning power to the program user.

Decision making by reasoning requires the ability to recognize and
sort patterns and events which are useful te the objective at the moment,
There seems to be mounting evidence that many of the processes of reason-
ing, Ineluding insight, invention, and inspiration of the reasoner are
largely the outcome of a vast amount of mental flounderings, and countless
trial and error attempts, Therefore, an expert computer program designed
to follow a similar trial and error process, looking for a recognizable
pattern without the countless distractions which affect the thoughts of a
human appears to offer the possibility of assisting the human reasoning
process,

Information used for reasoning 1s comprised of data - raw, or other-
wise preprocessed data, Information 1s also based on rules for using that
data for making decisions, and methods for using the rules. By designing a
computer reasoning program to use these three types of information, a
knowledge-based expert program is created.

Here are some examples of the raw or preprocessed data used by an
expert. The entrepreneur knows how much cash he has stashed away in the
bank with which to form his enterprise., The farmer knows which crops he has
planted, where those c¢rops are in their growth cycle, what the costs are

EXPERT SYSTEM TOOLKIT

4

for performing certain operations like watering, spraying insecticides,
harvesting, and the like, The speculator knows which investments he owns,
what the market is doing - perhaps more accurately, has just done - with
those types of investment instruments, and what his cash position is in
case he chooses one of several optional actions. These, and other bits of
information form the data used in a decision making process.

The entrepreneur makes decisions based on his data, and with the help
of certain "rules" or knowledge found in various books or through conver=
sations with "experts" in the field of starting small business. These
rules are the step-by-step instructions used in starting a business, and
various guidelines used in the decision-making process. What to expect in
the way of incorporation costs, how mueh cash to keep in the bank for
crisis management, how to apply for a loan at the bank, how to sell
products, and other guidelines, in part, form a portion of the data base.
Decisions must be made. To look more closely at the entrepreneurial
problem, we observe that decisions must be made down to the level of what
to do with each available penny. These decisions affect how the entre-
preneur sets-up his accounting books, which business costs are entered into
certain categories in those books - and which are not, and more, These
decisions affect the tax position the company has when it achieves a
profit, the amount of profit it has for investor's dividends, for research,
and for expansion. Rules might be devised which help the entrepreneur
maximize his profits, or cash flow, for example. These rules are either
learned through experience, gleaned from books, or gained through the
expertise of consultants,

The farmer and the speculator each use various rules to gulde their
operations. Such rules might help clarify a problem at hand, list pro-
cedures to use to solve a problem or prove a theorem, list assertions which
may affect the problem, or test judgmental information for reliability,
These rules, while not necessarily the same rules used by the entrepreneur,
perform the same function of guiding decision making, and are available
from the same source - books, experience (sometimes called Yboot-strap
rules"), or consulting experts,

Many of the rules we use in our daily business activity can be written
into computer programs which help us conduct our affairs. Some rules,
however, cannot easily be coded. These rules are the intuitions, hunches,
or wild guesses we use - like coin flipping, or executive decision-maker
dart boards. Rules are needed, thern, to guide the deecision making process,
At some point in that process, it may become appropriate to use the
familiar random number generation routine to guide those decisions left to
wild guesses, Hunches could be written as rules, but those resulting rules
risk inheriting the qualities of proven facts, and might lose the sense of
adventure found in hunches.

EXPERT SYSTEM TOOLKIT

5

The Rule Base

Rules can be created which guide the decision making process. Just
how are these rules written? Two different ways to create rules for a
computer program may be considered:

o Writing rules directly into a program,

o Writing rules outside the program, as a rule or expert knowledge
base.

By using IF-THEN statements within any program, you are imbedding
rules in that program. As the program ls being executed, the computer
eventually runs into one of your IF statements, performs the test indicated
by the program code, and branches to another program routine according to
the results of the test. 3Such a program could use as one of its tests a
question to the operator. The operator's answer forms the actual test
performed. The question could be stated to require a TRUE or FALSE
response which would directly guide the consequent THEN action of your
IF-THEN test. Or, the question ecould ask for a new bit of information,
like, how much cash is left in the petty cash jar. The response, a dollar
value, could be compared to another value say, the minimum cash level
required in that jar and the truth of the rule determined; true - the
amount available 1s greater than the minimum, or false - the amount is less
than minimum. The rule will then direet the program to move on to its next
action. If the program is written to instruct the operator to transfer
more cash into the jar in the event the amount fell below minimums, then
you might conclude the computer 1s simply acting like a transistorized
office manager. But, suppose that another rule had been written which
triggers an executive alarm any time the petty cash jar has less than a
certain amount of cash. That rule might motivate a decision to put a lock
on the jar, or worse.

Another way to code rules is to create a ™rule language”, This rule
language would be another high level language like BASIC, PASCAL, or
MVP-FORTH. Any high level language 1s created to allow the computer user
to write programs using statements that are easily read by humans, but
which can also be understood, with the help of an interpreter or compiler,
by the computer. An expert rule interpreter (also called an inference
interpreter, or inference machine) can understand and perform operations on
a list of rules., The difference between these expert rules used by a rule
interpreter, and those imbedded inside an ordinary program, is that the
expert rules are separate from the rule interpreter. These rules form the
"aexpert program" and can be passed around, read, changed, or otherwise
improved upon without any effect on the rule interpreter itself. Because
of this, expert humans can create rule bases, just like individuals now
create programs in BASIC or other language. They need not worry about how
the rule interpreter goes about its process of deducing answers, testing

EXPERT SYSTEM TOOLKIT

6

results, or offering comments on why it concluded something. They only
need to be concerned with the art of translating human expertise into an
appropriately-coded set of rules,

By imbedding rules into the program, one needs to be concerned with
the entire program. By coding the rules as if they were another high=level
language, one need not be involved with the intricacies of the rule
interpreter program, This separation of rules and rule interpreter offers
several advantages:

o The rule interpreter can be used for a variety of applications,

o Different experts can be called-up to create rules without being
inveolved with the interpreter,

o0 Rules can be developed and tested incrementally,

With a sufficiently general rule interpreter, rule bases can be
developed for guiding farm operations, helping-out with office operations,
setting-up new business, and, perhaps, assisting in investments. To be
sufficiently general, the rule interpreter must allow for two different
rule types: those rules concerned with concepts, ideas, or assertions, and
those concerned with data manipulation. Some rules must determine the
truth value of "aphids were seen today for the first time™ and others must
determine if the Dow-Jones averages had "over a 10% drop in price at the
same time as a greater than 25% increase in trading volume.™ The first
example could rely on some sort of electronic aphid sensor out in the
tomato patch, but since no such sensor exists, it's simpler - at this stage
of the technology = to ask the operator if the statement "aphids were seen
today for the first time" is true. The operator checks the field reports,
or hollers out the window. Maybe the computer asking the question is aleng
for the ride In a tractor, and asking the operator is the same as asking
the person charged with the responsibility with checking the aphid phero-
mone traps,

Notice the two distinet types of data used above to illustrate how a
computer program might represent information it needs; it could ask for a
TRUE or FALSE representation of whether the Dow Jones industrial averages
have achieved certaln conditions, or it could ask for those values neces-
sary and calculate, from a set of equations and rules, if those conditions
have been met, The first representation is a "qualitative™ one, while the
second is "quantitative", Qualitative information represents the scene in
which the program operates in terms of general features, and relative
values, Quantitative information represents the same scene using mathe-
matical equations that manipulate specific numerical values. The question
above about stock price and volume ccould just as easily be treated as a
concept or assertion = a qualitative bit of knowledge - and asked of the
operator, but then the operator would be observed fiddling with a pocket

EXPERT SYSTEM TOOLKIT

7

calculator, a stack of newspapers, and pencll and paper. That's hardly
what the expert computer is all about. So, one generates, as part of the
rule base, certain data gathering routines which are run at the start of
the session, These routines support certain quantitative rules built into
the rule base, Using these routines, the program builds its raw data base,
A later part of the activity will crunch the numbers found in the data base
and return a truth value to the rule interpreter. There is no need to ask
a question the computer can answer for itself.

The Inference Interpreter

What, thern, is a knowledge-based expert microcomputer system? It is
simply a rule interpreter that has been designed to allow experts to encode
their expertise into rule statements - the knowledge base, or rule base.
This rule interpreter 1s capable of reasoning - through the use of the
rules, using combinations of mathematical algorithms and a data base, and
facts it stores for itself.

What is a "fact" the program stores for itself? Anytime a rule has
triggered a question and the answer has been returned, the result is a
fact. These facts come from assertions made in the rules, or from cal-
culations performed. Aphids have either been seen, or not been seen today.
Either case 1is a fact. By storing that fact, the program need not ask the
question again. It has been said to have "learned" this fact., Had it not
stored the newly learned fact, we might observe the expert to have an
incredibly short memory. Not too smart. Figure 1=1 illustrates how the
knowledge~based expert program links its rules, data base, and facts file
to achieve the deductions ar}d conclusions it is chartered to produce.

EXPERT SYSTEM TOOLKIT

8

T,

ENOWLEDGE BASE

DATA BASE

{ RULES) (NUMERICAL INFORMATION)
RULE INTERPRETER
USER : DEDUCTIOQONS
INTERFACE o (INFERENCE MACHINE) CONCLUSIONS
"Recall"t
I"Learn"
FACTS ON FILE
FIGURE 1«1 EXPERT SYSTEM BLOCK DIAGRAM

EXPERT SYSTEM TOOLKIT

9

How does the expert rule interpreter reason? The short of it is
that the interpreter plows through the rules testing assertions, checking
data, and asking questions until either it knows enough to conelude
something, or collapses trying. The long of it is that two methods may be
used -~separately, or in combination to perform the task:

¢ Using some data item to trigger a search through the rules - called
antecedent reasoning.

o Using an hypothesis - an assumed goal - and trying to find enough
facts to form a proof - called consequent reasoning.

If one has a rule base which asserts that:

You have 2 apples (antecedent 1)
And you have 2 oranges (antecedent 2)
Proves you have 4 pieces of fruit (consequent 1)

And one uses a known bit of data - you happen to have 2 apples that you
told the system about, the data-driven antecedent reasoning method starts
with the data item (2 apples in your possession) and begs to ask if you
also happen to have 2 oranges. It's not yet concerned with the consegquent
it is trying to prove. Figure 1=-2 illustrates how antecedent reasoning

works.

Assuming an hypothesis "you have Y4 pieces of fruit", and without prior
knowledge of just what you actually have, consequent reasoning will have
the interpreter ask, or otherwise try to prove that, first, you have 2
apples, and last, you have 2 oranges. If 1t does, it will issue the
astounding conclusion that you have U4 pieces of fruit, Figure 1-3
illustrates this consequent reasoning process.

While antecedent reasoning starts with a bit of information and tries
to find something to do with it, consequent reasoning starts with the
consequent, selected either at random from a list of possible theorems to
prove, or by design - as under your Iinstruction (e.g. "TRY consequent 1")
or under direction of the rule interpreter. '

The Expert System

What does 1t take to create an expert system? That problem is not
unlike the task of creating any high level language.

First, decide what you want the language to be able to do - perform
math, test conditions, store information, retrieve information, and
conserve with the operator,

Next, decide what you want the vocabulary to look like. This is the
process of defining the syntax of the language. In the case of the expert
system, it i8S, more importantly, the process of defining how you wish to

EXPERT SYSTEM TOOLKIT

10

1. Start with fact

Have 2 apples 1

2. Find a rule to apply

If you have 2 apples
And you have 2 oranges
Then you have U4 pieces of fruit

3. Try the rule

Do you have 2 oranges? Yes or No
Answer = Yes

§, Apply the result

I conclude you have 4 pieces of fruit

FIGURE 1-2 ANTECEDENT REASONING

Start with hypothesis

You have 4 pieces of fruit

Find a rule to try l
If you have 2 apples
And you have 2 oranges
Then you have 4 pieces of fruit
Try that rule

Do you have 2 apples? Yes or No
Answer = No

Apply the result

Cannot prove the hypothesis "you have 4 pieces of fruit”

FIGURE 1-3 CONSEQUENT REASONING
EXPERT SYSTEM TOOLKIT

it

represents knowledge. For some expert systems, representing knowledge is
the major design task. As it turns out, there are several ways to repre-
sent knowledge; the study of knowledge representation occupies a great deal
of the study of artificial intelligence, We will use a syntax which imbeds
knowledge in a linked list of IF-THEN constructs for our expert program

later.

Finally, the process of creating an expert system includes giving it
the capability of learning as it determines the truth value of an asser-
tion. 1In our expert system here, assertions will either be determined to
be true, or false. Either way, once the truth value is determined, the
assertion just tested is now a known fact. Our expert system maintains a
"known true® file, and a "known false" file.

The expert system we discuss here iz a small version of a consequent
reasoning system typically used in artificial intelligence work today. Our
expert system conasists of the knowledge base = the rules - from which
conclusicns are drawn, a rule interpreter that can perform on both qualita-
tive and quantitative data, and a "facts on file" data base the interpreter

bullds as it learns.

Our interpreter is also able to offer explanations for its aections.
These explanations will serve to teach the user about the subject matter on
which the computer 1s currently acting as expert. Explanations also help
us debug our rule base during the codification of knowledge.

EXPERT SYSTEM TOOLKIT

12

CHAPTER 3

A Look at Knowledge Engj.neering

Expert systems are often used to process knowledge about how humans
perform tasks, like diagnosing medical problems, trouble shooting home
computers, or identifying minerals for geological exploration. Expert
programs could just as well be used as "front-end" processors for configur-
ing large data-base programs for accounting, investment analysis, or, say,
animal breeding. No matter what an expert program is used for, its rules
form the body of knowledge on which it reasons, These rules also serve to
1limit the scope of the scene in which the rule interpreter performs the

reasoning task.

A global scene, one in which all the knowledge humans possess is
codified into rules, is far and away too large a scope for computers as we
know them. However, scenes have been created in which global scale
activities are limited to specific domains, for example, for testing war
strategies, By carefully limiting the scope of activity, it is possible to
create a microcomputer-based expert system that can funection within the
somewhat limited memory space and execution speed of today's home com-
puters., Creating this expert system is called Knowledge Engineering.

The domain we seleet for our expert program to operate in will
determine just how large the scope of knowledge an expert activity can be.
To select a domain for our expert, we need to know if the tasks we pose for
the expert to consult can be stated as condition-action sequences - IF-THEN
statements, If all the knowledge within a domain can be codified as
IF-THEN statements, then we limit the scope of our rules to those which
satisfy specific requirements we place on the consultant - our expert
program, Domains for knowledge representation tend to be classified by
three separate characteristiecs:

o Relative diffusion of knowledge. ‘Medical knowledge tends to be
diffuse, with many facts, while physics and chemistry knowledge
tends to be concise.

o Inter-dependency of situation-action, An accounting program tends
to run with many dependent subprocesses, as does a home computer
trouble=shooting program. An expert seismic monitoring program
might need only a few dependent subprocesses. If the sensor
registers, sound an alarm,

o Separation of knowledge from how it is used. A biclogical classi-
fication program uses knowledge to reason and to gain new know-
ledge, while an expert consultant program that helps out in the
kitchen might only use its knowledge to tell you what to do next.

In developing an expert rule program, it is necessary to specify what
knowledge the program will have - its scope - and how that knowledge will

EXPERT SYSTEM TOOLKIT

13

be expressed. The inference machine presented here uses semantic networks
comprised of IF-THEN statements as a means of expressing knowledge. For
example, if we happen to be privy to the fact that wind blowing from the
south, combined with low, dark clouds always precedes rain, we can trans-
form that knowledge into the rule:

IF wind is blowing from the south
AND there are low, dark clouds
THEN it will rain

Sueh a rule actually predicts a situation. We might need such a
predication to allow us to, by reasoning, offer an expert piece of advice:

IF it will rain
THEN close the car windows

The advice, "close the car windows" is offered only after our expert
program reasons that it will, in fact, rain. Using another example, we ask
the computer how fast a stone will be falling at the end of two seconds. We
write an expert problem solving program. We know that quantitatively, the
stone will gain speed at the rate of 32 feet—per-second for each second it
is falling, if we neglect air friction. We know qualitatively, that the
stone will fall only if it is unsupported. Our expert ought to know that
too. We can write procedures as FORTH functions and allow our expert to
use them. This example can be written as follows:

¢+ GET/PRINT-DATA
PAGE CR ." Input time in seconds : "
QUERY BL WORD NUMBER
CR CR ." Speed at end of "™ DDUP D.

." seconds = M 32 1 M4/ D,
." feet-per-second, "
CR CR 1

RULES

IF stone is unsupported

ANDRUN GET/PRINT-DATA

THENHYP stone will fall

DONE

ANDRUN is one of a class of operators for the expert interpreter, The

operators allow the execution of FORTH functions. These functions may be
mathematical computation, user inputs, data-base, etc.

EXPERT SYSTEM TOOLKIT

14

The lone rule listed above is triggered by the hypothesis "stone will
fall". The expert must first determine if the stone can fall (because it
is unsupported). If the stone is unsupported then the expert performs
calculations, to tell us just how fast the stone will travel at the end of
the number of seccnds we enter.

By using the qualitative reasoning as a front-end to quantitative
calculation, we effectively predict what will happen in our stone scene.
This qualitative reasoning limits the scope of. cur expert!s reasoning
process by determining whether or not to execute certain other rules or
procedures - in this caseé, the equations., If we were to develop an expert
program for modeling the performance of, say, a car travelling along the
highway, then we might use qualitative reasoning to change the current
domain of operation. For example, our computer model might include
equations for the performance of the car in scenes which have the car going
uphill, downhill, along flat roads, in rain, snow, and so on. Each
different scene carries different equations, Each scene is selected by the
expert program using its reasoning capabilitles derived from the rules we
write,

Some Simple Knowledge Engineering Examples

Here are three different "expert" projects we can use for the discussion of
our expert system. The filrst - an animal identification program - is
chosen because two different readily available references use this example.
These references are listed in Appendix and will be very useful for readers
who wish to go beyond the level of this document in developing expert
systems. The second example - a tiny stock market assessment tool = takes
the ideas we develop and ties them up 1n an expert program that serves as a
useful example of how mathematies, and assertions can be combined to form a
powerful consultant. By useful example, it is meant that the expert
program developed here serves as an example useful in illustrating how an
expert program is put together. By no means is this tiny stock market
program represented as useful at making money on Wall Street - or any
street, for that matter. Development of money-making expert programs is an
exercise left to the reader. The third example diagnosis faults in a
digital circuit.

An Animal Expert

Suppose you query a zoo-keeper long encugh to find out how he or she
identifies some of the animals at:that zoe. You are keeping good notes,
and, on later reflectiorn, conclude that certain rules can be formed out of
what was said. Since the scope of thils expert's animal domsin is limited
to those animals found in a particular zoo, the process of developing
expert rules is already simplified; you don't need to test your expert's
reasoning talents on animals you have not seen. You plari, however, to use

EXPERT SYSTEM TQOLKIT

15

general animal knowledge you have for yourself to help in the rule design.
For example, you note that body hair is an indication that the animal is a
mammal, You state that as a rule for you expert system:

IF animal has hair
THEN animal is mammal

You further note another test for a mammal concerns nursing offspring,
from which you write another test for a mammal:

IF animal gives milk
THEN animal is mammal

An assertion 1s made that a mammal is identified if it either "has
hair" or "gives milk"., Notice that you might have developed a different
rule that identifies an animal as mammalian if it "has hair" and "gives
milk". That rule might be stated:

IF animal has hair
AND animal gives milk
THEN animal is mammal

But you realize that this test will fail with some hairless mammals
-whieh, by the way, nurse their young. You settle for the first two rules
which combine with an "or" implied.

Listing all the animals ycu learned to identify by the various rules
you are developing, you 1list an albatross, penguin, ostrich, =zebra,
giraffe, tiger, and cheetah. You note that the albatross, penguir, and
ostrich are birds. The 2zoo-keeper said they were not mammals. So, you
develop some rules which support the assertion that the animal is a bird.
Birds have feathers, lay eggs, sometimes fly, sometimes even fly well
(albatross). You sort these facts into rules which support the bird test.

IF animal has feathers
THEN animal is bird

IF animal flies

AND animal lays eggs
THEN animal is bird

Here you have developed two different rules for defining a bird. You
leave them linked together with an implied "or" because the flight char-
acteristic will not support a penguin, Had you included "flies well" in
the bird test, you would only allow an albatross to pass the test as a
bird. The ostrich would drop out straight away. Now that two tests of
"birdness" have been established, you can write rules which support the
three different types of birds you have listed. If the animal is a2 bird
which flies well, it is an albatross, and not one of the others. If the
animal is a bird, but does not fly at all, it cannot be an albatross, but
could be a penguin, or an ostrich,

EXPERT SYSTEM TOOLKIT

16

You note that an ostrich has a long neck, but a penguin does not. A
penguin swims, but nothing in your notes supports the idea that an ostrich
swims; you choose to ignore that issue because you can probably nail the
ostrich on the basis of its long neck. The rules for ostrich are written:

IF animal is bird

AND animal does not fly

AND animal has long neck

AND animal is black and white
THEN animal is ostrich

We can now see something interesting about the evolution of our rule
interpreter. The rules we have developed here are written in a high level
language, the syntax for which allows three different operators: IF, AND,
and THEN, each followed by a character string that forms the assertion, At
this time, it seems likely that the interpreter will spend a lot of its
time performing string comparisons - that is, comparing a character string
assertion (e.g. "animal flies") to a group of strings it knows to be true
or false, or to other groups of strings during the process of finding rules
which support whatever it is trying to prove,

Notice that, in our various tests of birdness, we assert that the
"animal flies" as one of the tests. If our expert program does not include
tests or rules which support "animal flies" (e.g. IF animal flaps wings
THEN animal flies), our rule interpreter will likely eventually have to
cave in and ask us if the animal flies, If we answer yes, it will know the
animal flies. If we provide, in our rule interpreter, the means for it to
remember this fact, the newly-=learned fact can be recalled later. As it
turns out, later happens in our ostrich test, except that we assert there
that the "animal does not fly". If our rule interpreter is designed to
parse statementd, and the parser notes that "does not" removed from the
assertion leaves 1t a negative context of "animal flies", we will not have
to put up with the expert asking if the animal does not fly. It will
already know it does fly, so why ask again?

If, on the other hand, our rule lnterpreter is written to perform
literal string comparisons only, without benefit of lexical analysis
(trying to figure out what was asserted), then the interpreter must
eventually ask if the animal does not fly, even if it knows (by way of its
facts on file) that the animal flies. 30, we iIntroduce another operator:
IFNOT, and ANDNOT. These allow us to repeat assertions, but test them for
a false condition. Our ostrich test will then look like:

IF animal is bird

ANDNOT animal flies

AND animal has long neck

AND animal is black and white
THEN animal is ostrich

ANDNOT permits us to work with one assertion about the flying cap=-
ability of the animal. Literal string comparisons will now work if we now

EXPERT SYSTEM TOOLKIT

17

allow our fact to be remembered in its correct context., That 13, it must
be remembered as a TRUE fact, or a FALSE fact, depending on what the rule
interpreter finds, We have defined the need for two different files of
facts. Answer YES toc the question "does the animal fly"™ and that fact is
saved in the TRUE file. Answer NQO, and that faet is saved in the FALSE
file. Either way, the expert "learned" from the question.

A complete listing of the animal rules is provided in Appendix 2.
This set of rules can be used later to test our rule interpreter.

We have just developed a simple syntax for our high level language
expert system, Qur next example problem, the stock market analysis
"expert" will add to this syntax to yield the final requirements for our

rule interpreter.

A Stock Market Expert

Suppose you need an expert to tell you whether the stock market is in
a bull, or a bear market, You decide to define a bull market as one 1in
which you ought to consider buying, and a bear market as one in which you
ought to consider selling. Actually, you want to sell out at the peak -the
end - of a bull market, just before the bear market starts, and you want to
buy at the bottom of the bear market, just before the bull starts another
run. You're not alone in your desire.

It would be an incredibly large task to develop an expert program that
combines all expertise avallable for successful investing - even when the
field is limited to a stock market, It is reasonable, however, to create
expert programs which offer expertise in domains which are carefully
limited and selected to provide maximized return on the time invested in
creating the program., Limiting the scope of an expert program is one of
the maxims of knowledge engineering; don't try to create omni-knowledgeable
expert programs.

So, you decide to assign the task of spotting the ends of bull and
bear markets to your trusty home computer. You want to give it an expert
program which will use, as its data base, information you get from your
broker at the end of each trading data. It will also use a rule base
created by you, based on your experience, research, and prying from
successful friends, Here's a sample of how that might go, limited, here,
to observing the New York Stock Exchange.

In your research, you discover what you believe to be a nifty way to
track the "power" in the day's trades. You want to be able to determine,
as one of your expert tests, whether today's trading on the NYSE 1is
stronger {more bullish) than the previous day's trading. You might settle
for simply comparing trading volume, and closing Dow Jones Industries
level, but you think this algeorithm that you discovered in a book might be
better., You decide to include it In your expert. 1It's a "climax breadth"
test that seemed to emerge during the 1920's. You ignore the great bear

EXPERT SYSTEM TOOLKIT

18

that alsc emerged back then,

A cumulative scaled climax breadth index is maintained. Each day the
advances less the declines divided by the total traded and scaled by a
factor of 100 i3 added to the previous value.

In order to make this calculation, you need to enter the three
parameters. = You also need a new class of operators for your expert rule
interpreter. Let's define the new operators: IFRUN, ANDRUN, and THENRUN.
This class of operators lets us run any FORTH funetion which has been
defined. Such functions might include the operator inputs, mathematics,
and data base requirements you define in MVP-FORTH,

In this application, we need to update the climax breadth index if we
have the data. The function of START, provides the necessary prompts for
the required information and performs the actual operation., When executing
DIAGNOSE with this rule base, the user is first asked if there is new data.
A true flag is left whether there is or not and the analysis proceeds. The
other functions are simply the tests which are used in the rule bhase.

¢ START

PAGE CR ." New data ? <Y/N> " KEY'

CR CR 89 (YY) =

IF CR ." Input stock advances: " INPUT#
CR ." Input stock declines: " INPUT# D=
CR ."™ Input stocks traded: " INPUT#
DROP 100 SWAP M*/ DROP CR +!
CR CR ." The new market stremgth =" CB @ .
CR CR

THEN 1

CB?
CB & 7> ;

BULL?
CB @ 108 >

BEAR?
CB & 198 < ;

It will be necessary to define the variable CB and the function INPUT#.
The full program is included in the Appendix. By accumulating the new
values on the stack and making the calculations as the data is input, a
minimum of additional variables 1is necessary. Ezch of these FORTH
functions leaves a truth flag on the parameter stack for the rule
interpreter.

Ndw, you examine another area of market activity - trying to guess
what the insiders are doing. If they are fixing to sell, you want to sell,
too. If they are buying - accumulating stocks at wholesale prices with

EXPERT SYSTEM TCOLKIT

19

which to make a killing by selling at retail, you want to buy, too. You
observe that a bull market run-up of stock prices seems to end with a large
increase in trading volume, but little or no increase in price. Occa-
sionally, market strength, as described by climax breadth, weakens, or goes
negative, You further observe that a bear market or "correction" seems to
end with a noticeable jump in volume without a great change in DJI prices,
and not much change in market strength. You decide, at your Saturday
investment club meeting, that insiders stop a bull market with massive
short-selling (selling stocks they sometimes don't have) which means they
have dumped their stock at retail, and are ready to start accumulating
again, after the stocks drop again for a while. You speculate the insiders
make money either way, because, by short-selling at the top, they replace
what they sold later, at lower prices, netting them another killing. 1In
fact, you further conclude that it is this buying at the bottom to replace
stocks sold short that signals the end of a bear market. So you've invented
a set of rules you want to use with your expert computer.

Based on this analysis and the functions listed above, we can develop
the rule base necessary. As with any EXPERT SYSTEM rule base, the results
will be no better than the analysis upon which the rules are based. In the
8ixty some years since this analysis was first published, no one has
Successfully exploited it., Be careful that you only consider this as an
example of the development of a rule base.

The conclusions are included in the rules which end with THENHYP. They
are:

0 1indications are to buy
0 indications are to sell
0 do nothing -- wait

This new class of operators simply executes FORTH functions. These
amount to a group of procedures as they might be called in other languages,
The -=--RUN is a carry over from languages which run procedures. Each of
these FORTH functions may be executed. They must, however, leave a truth
flag on the top of the stack after all other activities are completed.

It is unlikely that any money can be made using those rules. They do,

however, illustrate a rule generation process, and a separation between
rules which govern decisions, and rules which guide analysis of data.

EXPERT SYSTEM TOOLKIT

20

A Digital Circuit Analyzer

You are confronted with the need to develop an expert system to
analyze faults which might occur in the digital circuit shown below. Using
the expert system tools we have discussed already, it is possible to design
a short program that will isolate which of the three circuit elements has
failed., Variations, and improvements on this simple program are, of
course, possible,

‘E’f

Simple Digital Cireuit

EXPERT SYSTEM TOOLKIT

21

Chip 3 is an inverter which has two possible modes of failure: its
output (F) will be struck true, or it will be stuck false. Diagnosis
involves measuring the input state with a voltmeter, scope, or logic probe,
and measuring the corresponding output state. An an inverter, its output
must be the opposite of its input. Two rules can be written to detect a
faulty inverter:

IFNOT E is true
ANDNOCT F is true
THENHYP Chip 3 is bad (input and output false)

IF E is true
AND F is true
THENHYP Chip 3 is bad (input and ocutput true)

Chips 1 and 2 are AND gates, with a greater number of failure modes.
More rules will be needed. Using Chip 2 as an example:

IFNOT C is true
AND E i3 true
THENHYP Chip 2 is bad (output true, 1 input false)

IFNOT D is true
AND E is true
THENHYP Chip 2 is bad (output true, 1 input false)

IFNOT E is true

AND C 1is true

AND D 13 true

THENHYP Chip 2 is bad (output false, both inputs true)

A similar rule can be written for Chip 1. When a session at the
computer runs this diagnostic program, the inference machine will select

one of three possible hypotheses:

Chip 3 is bad
Chip 2 is bad
Chip 1 is bad

The selected hypothesis will then face a proof test. Along the way,
the inference machine will learn various facts. For example, the system
might choose to diagnose Chip 3 first. It will ask: '

Is this true?
E 1s true

If the answer is YES, the system must now see if F is also true. An an
inverter, F must be made false, The computer asks:

Is this true?
F is true

EXPERT SYSTEM TOOLKIT

22

If the answer is NO, Chip 3 cannot be proven bad. The expert system now
knows, however, that E is true and F is false, for whatever those facts are
worth to subsequent tests,

The system now chooses to prove Chip 2 is bad. Remember it already
knows that E is true., With regard to Chip 2, there is one rule which asks
IFNOT E is true. This rule automatically fails, leaving two possible
tests:

Is this true?
C is true

If the answer is YES, the system must now opt for the last rule:

Is this true?
D is true

If the answer is NO, the system will conclude "Chip 2 is bad".

With care and experience, it is possible to generate a set of generic
rules describing inverters, AND gates, OR gates, and other chips. With
these generic rules, one can string together diagnostic programs for just
about any circuit.

This expert program can also be written to use analytical subroutines
to control automatic testing of the cireuit. This would eliminate the need
to ask a technician all the necessary questions. Such a program, after
checking readings, would deduce a failed chip and ask the technician to
confirm the deduction.

Functional source code for these example expert programs is included
in Appendix B and on the distribution screens diskette.

- With these example expert programs in mind, we now look at the syntax
and internal design of EXPERT-2.

EXPERT SYSTEM TOOLKIT

23

Expert Systems
and the Weather

is gonna get me in trouble.” Since I

am about to discuss a program that
is capable of predicting the weather (some-
times), | figure I'll get in trouble, but here
goes.

I chose predicting the weather as the
subject of an early effort at knowledge
engineering using EXPERT-2, a tiny fifth-
generstion type language. My friends in
the business of weather prediction think
this is somewhat amusing, but the results
are quite interesting and possibly useful. I
deliberately kept the knowledge engi-
néering exercise simple since I intended
to run this program in a 48K Apple II,
using a Forth system with EXPERT-2 on
top and the application program, the
weather predictor.

Expert systems are computer pro-
grams that are specially designed to
perform inferences: to - prove things.
EXPERT-2 is a program that allows
individuals to write task programs much
like BASIC lets users write programs.
It is a high-level anguage written for per-
forming logic inferences using rules
written into the user’s program. These
fules may be used to solve important
problems, like predicting the stock market
. . . OF the weather,

EXPERT-2 allows two methods for
encoding knowledge and information into
the task program — in this case, the
weather predictor:

{F-THEN statements
Analytic subroutines

IF-THEN statements, or production
rules, allow the user to direct the infer-
ence process by entering into the com-
puter specific statements that say, “if
something is true, then something else is
true.” The EXPERT-2 syntax is an exten-
sion of the [F-THEN syntax used to de-
velop an animals game.?** The extensions
include allowing statements to be entered
in a negative context (IFNOT, ANDNOT)
and calling analytic subroutines.

Analytic subroutines were added to
give the programmer access to the full
power of the underlying Forth system. If
EXPERT-2 had been written in, say,

S omebody famous once said: “This

by Jack Park

Pascal, then the analytic subroutine calls
(IFRUN, IFNOTRUN, ANDRUN, AND-
NOTRUN) would permit access to that
environment. As it is, EXPERT-2 was
written in Forth, primarily because that's
the program environment in which I work
best. Users of EXPERT-2, however, need
not know or understand Forth; if analytic
subroutines are not needed, no Forth
coding is required.

The weather predictor presented here
does use analytic subroutines, These rou-
tines are used in two ways:

To prompt the user to input data
To process data and retum truth
values to the rules

The IF-THEN rules call the appropriate
analytic subroutines when answers about
weather data are needed,

The IF-THEN rules contain know-
ledge about the weather. This knowledge
is encoded as antecedents {e.g., IF baro-
metric pressure is falling rapidly) and
consequents (e.g., THEN the weather is
turning bad). Consequents follow appro-
priste antecedents. Designing rules to
correctly encode knowledge is called

knowledge engineering.

Knowledge Engineering

Someone once asked me if EXPERT-
2 ever adds to its own knowledge base or
makes original statements. As it tums
out, it often makes original statements -
especially during system debugging. Early
versions of EXPERT-2, in fact, were
self-modifying (not by design!). Test runs
were incredibly mystifying. Knowledge
engineering, as I use the term here, as-
sumes one has available a working in-
ference machine: a program that permits
inferences to be performed on a set of
rules. EXPERT-2 is one of the early micro-
computer-based inference machines avail-
able; I expect there eventually will be a
slew of them.

Knowledge engineering is the process
of defining a problem to solve (something
for the expert to do, especially something
useful), encoding into a program the ex-
pertise required to solve the problem,
testing, and finally validating the expert
program, . '

To encode knowledge, one needs an
expert whose brains (expertise) are
accessible for encoding, As it tums out,
that’s not a generally available commodity;
experts may be around, but it takes charm,
wit, and experience to get at their brains.
Trying to determine what tools an expert

brings to bear on a problem often gets you
a textbook set of answers. Textbook
answers are not necessarily what you need
to solve a problem. Factors including years
of experience, intuition, and a host of
other issues must be explored before a
knowledge engineer fully exhausts all the
elements needed to solve a particular
problem.

For the weather predictor, | chose to
explore only books and magazines, partly
because | didn’t want to call in any chits I
may have with the weather service and
partly because { discovered some inter-
esting prospects in the literature for home-
brew weather prediction that could be
translated to the EXPERT-2 system. A
set of programs have been gresented for
computers that run BASIC." These pro-
grams ask certain questions and issue
weather predictions based on the answers.
Because the algorithm used in the pro-
grams relates well to the general literature
on weather prediction, I selected it as a
representative “expert” set of rules.

For additions and changes to the rules
derived from the magazine article 1 drew
on the Heathkit Weather Training Manual,
which has a section on weather fore-
casting.® Selected rules on cloud motion,
for example, were used to enhance the
rule base,

Analytic subroutines are then used to
acquire weather data from the user and to
process that data as the inference machine
needs answers,

Weather patterns are quite sensitive to
local terrain influences. Therefore, the
responses the weather predictor offers
may not be appropriate to, say, a canyon
region where you live, It seems to work
well where [live. I leave it as an exercise
for the reader to validate the weather
predictor program in his or her own area,

System Operation _

Rules are typed into a disk file using
the editor available with the underlying
Forth system. EXPERT-2 is then loaded
and compiled on top of Forth as a task,
Finally, the user task (in this case, the
weather predictor) is loaded on top of
EXPERT-2. First Forth compiles the ana-
lytic subroutines and any variables or con-
stants. EXPERT-2 then compiles the IF-
THEN rules once the word RULES is
encountered. Rule compiling ends with
the word DONE.

Forth, in its usual fashion, tells you
that compiting has ended by printing OK

- on the screen. At this time it should be

23A

Dr. Dobb’s Journal

safe to type RUN and start the forecasting
program. RUN initializes the data base by
asking appropriate questions then calls
EXPERT-2 to soive the problems. The
problem is to prove one of four possible
hypotheses, identified in the rule base by
THENHYP. The four hypotheses are:

Weather is OK

Weather is improving

Weather is turning bad

Insufficient data to perform a forecast

EXPERT-2 takes the first hypo-
thesis and begins the task of proving it.
The routine that performs this task is
DIAGNOSE, which is called by RUN.
DIAGNOSE selects the hypothesis and
passes it deeper into the EXPERT-2
program. EXPERT-2 collects all the rules
that might support a proof.

If the hypothesis is ‘‘weather is
OK,” then all rules that have as one of
their consequent fields “weather is OK*
are tagged and drawn into the inference
process. One such rule is:

IFRUN BP>30.2

ANDRUN BP-SLOW-FALL

ANDRUN WDIR

BECAUSE WINDS FROM SW, W,
OR NW

THENHYP WEATHER OK

ANDTHEN FAIR AND WARM
NEXT 48 HRS

"One of the consequent fields (in this case,

the first consequent) is the same as our
hypothesis; in fact, this rule happens to
be the one selected to define an hypo-
thesis with THENHYP. EXPERT-2 finds
this rule and tries to prove it.

The inference machine takes each of
the antecedents, one at a time, and tests
them. If all pass with a truth value of
TRUE, the consequents are taken as true,
and the proof is complete. If any antece-
dent fails with a truth value of FALSE,
the rest of that rule is not tested. Anything
that is “learned™ along the way, however,
is saved as a fact, If the system asks you
which weay the clouds are moving, for
example, your answer becomes a fact so
that EXPERT-2 does not have to ask you
that question again,

If EXPERT-2 proves a rule, DIAG-
NOSE tells you about it, and the program
ends with I CONCLUDE. ... If, on the
other hand, a given hypothesis cannot be
proven, then the next available hypothesis
is selected, and a new proof isstarted. The
new proof has available to it everything
that the system learned during all previous
proof attempts (all attempts, that is, since
RUN was typed). If no proof is available
on any hypothesis, EXPERT-2 typically
states, CANNOT PROVE ANYTHING,

The Weather Predictor

You may wonder how such s simple-
looking program can do any ‘useful

weather prediction; most people ask
sbout this. As it turns out, the program
concerns itself only with large-scale fron-
tal movements. These fronts are best
visualized (but not correctly described) as
large bubbles of air hundreds of miles
across, sliding around over the ground,
bumping into each other, and generally
moving from the west toward the east.
Some of these bubbles are huge low-
pressure masses of air, and some are large
high-pressure masses of air.

When a low-pressure mass of air ap-
proaches your area, the barometer will
spot the frontal motion and indicate that
the barometric pressure is falling. As that
gir mass leaves your area, the barometer
will begin to rise. Thus, by using readings
of barometric pressure and asking ques-
tions about which way the winds are
blowing, the weather predictor attempts
to determine which of its “known" fron-
tal-air-mass patterns best describes the
conditions present in the atmosphere. If
it finds a pattern that fits, it issues a pre-
diction, The patterns it looks for, however,
maust be calibrated for your area,

As a simple exercise in knowledge
engineering, the weather predictor demon-
strates nearly the full capabilities of
EXPERT-2. The program uses informa-
tion on barometric pressure, surface wind
direction, and upper air wind direction
(as evidenced in upper cloud motion),

The rules begin with WALL, a word
that lets you clear this rule base from
memory if you want to load another pro-
gram (by typing FORGET WALL). Fol-
lowing WALL, all analytic subroutines are
loaded, written in Forth. This version
(Listing One, page 27) is written in an ex-
tended Forth-79 dialect and based on the
40-character line width of a standard
Apple II. Readers who type this in on
other systems are encouraged to explore
the enormous advantages of larger line
widths; some awkward statements often
are created when one is constrained to &
NArTow Screen, '

Following the analytic subroutines,
RULES starts EXPERT-2’s rule compiler.
This invokes the [F-THEN syntax that the
listing illustrates,

This weather predictor tests for 19
different possibie combinations of weather
conditions, using 19 basic weather pre-
diction rules. If the requested weather
information you type in fits within one of
the 19 possible data combinations, a pre-
diction will be issued. If the data falls
outside all possible fests, the system will
issue the statement INSUFFICIENT
DATA FOR A FORECAST.

Since EXPERT-2 would rather say
CANNOT PROVE ANYTHING, the last
rule in the set stops that statement and
issues a custom proof-collapse statement.
That way, if EXPERT-2 is unable to prove
any of the three main hypotheses, it is
offered the last hypothesis as a consola-

23B

tion prize, This allows you to end an un-
successful session with any statement you

wish,
Three sets of rules are available for

checking on upper level clouds. These
rules, which support some of the 19 main
rules by asking special questions about
such clouds, underscore one of the weak-
nesses of EXPERT-2: its inability to
handle an “I don't know' answer. That
answer, in fact, does not exist in the syn-
tax. An astute knowledge engineer, how-
ever, is still burdened with the likely
event that this particulai answer will be
needed. . Weather predictor handles the
“don"t know"” case by allowing you to
answer N for no if either you cannot see
the upper clouds (there may not be any
clouds to see) or you haven't gone out-
side to look as instructed. If you answer
no, the system assumes the cloud motion
supports whatever rule it happens to be
trying to prove at the time.

This derives from the second rule in
each of the three rule groups. The second
rule, in effect, says: After dealing with the
instructions (MESSAGE!L), IFNOT you
can see the clouds THEN clouds indicate
....One of these exists for each of the
three possible conditions. A true condi-
tion is forced if you answer no. [am quite
sure I'm gonna get in trouble for this.

A typical terminal session with this
weather predictor follows:

1. System starts by asking barometric
pressure; you enter 30.2,

2. System next asks what the barometric
pressure is doing; you enter the code
for falling slowly.

3. System asks for the direction from
which the wind blows; you enter the
code for south,

4, The terminal response is:

NOW, WE CAN PREDICT THE
WEATHER.

I MIGHT BE ASKING A FEW MORE
QUESTIONS.

I DEDUCE

RAIN WITHIN 24 HRS
I DEDUCE

WEATHER TURNING BAD
I CONCLUDE

WEATHER TURNING BAD
OK (Forth’s usual prompt)

No further guestions were asked in
that session. This particular session in-
cluded data that triggered (successfully)
the following rule:

IFRUN BP>30.1
(30.2)

ANDRUN BP-SLOW-FALL
(pressure falling slowly)

ANDRUN SDIR
{southerly direction winds)

BECAUSE WINDS FROM SEOR §
‘THEN RAIN WITHIN 24 HRS

ANDTHEN WEATHER TURNING
BAD :

This rule illustrates a number of the
design methods that were used in this
knowledge engineering exercise. First, the
final consequent, “weather turning bad,”
helps direct the proof search. If you read
the rules, especially the consequent fields,
you will see that a search could be con-
ducted on dozens of different possible

consequents: “rain within 24 hms,” for
example. If I had set as many hypotheses
as there are different consequents in this
program, the hypothesis field would have
been enormous. Instead I chose three
primary consequents as “search pruners”
to limit the search requirement. All
possible rules that have a particuiar hypo-
thesis are collected at the same time for
proof. The first rule to pass the test ter-
minates ail further tests, Other than that,
“weather turning bad™ is a pretty useless
consequent,

A BECAUSE field is included in this
rule to allow the programmer to tack ex-
planations in where the code might other-
wise be incomprehensible, For example, if
the name chosen for an analytic subrou-
tine that is called to check wind direction
is not particularly descriptive, a BECAUSE
statement is added. If the system asks a
question in the form IS THIS TRUE?, you
can answer Y for yes, N for no, or W for

“Why did you ask me that question?” It
allows you to get an explanation, which is
where the BECAUSE clruse is handy.

The BECAUSE clause is also handy
when passing around source code for pro-
grams. One of the advantages of the
EXPERT-2 style program is that it is
largely seli-commenting. Where it is not
self-commenting, you can add BECAUSE
clauses.

This EXPERT-2 program’s heavy use
of anslytic subroutines reduces the num-
ber of questions the program might be
inclined to ask at the terminal. By contrast,
the animals game mentioned earlier uses
sbsolutely no analytic subroutines: what-
ever it leamns in the proof process is gained
from the terminal. Expert programs are
much more interesting if they ack some-
thing at the terminal,

Going Bayond

EXPERT-2 is a high-level language
for experimenters in early fifth-generation
machines, [t is made available in source
code form, loadable on a variety of Forth
systems. Using the source, this weather

23C

predictor program, and a lot of sweat
equity, I expect some pretty strong
weather predictor programs will emerge.

Weather prediction is largely a data
processing and pattern recognition effort,
one well suited to an expert system. By
adding some simplified models related to
atmospheric physics and coupling the pro-
gram (through analytic subroutine func-
tions} to an automatic weather station,
you could perhaps create a new program
for predicting weather hazards for farmers
or sporting events,

Weather forecasters rate cach other by
a value they call “skill.” Flipping a coin
usually gets a skill of 0.5 or 50% right, It
will be interesting to see what skill this
program and its derivatives achieve. Since
local weather prediction is sensitive to
local geographic terrain effects, this pro-
gram will need some fiddling to raise its
gkill, perhaps even to the 50% level,

Some thought might go into letting
the program run on a pseudo-real-time
basis, keeping track of its own skill. It also
might be written to fiddle with its own
inferences in an attempt to raise its skill:
a self-learning system. You will have to
make sure, however, that it does not learn
how to fiddle with its skill algorithm.

2 Richard Duda and John Gaschniz. “Know-
ledge-Based Expert Systems Come of Age.™
Byte. September 1981.

’P. H. Winston and B. K. P. Hom. LISP.
Addison-Wegley,

‘Geouc W. Miller, “Weather Forecaster.”
COMPUTE! August 1983. See also Tom Fox,
Unique Electronic Weather Projects. Howard
Sams & Co., 1978,

5 Weather Training Manual. Benton Harbor,
MI: Heath Company.

/)

CHAPTER 3

EXPERT =2

Any expert system has three components:

o a knowledge base - the expert program
o an inference machine to rum the expert program
0 computer hardware

Each of these components is discussed here., We start with the computer
hardware environment in which EXPERT=2 runs,

Computer Hardware .

Just a slight amount of literary license is needed to state here that
the computer hardware environment in which EXPERT-2 runs includes both the
computer system itself, and the MVP-FORTH language compiler/interpreter. By
writing EXPERT-2 in MVP.FORTH, the resulting inference machine is trans-
portable to a large variety of desk-top computers,

The computer system is required to have at least one disk drive, large
enough memory for the MVP-FORTH language, EXPERT-2, and the expert program
to be run by EXPERT-2, and a terminal for communication with the user.

The Expert Program

There are two program components available to you with EXPERT-2:

o IF-THEN rules
0 analytical subroutines

IF-THEN rules are created using a special syntax which is fully
described below. These rules can use word statements, or can call analy=-
tical subroutines. In either case, truth values are manipulated. Truth
values are binary in EXPERT-2; a statement or result of analytical cal=-
culation can either result in a TRUE or a FALSE condition.

Analytical subroutines are written in MVP-FORTH. By using MVP-FORTH

as the language for all analytiecal subroutines, the MVP-FORTH
compiler/interpreter underlying EXPERT=2 is available for subroutine work.

A specific format 1s required in planning an expert program for
execution under EXPERT-2. This format is illustrated in Figure 4-1, and
discussed here.

Any expert program shcould begin with a MVP-FORTH word that has little
meaning to the program itself. This word is compiled to serve as a fence,

EXPERT SYSTEM TOOLKIT

24

to provide you with a word to "FORGET" when it is time to load a different
expert program. The MVP-FORTH word FORGET clears the program memory space
up to, and including the word you choose to FORGET. The word "WALLM is
suggested as a standard for EXPERT-2 programs so that all users simply need
to FORGET WALL to clear any given expert program from memory.,

EXPERT PROGRAM FORMAT
: WALL ; (A compiled word to FORGET when done)

Compile any analytical subroutines here - between WALL and RULES.
The following analytical word is listed for illustration.

¢ DEMOWORD CR
." ENTER A NUMBER (1 TO 19) " CR (ASK FOR NUMBER ENTRY)

KEY 53 (GET THE NUMBER AND TEST FOR GREATER THAN 5)
IF TRUE (NUMBER IS GREATER THAN 5 - RETURN TRUE FLAG)
ELSE FALSE (NUMBER IS LESS THAN 5 - RETURN FALSE FLAG)
THER ;

Note: as many analytical words as required may be compiled here.

RULES (this begins the IF-THEN rules)
(RULE B)
IF we are ready to begin
ANDIFRUN DEMOWORD
BECAUSE a number > 5 is needed
THEN a number > 5 is available

(RULE 1)
IF a number > 5 is available
THENHYP all conditions are satisfied

DONE (end of IF-THEN rules, end of expert program)

FIGURE 41 EXPERT PROGRAM FORMAT

EXPERT SYSTEM TOOLKIT

25

Analytical Subroutines

Just after the WALL, space is available for analytical subroutines.
This 1s an optional space; if not analytical subroutines are required - as
in, for example, the animals game - no subroutines need be listed. As many
subroutines as are required to perform the expert task may be listed, with
only one limitation: computer memory size. You must pay attention to
available space in your computer system; it is quite easy to get carried
away with analytical subroutines and IF-THEN rules and exceed the memory
capacity of one's computer,

Development of analytical subroutines only requires that you pay
attention to the MVP-FORTH maxim that forward references are not easily
performed., That means that subroutines must be compiled before they are
called, Subroutines may call other subroutines in the usual MVP-FORTH
fashion of using a subroutine's name.

IF=THEN Rules

After all subroutines have been listed, the rule base may begin. In
EXPERT-2, the rule base begins with the word RULES. EXPERT-2 recognizes
RULES as an executable word in the EXPERT-2 program. RULES sets-up the
MVP-FORTH system to read and compile the following rules using the RULE
vocabulary. By changing to the RULE vocabulary, it is possible to redefine
the traditional MVP-FCORTH words IF, AND, and THEN to have an expert
meaning, instead of the usual MVP-FORTH meaning.

Rules consist of an operator, such as IF, or THEN, followed by either
a character string, or the name of an analytical subroutine.

A physical size restriction 1s placed on any character string used in
EXPERT-2. The lone limitation is length of the string. This limitation is
that the number of characters, including spaces and the operator (IF, THEN,
ete) not exceed 64 characters. That is the line-width for MVP-FORTH
editors, This limitation applies to all rule operators, including IF,
ANDIF, THEN, ANDTHEN, and BECAUSE.

EXPERT-2 Syntax

IF <antecedent character string>
example: IF animal has feathers

ANDIF <antecedent character string>
example: ANDIF animal flies

THEN <consequent character string)>
example: THEN animal is bird

ANDTHEN <eonsequent character string>
example: ANDTHEN animal has wings

EXPERT SYSTEM TOOLKIT

26

These four operators comprise the primary, positive context character
string rules, Negative context character string rules for antecedent
testing are also permitted.

IFROT <antecedent character string>
example: IFNOT animal is bird

ANDNOT <antecedent character string>
example:; ANDNOT animal swims

IFNOT and ANDNOT are created to permit the same character strings to
be used in the positive and negative context. This permits memory effi-
ciency in the compiler, since any given character string is compiled only
once, no matter how many times it 1s used in the rule base, and no matter
in which context it 13 used. Such memory efficiency is required to fit
useful expert programs into tiny desk-top computers. Note, however, that a
typographical error in any multiple use of a given character string will
result in a rule-base error since the string compiler routine will not
recognize the erroneous string as one already present in memory. The
result of such an error is usually an unproveable rule. EXPERT-2 demands
that multiple uses of the same character string be typographically checked
by the knowledge engineer,

A contraction of one of the above-listed operators is valid, This
contraction makes the operators shorter, providing more room for character
strings.

ANDIF <antecedent string> can be AND <antecedent string>

Analytical subroutines may he called from the rule base with the
following operators:

IFRUN <subroutine name’>
example: IFRUN demoword

IFNOTRUN <subroutine name>
example; IFNOTRUN demoword

ANDIFRUN <subroutine name>
example: ANDIFRUN otherword

ANDNOTRUN <subroutine name’>
example: ANDNOTRUN cotherword

THENRUN <subroutine name)>
example: THENRUN consequentword

ANDTHEERUN <subroutine name>
example: ANDTHENRUN anotherconsequentword

EXPERT SYSTEM TOOLKIT

27

ANDIFRUN <subroutine name> may be contracted to ANDRUN <{sub name)>

EXPERT~2 places a rule design requirement on the knowledge engineer
related to the use of THENRUN, EXPERT-2 is a backward chaining (consequent
reasoning) inference machine. As such, it requires a character string in
the consequent field when collecting rules to prove a hypothesis., Thus,
the requirement that at least one of the consequents in any given rule must
be a character string consequent, using THEN, or ANDTHEN. For purpcses of
program design, the option exists to simply identify any given analytiecal
rule with a dummy consequent, as, for example THEN XX. Somewhere else in
the program, an antecedent, sueh as IF XX, will trigger this particular
analytical rule. It 1s suggested, as a matter of standard, to refrain from
using dummy statements. This is a fine cpportunity teo use the string as an
explanatory statement - what the rule is for, what is to be solved, or the
like., EXPERT-2 provides the user the ability to ask why a given question
is asked. This provision works by printing the specific rule being tested.
Thus, using a dummy consequent string, for purpose of permitting EXPERT-2
to trigger an analytical rulé, is also an c¢opportunity to converse with the
user,

EXPERT-2 selects an hyposthesis to prove from a stack of hypotheses
created during compilation of the rules. In order to reduce the number of
times one must type a given character string, the following operator has
been created to permit the knowledge engineer to identify any given
consequent character string as an hypothesis to prove later.

THENHYP <consequent character string>
example: THENHYP animal is penguin

Using THENHYP, the rule base sees "animal is penguin® as a consequent
tc be proven, and, also, the inference machine sees the same character
string as one of the possible goals it must reach in the development of a
procf, Any consequent which 1s planned to also be a final possible
conclusion at the end of a session with EXPERT-2 is identified in its rule
by THENHYP instead of THEN.

EXPERT~2 makes provisions for brief explanations. 7Two operators are
available for use in the explanation phase. These operators are not tested
or otherwise executed by the inference machine; instead, they become
available during the user session when the user asks why a given question
was triggered.

BECAUSE <explanatory character string>
example: BECAUSE all birds have feathers

BECAUSERUN <analvtical subroutine name)
example: BECAUSERUN DISPLAYDATA

BECAUSERUN is a specilal operator which permits use of analytieal
subroutines for the purpose of displaying information in the data base, as
EXPERT SYSTEM TOOLKIT

28

for example, the result of a calculation that had been previously per-
formed. An analytical subroutine is not strictly limited to mathematical
operations; any function permitted by the underlying MVP-FORTH system may
be used in an analytical subroutine, Thus, for example, BECAUSERUN might
be used to call a word which simply prints a larger explanation than is
permitted in the normal character string line,

Rules to be compiled after RULES in an expert program need not be
listed in any particular order to satisfy the underlying MVP-FORTH com-
piler. This is because rules are not, in themselves, subroutines which can
eall other rules, Rules can only call analytical! subroutines which have
already been compiled. MNo forward references are created by multiple uses
of any given character string, and the rules may be listed in any con-
venient order,

The order in which rules are listed can affeet the speed of execution
of a user expert program. Execution speed can be enhanced by careful
grouping of rules around the search order they present, If, for examplé,
the most important rules in a given computer fault diagnostic expert
program deal witli, say, the output of an inverter ecircuit, one might
consider placing those rules first in the rule list, EXPERT-2 starts at
the beginning of the rule list when searching for rules to test in support
of a given hypothesis. Placing the most important rules first reduces the

time required to find them.

The rule=based expert program is concluded with the word DONE. This
word ends the rule compiler activity, and tidies-up the rule base.

By way of review, an expert program written to be run under EXPERT-2
starts with WALL, followed by the analytical subroutines written in
MYP-FORTH, and finally followed by the rules. The rules are listed
following the word RULES, and ended with DONE,

An expert program is written using the editor facility provided by the

underlying MVP-FORTH system, Screens of rules are written and saved to

disk.

Rules are loaded intc the computer the same way any program is loaded.
The assumption is that, first, MVP-FORTH has been loaded, and then EXPERT=-2
has been lcaded. New, the rule-based expert program may be loaded. If,
for example, the expert program starts on screen 19¢ then one types 10¢
LOAD. This starts the entire compiling process., The process ends with the
usual MVYP-FORTH prompt "OK", Execution of the expert program begins by
calling the inference machine, 1In EXPERT-2, type DIAGNOSE to start the
expert program.

In the next secticr, we discuss the internal operation of EXPERT-2, It
will be helpful to refer to Appendix 2, the source listing of EXPERT-2.

EXPERT SYSTEM TOOLKIT

29

The Inference Machine - EXPERT-2

EXPERT-2 is the second version of a group of inference machines. This
version was selected for release because of its inherent simplicity, and
reasonable power, It is released as a tool-kit for individuals who wish to
create expert programs, and as an educational tool for individuals who wish
to explore inference machines, EXPERT-2 can be simplified, or it can be
expanded or otherwise modified to suit individuval needs.

RERRRRARRTRESRFASREAFRANBSARERRR AR R EERB AR AN RS RN ERBRERARERAB RS R LR RERNLRDOY

Note: EXPERT-2 is not released as a public-domain program for wholesale
duplication and distribution. It may be modified and used as a basis for
the work of others, and is intended to be so used, However, trivial
.changes, and republication of EXPERT-2 will constitute an infringement of
the originator's copyrights.

ERABERERRERERRARARBEERASAERERARRTRRRREERERERRLRRCAR R AR ERRERRRRADODDRESBERRS

EXPERT-2 is written in MVP-FORTH. In order to fully understand the
internal processes of EXPERT-2, the reader must be familiar with the
MVP-FORTH language. Starting FORTH, a good MVP-FORTH language tutorial text
is listed in the Appendix.

The EXPERT-2 source code is loosely organized from lowest level
inference machine support words, to the inference machine itself, followed
by the rule compiler.

The rule compiler is responsible for reading an expert program source
file from disk, and compiling the rules in memory.

EXPERT SYSTEM TOOLKIT

30

MVP~-FORTH/EXPERT-2 MEMORY MAP

zogg Beginning of memory

This area contains various pointers, stacks, and other working space
required by the host computer, and the MVP-FORTH system,

LATA'R Beginning of MVP-FORTH system

WWWW End of basic MVP-FORTH system
Beginning of EXPERT-2

XXX End of EXPERT-2
Beginning of user's expert program

The first word typically compiled here (at xxxx) is WALL. WALL is
followed by any analytical subroutines listed in the source

Analytical subroutines are followed by the rule base.

yyyy End of the rule base
Potential beginning of character strings

All character strings are compiled somewhere in memory. The specific
starting location is determined either by (yyyy) the end of the rule base
-which can be calculated ahead of time - or by specifie allocation.

Z%2Z End of character strings

FFFF End of typical 64K memory

FIGURE 4-2 MVP-FORTH/EXPERT-2 MEMORY MAP

EXPERT SYSTEM TOOLKIT

31

ey

Analytical subroutines are compiled directly by the underlying
MVP-FORTH system, They are compiled into memory just after the EXPERT-2
system. Figure 4-2 is a memory map of a typical EXPERT-2 system.

The word RULES starts compilation of the rule base. Rules are
compiled into memory just beyond the analytical subroutines, while the
strings used in the rules are compiled elsewhere,

Rules are compiled into cells, one cell per rule. A rule cell
consists of an antecedent field, a consequent field, and field markers,
Field markers are three bytes of zero (P09). Field markers follow the
antecedent field, and the consequent field, Thus, the rule:

IF animal has feathers
ANDIF animal flies
THEN animal is a bird

compiles into the MVP-FORTH dictionary to look like:

@ ADDR1 @ ADDR2 (antecedent field)
g6a (end flag)
@ ADDR3 (consequent field .)
goo (end flag)

Notice that each address (ADDR1, ADDR2, and ADDR3) 1is preceded by a
byte-length integer. This integer number is a flag representing the type,
and context of the following rule element. A 9 flag is reserved for
positive context strings, while a 1 is reserved for negative context
strings. Other integers are reserved for analytical equations, and BECAUSE
clauses, Notice that expansion of EXPERT-2's capabilities can be faci-
litated by using other integers to represent expanded rule representations.

The address compiled in a rule element is found by the word GETCLAUSE,
if the rule happens to be one of the character string operators. If the
particular string has already been compiled, it will be found by FIND-
CLAUSE, and the address where it is found is passed back to the rule
compiler., If the particular string has not already been complled, it is
then compiled into the next available memory space, and the beginning
address is returned to the rule compiler, which inserts that address into
the rule base it is building.

The inference machine is the word DIAGNOSE. This word simply pops a
pointer to an hypothesis character string off the hypothesis stack (called
HYPSTACK) and proceeds to attempt to prove that hypothesis to be true, If
the hypothesis is found to be true, DIAGNOSE concludes that string to be
true - and tells the operator of this conclusion. If the hypothesis is
found false, DIAGNOSE pops another hypothesis off the stack and tries

EXPERT SYSTEM TOOLKIT

32

again., In the event all hypotheses on the stack fall, DIAGNOSE tells the
user it cannot prove anything, and exits back to MVP-FORTH with the usual

"OK" .

This is an incredibly simple inference machineé, but one which allows
some very powerful expert programs to run. DIAGNOSE doces not require any
more than one hypothesis, Several hypotheses may be designed inte the
expert program, but the specific number of hypotheses allowed is limited
only by the size of HYPSTACK. HYPSTACK, as supplied, allots 256 bytes,
resulting in room for 128 pointers, 128 pointers imply at least 128
different consequent strings, each of which implies one or more anteced-
ents. 128 hypotheses, in short, implies, most likely, an expert program
much larger than memory space will allow.

DIAGNOSE hides the hypothesis pecinter in a variable CURHYP for later
use in the event that hypothesis 1s found true. A duplicate of the
hypothesis pointer is left on the MVP-FORTH parameter stack and is sent
along to VERIFY,

VERIFY attempts to perform the proof task. It first checks to see if
the pointer left on the stack (at this time, the main hypothesis), is
already a "fact on file," VERIFY calls RECALL to see if the pointer
represents an already known fact.

If the pointer represents an already known fact, VERIFY exits with the
truth value which was returned by RECALL. If the pointer does not repre=-
sent an already known fact, VERIFY must set about to find some rules that
will help support any conclusion.

To find rules, VERIFY sends the pointer along to <FINDRULES. <FIND-
RULES looks through the rule base for all rules which have, as one of their
consequents, the same pointer, Remember that the hypothesis pointer i, in
fact, a pointer to a character string. Also, remember that EXPERT-2 allows
the same character string to be used as many times as necessary. Thus, if
no typographical errors exist in a character string that is used many
timed, the same pointer will be found in the rule base each time a given
string is compiled. Thus, finding rules is the process of looking for the
same pointer in the consequent fields of all the rules.

A forward chaining (antecedent reasoning) rule collector, by com-
parison, also looks for the same pointer, In antecedent reasoning,
however, the search takes place in the antecedent fields of all rules, not
the conseguent flelds,

At the beginning of the rule search, a "=1" 15 left on the MVP-FORTH
parameter stack as a flag, This flag tells VERIFY that the last rule has
been tested, During the search for rules, when a given rule is found to be
applicable, a number is assigned to it, and that number is left on the
stack. When all rules have been checked, <FINDRULES returns to VERIFY
which now checks to see if the top number on the stack is -1.

EXPERT SYSTEM TOOLKIT

33

If the top number is -1, no rules were found, and VERIFY has no choice
but toc ask the operator if the hypothesis being tested is true. The answer
to that guestion (yes it is true, or no it is false) becomes VERIFY's
response to DIAGNOSE.

If the top number 1s not -1, VERIFY sets about to prove each of the
rules found, looking for a true answer to support the original hypothesis,

Since a typical rule consists of an antecedent field, and a consequent
field, and since a typical rule is collected by one of its consequent
elements being the same as a hypothesis being tested, then proof of the
rule constitutes proof of the hypothesis, Proof of the rule simply means
proving each of the antecedent elements, For example, in the following

rule:

IF animal has feathers
ANDIF animal flies
THEN animal is bird

the consequent field element triggered this rule if the hypothesis also
happens to be Manimal is bird", 7To prove the animal is a bird, VERIFY must
determine if the animal has feathers, and if the animal flies. Each of
these statements to prove becomes a new subhypothesis, and VERIFY event-
ually calls itself to prove them, one at a time.

VERIFY calls itself through one of its subroutines - TESTIF+ - which,
itself was called by TRYRULE+, which was called by VERIFY. TESTIF+ calls
VERIFY if it needs VERIFY to prove something. TESTIF+ first, however,
checks to see if the element it is to prove is a character string, or an
analytical subroutine. If the element is an analytical subroutine, that
subroutine is executed, and its truth value - after correction for context
~ is returned to TRYRULE+. If the element is a character string, it is
passed to VERIFY by TESTIF+. VERIFY, eventually, will return to TESTIF+
the truth value of the string. That truth value will be corrected for
context returned to TRYRULE+.

TRYRULE+ is the teacher in EXPERT-2. Final truth values are returned
to TRYRULE+. Any rule found provable has a consequent field that should be
saved in the KNOWTRUE stack. Learning, to EXPERT-2, means pushing facts
that are deduced through the proof process onto the KNOWTRUE stack.
USETHEN, called by TRUERULE+, performs the task of teaching EXPERT~2 what
it needs to learn.

Other facts (based on truth values) emerge to EXPERT-2 when VERIFY
calls ASK to ask the user if & certain character string 1s a true state-
ment, The operator returns a true or false indication. ASK calls
REMEMBERTRUE if the statement was indicated true by the user. ASK calls
REMEMBERFALSE if the statement was Indicated false by the user. In either
case, the pointer to the particular string is pushed onto one of the
facts-on-file stacks. KNOWNTRUE is the stack for all facts determined to
be true. KNOWNFALSE is the stack for all facts determined to be false.

EXPERT SYSTEM TOOLKIT

34

A fact may be determined to be true, but that does not make it a proof
to EXPERT-2. For example, if "animal is bird"™ is found to be true, the
pointer to that string will be pushed onto the KNOWNTRUE stack., Later in
the expert program, the knowledge engineer may have opted to rule out birds
as candidates for being &, say, cheetah. This would be accomplished with
"IFNOT animal is bird". When this particular antecedent field is encount-
ered by VERIFY, RECALL will find the string to be true., TESTIF+ will get
the truth value returned by RECALL and will perform a context check. Since
IFNOT places a negative context on the string, false will be returned if
the string is true; true will be returned if the string is false,

When VERIFY finds a proof to a given ruleé, it cleans its stack of any.

remaining rules by dropping everything on the stack to the =1 flag.

A forward reference is needed for TESTIF+ to call VERIFY., TESTIF+
actually calls an execution vector named VERIFY. MVP-FORTH permits
duplicate names. The execution vector consists of a variable ('VERIFY)
which is set equal to the code field address of <VERIFY> during compilation

of EXPERT-2,

To summarize, the inference machine - DIAGNOSE - uses YERIFY to
determine the truth value of a hypothesis, " VERIFY collects rules, recalls
facts already known, and asks questions of the user. VERIFY coaverts the
antecedent flelds of rules it collects into new subhypotheses and sets
about to prove each subhypothesis it makes. When a rule proof is found,
VERIFY tidies up and returns the final rule truth value to whoever called
VERIFY. That, in most cases, is VERIFY, Thereforé, VERIFY is a recursive
routine that simply ripples through rules looking for a proof, The final
proof is returned to DIAGNOSE. DIAGNOSE returns any conclusions that proof
might support to the user.

EXPERT=2 is a complete system when compiled on top of an MVP-FORTH
language program suitable to the tasks you choose, The expert program you
write to execute with EXPERT-2 can be as simple, or as powerful as you
choose, depending, of course, on memory size of your computer, However,
EXPERT-2 is presented both as a toolkit, and as knowledge engineering
teaching tocl. It is expected that many EXPERT=2 users will modify
portions of EXPERT-2 in order to gain features not presently available. The
next section discusses EXPERT-2 modification.

EXPERT SYSTEM TOOLKIT

35

CHAPTER 5

Beyond EXPERT-2

EXPERT=2, as it 13 released, is primarily a teaching tool. It allows
MVP-FORTH programmers to become familiar with expert systems, and, at the
same time, create some useful expert programs.

Expert programs can be divided into several categories, according to
the purpose, or domain, of the program. Programs that diagnose faults in
computers, tractors, or the medical environment are one form of expert
domain. Another 1s interpretation of data, such as, for examplé, astro=-
metriec data taken from a radio telescope, meteorological data taken from an
automatie weather station located on a farm, or engine data taken off the
diesel engine of a truck tractor during a long-haul trip. Still another
domain 1s teaching or directing the activities of students. Yet another
domain is directing the activities of scientific tests in progress, or
controlling robots., Natural overlaps occur in these domains. However,
selection of a domain generally directs two. activities in knowledge

engineering:

o design of the inference engine
o design of a knowledge representation scheme

EXPERT-2, as it is released, limits the selection of domain for the
expert program, unless one is willing to accept the consequences of forcing
a fixed representation scheme to operate in a domain in which it is not
particuarly efficient,

As a teaching tool for designers of expert systems, EXPERT-2 offers
two forms of knowledge representation: analytical equations, and IF-THEN
structures., Both are very powerful, especially when combined in scientific

work.

EXPERT-2 confines the results of its proof to a binary representation
of truth - either TRUE or FALSE. Knowledge ‘engineers know that there are
many types of problem domains in which expert systems might operate and for
which a binary truth value 1s inappropriate. Probabilities of proof enter
many domains. Weather prediction, for examplé, typically yields a prob-
ability that "it will rain". EXPERT-2 does not provide for the mani-
pulation of probabilities. However, as a shell for clever programmers,
probabilities can be added.

Probabilities can be added by exploting unused integer values in the
rule compiler. A probabllity value - say, an integer value between -9 and
+9 could be inserted inside parentheses () and the parenthesis symbol
defined as a qecompiler for probability values, Routines can be added to the
toolkit to manipulate probabilities using, for example, Bayesian math, or a
conditional or fuzzy set math.

EXPERT SYSTEM TOOLKIT

36

Forward chalning (antecedent reascning) offers knowledge engineers
the opportunity to allow the user to volunteer information at the beginning
of a session with the expert. With a given character string already known
true or false, the inference machine can then set-about to locate any rules
that need to know the already-known fact. A candidate hypothesis can be
selected from these rules, and the backward chailning system called for a
proof. The EXPERT=-2 source includes a candidate forward chaining FIND=-
RULES> whiech can be called from a different versicn of the inference
machine - DIAGNOSE. To change the way the inference machine works, rewrite

DIAGNOSE.

Additional features may be added to EXPERT-2, 3Some of these features
are noted in the source listing; others will emerge as users gain
experience,

Perhaps one of the most useful areas to explore enhancement to
EXPERT-2 i3 in the word TELLWHY. When VERIFY finally must ask the user
about the truth of a given character string, EXPERT-2 provides the user
with the opportunity to find out what the system is up to. ASK permits
three possible answers: <¥> for yes the string is true, <N> for no the
string is false, and <W> for why did you ask?

When <W> is selected, TELLWHY 1s called. TELLWHY is a simple version
of a teaching tool for the user. TELLWHY lists which hypothesis is being
tested, and the current rule VERIFY is dealing with, The entire rule is
listed, including any BECAUSE clauses included. Users may wish to enhance
this tool by inecluding a listing of the various strings known true and
those known false. Users may also wish to add a trace tool to EXPERT-2
which, when enabled, prints select messages added to important routines
along the VERIFY path.

Tracing and asking why are two very powerful methods by which a rule
base is debugged. In fact, since EXPERT-2 is a logic inference machine, it
is very quick to perform any task the rule base directs, even If illogical.
Debugging a large rule base is probably one of the more interesting
activities a knowledge engineer will have. EXPERT-2 was designed to
provide many opportunities to be involved in this activity.

Good luck,

EXPERT SYSTEM TOOLKIT

37

APPENDIX A
BIBLIOGRAPHY

Listed here are documents recommended for readers who need a tutorial
on FORTH, and who wish to go beyond the level of information presented in
the EXPERT-2 manual.

1= A FORTH Tutorial and Textbook

Starting FORTH Prentice Hall (Available from Mountain
View Press)

By Leo Brodie, formerly of FORTH, Inc. Probably the best book
available on the FORTH language. Some minor conflicts will be detected
between the FORTH syntax used in Starting FORTH, and the FORTH dialect

used for EXPERT-2.
2= An annotated glossary of the FORTH dialect

ALL ABOUT FORTH Mountain View Press

By Glen B, Haydon, Each entry in the glossary ineludes a functicnal
definition, an implementation usually in hi-level FORTH, an example of its
use and a comment.

3= An Expert Tutorial and Textbook

Bullding Expert Systems Addison-Wesley

Edited by Frederick Hayes-Roth, Donald A. Waterman, and Douglas B,
Lenat, At this writing, this is the only text book on expert systems., It
reads like a text used in a survey course, and assumes the reader has a
background in computer science. The book is enormously useful, and should
be studied by all individual who desire to go beyond EXPERT-2.

4- The Animals Game - in LISP

LISP Addizon=Wesley

By P.H. Winston, and B.K.P. Horn. A textbook on the LISP language,
with a chapter devoted to a small inference machine - written in LISP
=which runs the animal expert game.

5= The Animals Game = in BASIC

Knowledge-Based Expert Systems Come of Age
in Byte Magazine - September, 1981 issue.

By Richard 0. Duda and John G. Gaschnig. A good tutorial on expert
systems, and a complete discussion of the animals expert game, with a
source listing for an inference machine to play the game written in BASIC.

EXPERT SYSTEM TOOLKIT

38

6= Expert Systems Technology Surveys

o Expert Computer Systems
in IEEE Computer, February 1983 issue
By Dana 3, Nau

0 Expert Systems Research
in Science Magazine, 15 April 1983 1ssue
By Richard O, Duda, and Edward H. Shortliffe
o Prospects for Expert Systems in CAD
in Computer Design Magazine, 21 April, 1983 issue
By Mark J. Stefik and Johan de Kleer
7= A Look at the Knowledge Engineering Industry

The Fifth Generation Addison~Wesley

By Edward A. Feigenbaum and Pamela McCorduck

Discusses a new breed of supercomputer which is optimized for per-
forming logic inferences,

The bibliography is not intended to be complete, However, most of the
references cited contain large, specialized bibliographies from which in-
terested readers can locate references on specific topics related to their

needs,

EXPERT SYSTEM TOOLKIT

39

APPENDIX B

USER NOTES

Artificial Intelligence EXPERT systems are composed of
an inference machine and & knowledge base., Expert - 2 is
such an inference machine, Several small bases of knowledge

are included as examples only.

SCREEN i
EXPZRT-2 Source Program Listing 45 LOAD
Digital Circuit Analyser Rules 90 92 THRU
Animal Classification Program Rules 96 102 THRU
Stock Program and Rules 108 112 THRU
Expert Program Format 117 118 THRU
Life Automata Rules 119 130 THRU
Weather Prediction Rules 135 LOAD
Disease Program Rules 155 164 THRU

To Load in the Expert System Boot up SUPERFCRTH and
type RUN, then from FORTH types 45 LOAD to load the
Expert System on top of SUPERFORTH. "

: Then Load one of the knowlellge Base examples listed
above{ie. 108 112 THRU for the stock program,) Read
instructions on page 18 for operation. To Change the
Knowledge bases

FORGET WALL
t WALL;

and then enter another or your own Knowledge base. Use the
demonstration programs as a model, This can be done
interactively at the keyboard or you can write your own
knowledge base on FCRTH screens and then LOAD those screens.
A minimal knowledge & understanding of SUPERFORTH will make

the use of this program much easier.

EXPERT SYSTEM TOOLKIT

40

TO
RUN
TYPE

DIAGNOSE
DIAGNOSE
DIAGNCSE

DIAGNQOSE
RUN
DIAGNOSE

(6]
‘.Dm-JO\LﬂlwaHQQ

- a
QUO~TAUNEWwNOEF® D

11
12
13
14
15

#45

(EXPERT-2 LOAD SCREEN

46 48
49 5@
51 63
64 66
67

68

69 70
72 73
74

76 79
8l 85
(90
{ 96
(108
(117

#46

THRU
THRU
THRU
THRU
LOAD
LOAD
THRU
THRU
LOAD
THRU
THRU
92
1g2
112
118

THRU
THRU
THRU
THRU

VARIAELES

MISC, SUPPORT

VERIFY SUPPORT

1/0

USER SUPPORT

FACTS SUPPORT

More VERIFY SUPPORT

More VERIFY SUPPORT

INFERENCE MACHINE

RULE COMPILER

More RULE COMPILER
(Digital Circuit Analyzer
(Animal classification program
{ Stock Program
(Expert Program Fommat

(EXPERT-2 variables, etc 1

VARIABLE STRINGSTART

19006 ALLOT

MVP-FORTH)

MVP-FORTH)

(This variable marks the beginning of the string buffer.)
(It's size may be changed or the buffer moved as desired.)

VARIABLE RULESTK
(RULESTK holds pointer to rules.

VARIABLE #RULES
(#RULES incremented while compiling rules.

VARIABLE SCOUNT
(SCOUNT is used by the rule compiler.

#47

(EXPERT-2 variables, etc 2

VARIABLE RULE#
(A stack for rules being tésted; used by ASK.

VARIABLE SUBHYP”
{ The '"' is an ideogram connoting pointer.

VARIABLE CURHYP
(CURHYP points to current hypothesis.

VARIABLE STRINGS
(STRINGS has start addr of next string space available.)

VARIABLE SFLAG
(For string compiler.

4¢ ALLOT

EXPERT SYSTEM TOOLKIT

41

MVP-FORTH)

w,

SCR #48
@ (EXPERT-2 variables, etc 3 MVP-FORTH)
1
2 1 CONSTANT TRUE
3 @ CONSTANT FALSE

4

S VARIABLE KNOWNTRUE 254 ALLOT

6 (True facts will be pushed on the KNOWNTRUE stack.)
7

8 VARTABLE KNOWNFALSE 254 ALLOT

9 (False facts will be pushed on the KNOWNFALSE stack.)
16

11 VARIABLE HYPSTACK 254 ALLOT
12 (Stack for hypotheses collection during rule compiling.)
13

14 VARIABLE 'VERIFY
15 { The variable is used to vector the execution of VERIFY.)

SCR #49
@ (EXPERT-2 misc support 1 MVP-FORTH)
1
2 : REMEMBER? (fact, stk base, -— tf)
3 BEGIN DDUP @ DUP @= NOT ROT ROT = NOT AND
4 WHILE 2+
5 REPEAT SWAP DROP @ ;
6
7 EXIT
8
9 REMEMBER? checks to see if fact already on
19 referenced stack.
11
12
13
14
15
SCR #50
@ (EXPERT-2 misc support 2 MVE-FORTH)
L
2 : PUSH (fact”™, stk addr --- tf)
3 DDUP REMEMBER? (Already on STK ?)
4 IF DDROP TRUE
5 ELSE
6 BEGIN DUP @
7 WHILE 2+
8 REPEAT ! FALSE
9 THEN ;
10
11 FORTH EXIT
12
13 PUSH pushes a fact on a referenced stack. If already
14 there, returns a true flag. Otherwise, returns a false.
15

! EXPERT SYSTEM TOOLKIT

42

SCR #51
@ (EXPERT-2 verify comments MVP-FORTH)
EXT This is a comment screen.

Rules are compiled thusly:
Start compiling at "HERE". Antecedents first
LF <byte> POINTER <word> -antecedent 1
LF <byte> POINTER <word> -antecedent 2
n

LF <byte> POINTER <word> -antecedent N

XX <byte> G0 <word> -consequent end flag
LF <byte> POINTER <word> -consequent 1

LF <byte> POINTER <word> -consequent 2

mw

LF <byte> POINTER <word> -consequent N
XX <byte> 00 <word> -consequent end flag
NOTE: XX is unimportant - available for future charges.

e el el
BEWNHRWO-OWU WM

[
W

$52
(EXPERT-2 verify support MVP-FORTH)

: GETLOGIC (ruleaddr —- ruleaddr, 1f)
DUP 1- C@ ; '

(GETLOGIC - on entry, TOS " any pointer. Leave pointer)
(on stack along with associated logic flag < 1f >,)

: FINDTHEN ({ "1st if --- " 1lst then)
BEGIN DUP @
WHILE 3 +
REPEAT 3 + H

\om-.lmm-hwml—ﬂag

vy
(SRR

(FINDTHEN - On entry, TOS "~ antecedent pointer. Zip thru)
(antecedents. Leave stack " first consequent pointer.)

=
;e W

a

LCOoO-JAWneawphn- S0

#53 _
(EXPERT-2 verify support MVP-FORTH)

STRING? (=)
GETLOGIC DUP @= SWAP 1= OrR ;
(See if logic flag indicates this is a string rule.)

: RULE4PUSH (¢ —)
RULE# @ 2+ DUP ROT SWAP ! RULE} ! ;

RULE#DROP { ===
RULE# DUP @ = NOT
IF -2 RULE§ +!
THEN ; EXIT

= e
BN S

RULE# words are in support of ASK which needs to know
which rule VERIFY is trying to prove.

=
wu

EXPERT SYSTEM TOOLKIT

43

MVP-FORTH)

MVP-FORTH)

MVP-FORTH)

SCR #54
@ (EXPERT-2 verify support
1
2 : <FINDRULES (——= =1, r#, #, .. k)
3 -1 (Leave end flag) RULESTK @ 1+ (° lst IF pointer)
4 #RULES @
5 DO FINDTHEN
6 BEGIN DUP @ SUBHYP" @ @ =
7 IF (found a rule) I SWAP
8 FINDTHEN (" next IF field) TRUE (kill UNTIL)
9 ELSE (not rule yet) 3 + DUP @ NOT
16 IF (out of THENs)} 3 + TRUE
11 ELSE FALSE (try again)
12 THEN
13 THEN
14 UNTIL .
15 LOOP [CROP ;
SCR #55
@ (EXPERT-2 verify comments
1 EXIT This is a comment screen.
2
3 <FIMDRULES collects rules to test -
4 leaves stack with :
5
6 -1 R# R# ... Ré#
7
8 If no rules found, T0S = -1
9
10 <FINDRULES is backward chaining.
11
12 FINDRULES> is forward chaining.
13
14
15
SCR #56
@ (EXPERT-2 verify comments
1 EXIT
2 (Not implemented -~ possible definition)
3 ¢ FINDRULES>
4 -1 RULESTK @ 1+
5 #RULES @ @
6 DO
7 BEGIN DUP @ SUBHYP" @ @ =
8 IF I SWAP FINDTHEN TRUE
9 ELSE 3 + DUP @ NOT
1ad IF 3 + TRUE
11 ELSE FALSE
12 THEN
13 THEN-
14 UNTIL
15 LOOP DROP ;

EXPERT SYSTEM TOOLKIT

44

a
2

CRLdAU LN S

..-I
Q\DWﬂmthMHﬁﬁ

=
X

ol el o
W s W

#57

(EXPERT-2 verify support

: FINDIF (r§ —
RULESTK @ 1+ SWAP 7DUP
IF (r# >0) 0

DO FINDTHEN (
FINDTHEN (
LOooP

THEN ;

EXIT

FINDIF turns a rule #

#58

(EXPERT-2 verify support

~

-~

* 1st antecedent)

1st THEN)
1st IF, next rule)

MVP-FORTH)

(r#) into address of first
antecedent pointer field of that rule.

: RONEON (cfa® —— cfa”, tf)

GETLOGIC DUP 2 =

‘IF (eqn) DUP @ EXECUTE (—-—- cfa”, tf)

SWAP GETLOGIC 2 = ROT XOR NOT

ELSE (not eqn) TRUE (try next)

THEN - EXIT
RUNEQN executes FORTH words compiled by IFRUN,
IFNOTRUN, ANDRUN, ANDNOTRUN, THENRUN, and BECAUSERUN.

RUNEQN first checks to be sure cfa ™ does now ~ to
BECAUSE { or other) string clause. If not an eqn to
run, leave true for RULECK which follows in TRYRULE+ .

RUNEON must return to tf.

RUNEQN then corrects the rf

for value of 1lf (context).

#59

(EXPERT-2 verify support

: RULECK (fact™, tf
3 + FALSE (fact was true - try next)

IF

ELSE DROP FALSE TRUE
THEN ;

EXIT

Riles
if
If
1f
1f

== f, t or fact®, £)

(false, exit)

for context correction.

eq1_->t' arﬂ 1f
eqn-—>£, and 1f
eqn——)t, and 1f
eqn-->f, and 1f

+, then true
+. then false
-, then false
-, then true

EXPERT SYSTEM TOOLKIT

45

MVP-FORTH)
SWAP 3 = OR (make sure it's a FORTH cfa)

(correct for context)

MVP-FORTH)

—IN,

SCR #60

@ (EXPERT-2 verify support MVP-FORTH)
1
2 : VERIFY (hyp —— tf)
3 'VERIFY @ EXECUTE ;
4
5 EXIT
6
7 This is a vectored implementation of VERIFY. It
8 allows forward referencing of the actual definition to
9 the primitive <VERIFY> .
19
11 VERIFY is called for string rules - reports truth
12 TESTIF+ then checks logic flag.
13
14
15
SCR #61
@ (EXPERT-2 verify support MVP-FORTH)
1
2 : TESTIF+ (r$ = ¢tf)
3 FINDIF
4 BEGIN DUP @ @=
5 IF (No more IF's, all found true) DROP TRUE TRUE
6 ELSE STRING?
T IF DUP VERIFY (IF*, IF" —— IF", tf)
8 SWAP GETLOGIC (t£, IF", 1f)
9 0= (true if + logic)
19 ROT XOR NOT (IF", tf)
11 ELSE (eqn) RUNEQN (cfa™, tf)
12 THEN RULECK
13 THEN
14 UNTIL RULE#DROP ;
15
SCR #62
@ (EXPERT-2 verify support MVP-FORTH)
1
2 : XCALL (stk™ -— tf)
3 BEGIN DUP @ DUP
4 IF SUBHYP" @ae =
5 IF DROP TRUE FALSE (found)
6 ELSE TRUE (not found yet)
7 THEN '
8 ELSE DROP DROP FALSE FALSE { not found anywhere)
9 THEN

16 WHILE 2+ (bump stk™)

11 REPEAT H EXIT

12 XCALL supports RECALL by checking for last entry on
13 stack (checks pointers } equal to current subhyp.
14

15 Exits true if found, false if not found.

EXPERT SYSTEM TOOLKIT

46

SCR #63

g (EXPERT-2 verify support MVP-FORTH)
2 : RECALL { fact™ --—- tf, t if found)
3 SUBHYP" ! (save fact as new subhypothesis)
4 KNOWNTRUE XCALL
5 IF TRUE TRUE (found true)
6 ELSE { not found true)
7 KNOWNFALSE XCALL
8 IF FALSE TRUE { found false)
9 ELSE FALS { not found anywhere)
10 THEN -
11 THEN F
12
13
14
15
SCR #64
@ (EXPERT-2 I/0 MVP-FORTH)
1l
2: .8 (string address -—)
3 COUNT TYPE
4
5 : 8. CR 2 SPACES .§ ;
6
7: .58 DUP @ .S ;
8
9 : .NFA DUP @ NFA ID. ;
1d
11
12
13
14
15
SCR #65
@ { EXPERT-2 I/0 MVP-FORTH)
1
2 : TLCR ."™ IS THIS TRUE ? (Y=YES, N=NO, W=WHY)" 5. ;
3 :T2CR ." I CONCLUDE " S. CR ;
4 : T3CR ."IDEDICE" S. CR ;
5 : T4 CR ." CANNOT PROVE ANYTHING " CR ;
6 : TS CR ." I AM TRYING TO PR "s.
7 : 6 CR ."™ I AM TESTING RULE4 " . ;
g§:1T "IF"@;
9 :T8 " IFNOCT " @ ;
1 : T9 " IFRUN " 1 ;
11 : T1¢ ." IFNOTRUN " 1 ;
12 ¢ T11 ." BECAUSE " @ ;
13 : T12 ." BECAUSERUN " 1 ;
14 : T13 ." THEN " 0 ;
15 : T14 ." THENRUN " 1 ;

EXPERT SYSTEM TOOLKIT

47

[YeRue-RE NN NS - FERY . SR~ -]

#66
(EXPERT-2 1/0 MVP-FORTH)

: CASE:
CREATE] SMUDGE
DOES> SWAP 2* + @ EXECUTE ;

: NOP ;
(Does nothing for some of the cases.)

CASE: ?. .58 .NFA ;
CASE: IF?T T7 T8 T9 T14 T11 T12 ;

CASE: THEN?T T13 NOP T1l4 NOP Tl1l T12 ;

#67
(EXPERT-2 user support MVP-FORTH)

: TELIWHY

CR CURHYP @ T5 CR

RULE# @ @ DUP T6
FINDIF CR
BAGIN GETLOGIC IF?T ?. CR 3 + DUP @ @g=
UNTIL 3 + (If's done) .

BEGIN GETLOGIC THEN?T 2. CR 3 + DUP @ @=

UNTIL DROP ;

EXIT

Optional, can add display of KNOWNTRUE and
KNCWNFALSE stacks.

#68
(BEXPERT-2 facts support MVP-FORTH)

: REMEMBERTRUE (fact™ —=-)
KNOWNTRUE PUSH DROP ;

: REMEMBERFALSE (fact™ -—)
KNCOWNFALSE PUSH DROP ;

(REMEMBERTRUE & REMEMBERFALSE are methods by which)
{ EXPERT-2 learns facts.)

¢ UNLEARN (===
RULE# DUP ! (init stack)
KNOWNTRUE 256 ERASE
KNOWNFALSE 256 ERASE H
{ Clear all pointers and stacks.)

EXPERT SYSTEM TOOLKIT

48

#69
(EXPERT-2 verify support MVP-FORTH)

: ASK (fact™ == tf)
BEGIN DUP @ T1 (ask operator)
KEY (XKEY) DUP 2 SPACES EMIT DUP CR
87 (ASCIT W) = (why did you ask ?)
IF DROP TELLWHY FALSE
ELSE 89 (ASCII Y) = (is true)
IF @ REMEMBERTRUE TRUE
ELSE @ REMEMBERFALSE FALSE
THEN TRUE {(kill UNTIL)
THEN
12 UNTIL ;

o A
HFROVOJUOU WM PSR

e el
U W

$70 ‘
(EXPERT-2 verify support MVP-FORTH)

t USETHEN (rd —)
FINDIF (4 —= " first IF)
FINDTHEN (—--- “ first THEN)
BEGIN DUP @
WHILE DUP STRING?
IF (is string clause)}
DUP @ KNCWNTRUE PUSH NOT
IF DUP@ T3 (tell)
19 THEN .
11 ELSE (execute MVP-FORTH cfa if is analytical sub. <eg>)
12 RUNEQN DROP (drop tf)
13 THEN 3+
14 REPEAT [DROP ;

\om\la\m-humwaﬁ

#71
(EXPERT-2 verify comments MVP-FORTH)

EXIT

USETHEN pushes all string THENS to KNOWNTRUE,
executes all THENRUN subroutines, and ignores any
BECAUSE clauses or BBECAUSERUN's.

On entry, TOS is rule # .

mmqmmhwwwmﬁ

Note: All THENRUN's, like IFRUN's must return a tf.

10 This can be changed - at some risk - by dropping
11 DROP after RUNEQN, here. Pay attention to RUNEQN.

12
13

15
EXPERT SYSTEM TOOLKIT

49

SCR #72

@ (EXPERT-2 verify support MVP-FORTH)
1
2 : TRYRULE+ (4 —-—— tf)
3 DUP DUP RULE#PUSH { save r# for ASK)
4 TESTIF+ (now, prove)
) IF USETHEN TRUE
6 EISE DROP FALSE
. THEN ;
8
9
10
11
12
13
14
15
SCR #73
@ (EXPERT-2 verify definition MVP-FORTH)
1 : <VERIFY> ((hyp® === ¢tf)
2 DUP RECALL NOT { — tf, tor - £)
3 IF <FINDRULES DUP -1 = (any rules ?)
4 IF (no rules) DROP ASK (-—= tf)
5 ELSE (some rules to test)
6 BEGIN DUP -1 = (REMEMBERFALSE fact cannot be proved.)
7 IF DROP @ REMEMBERFALSE FALSE TRUE (out of rules)
8 ELSE TRYRULE+ (=== tf)
9 IF (found true)
19 BEGIN -1 = UNTIL (drop rules) DROP TRUE TRUE
11 ELSE FALSE THEN THEN
12 UNTIL
13 THEN
‘14 ELSE SWAP DROP
15 THEN ; (leave truth flag)
SCR #74
@ { EXPERT-2 inference machine MVP-FORTH)
1
2 ' <VERIFY> CFA 'VERIFY ! (setup execution vector)
3
4 : DIAGNOSE UNLEARN
5 HYPSTACK 2-
6 BEGIN
7 2+ DUP @ @= NOT
8 IF DUP @ DUP @ CURHYP ! VERIFY ?7DUP
9 ELSE DROP (out of hyps to prove)
1ig FALSE TRUE
11 THEN
12 UNTIL
13 IF { . success) DROP CURHYP @ T2
14 ELSE T4
15 THEN ;

EXPERT SYSTEM TOOLKIT

56

SCR #75

g (HE.}I‘{PERI‘—Z inference machine comments MVP-FORTH)
E .
2 DIAGNOSE is a very simple inference machine. More
3 powerful inference machines would combine backward &
4 forward chaining tools.
5 HYPSTACK stores pointers in RAM to consequent cells which
6 have been designated as hypothesis (By THENHYP) . Cells
7 contain pointers to strings, or CFAs for runtime MVP-FORTH
8 words. Hypothesis cells must point to strings because
9 this expert system collects rules by comparing string
10 addresses. THENHYP can only refer to a string consequent.
11 Other consequents can be strings, or execution words
12 { analytical subroutines) .
13 VERIFY campares string pointers, or solves equations
14 which must return a truth flag.
15
SCR #76
@ (EXPERT-2 rule compiler MVP-FORTH)
1
2 : 8= (addrl, addr2 — tf)
3 TRUE $FLAG ! DUP C@ SCOUNT @ = NOT (string counts = ?)
4 IF DDROP FALSE EXIT THEN
5 DUPCR @ (this allows 255 byte string check - maximum)
6 DO 1+ SWAP 1+ OVER C@ OVER C@ = NOT (characters = 2)
7 IF FALSE SFLAG ! LEAVE THEN
8 LOOP DDROP SFLIAG @ ;
9
16 EXIT
11
12 §= is hi-level string comparison definition.
13
14
15
SCR #77
@ { EXPERT-2 rule campiler MVP-FORTH)
1
2 ¢ FINCCLAUSE (addr --- £, or addr, t)
3 STRINGSTART
4 BEGIN DUP Ca@ (count > 8 2)
5 IF DDUP $= '
6 IF (found) SWAP DROP TRUE TRUE
7 ELSE COUNT + FALSE (not yet)
8 THEN
9 ELSE DDROP FALSE TRUE (nowhere)
1g THEN
11 UNTIL ; EXIT
12 FINDCLAUSE simple checks to see if a string being
13 campiled from rules already exists in string array which
14 begins at STRINGSTART. If it already exists, leave
15 address where found, and true - else leave false.

EXPERT SYSTEM TOOLKIT

51

SCR #78

@ (EXPERT-2 rule compiler MVP-FORTH)
1
2 : ADD . (compile a number into rules)
3:ADDE @OC, ; (string + logical flag)
4 : ADD1 1C, ; (string - logic flag)
5 :ADD2 2C, ; { ean + logic flag)
6 : ADD3 3C, ; (egn - logic flag)
7 : ADDd 4 C, ; { because string logic flag)
8 : ADDS 5¢C, ; (because egqn logic flag)
9

10

11

12

13

14

15

SCR #79
g (EXPERT-2 rule compiler MVP-FORTH)
1
2 : GETCLAUSE (-— string addr)
3 C/L >IN @ OVER MOD - BLK @ BLOCK >IN @ +
4 SWAP DUP >IN +! -TRAILING DUP SCOUNT ! (save count)
5 DDUP CR TYPE (type string) OVER (addr) 1- FINDCLAUSE
6 IF (found) SWAP DROP SWAP DROP (leave string addr)
7 ELSE DUP STRINGS @ C! (count)
8 STRINGS @ 1+ SWAP CMOVE (move string to string array)
9 STRINGS @ DUP COUNT + STRINGS !

10 THEN ; EXIT

11

12 GETCIAUSE gets rest of line in input stream. CMOVEs string
13 to string array. Leaves string address for compiling
14 in rule field.

15
SCR #80
@ (EXPERT-2 rules comments MVP-FORTH)
1 EXIT
2
3 Strings are limited to C/L long - including the operator
4 (IF, THEN, etc) . On Apple II, C/L might = 406, depending
5 on MVP-FORTH system implementation. It is possible to
6 change GETCLAUSE to compile longer strings.. '
7
8 STRINGS holds pointer to byte where tf will be compiled.
9
14 -TRAILING leaves addrress and count.
11
12
13
14
15

EXPERT SYSTEM TOOLKIT

52

sC

2
3

-8

= s o

#81
(EXPERT-2 rule compiler MVP-FORTH)

VARIABLE -FINISHED?
VARIABLE -IF-FINISHED?

5 VOCABULARY RULE IMMEDIATE

W -JhH

lg

12
13
14

P e e
m-bunrﬂa\pooqmm-hwul-nﬁ

4

Vo~ oSO

RULE DEFINITIONS

: ANDIF 1 -IF-FINISHED? ! ADDd@ { logic flag)
GETCLAUSE ADD ; IMMEDIATE

: ANDIFRUN 1 ~-IF-FINISHED? ! ADD2
(COMPILE] ' CFA ADD ; IMMEDIATE

: AND [COMPILE] ANDIF ; IMMEDIATE

$#82
(EXPERT-2 rule campiler MVP-FORTH)

<IF> -FINISHED? @
IF ADDd @ ADD (end flag for previous rule field)

@ -FINISHED? !
THEN 1 #RULES +! ;
(If this IF follows a THEN, then compile an end flag)
(for the previous consequent field. If this is the first)
(IF antecedent field, do not compile a flag.) ™
: ANDNOT 1 -IF-FINISHED? ! ADD1 GETCLAUSE ADD ; IMMEDIATE

: IFNOT <IF> [COMPILE] ANDNOT ; IMMEDIATE
: ANDNOTRUN 1 -IF~FINISHED? ! ADD3 [COMPILE] ' CFA ADD ;

IMMEDIATE
: IFNOTRUN <IF> [COMPILE] ANDNOTRUN ; IMMEDIATE

#83
(EXPERT-2 rule compiler MVP-FORTH)

: <THEN> 1 -FINISHED? ! -IF-FINISHED? @
IF ADD@ ¢ ADD THEN ; -

: IF <IF> [COMPILE] ANDIF ; IMMEDIATE

: IFRUN <IF> [COMPILE] ANDIFRUN ; IMMEDIATE
: ANDTHEN ADD@ GETCIAUSE ADD ; IMMEDIATE

: THEN <THEN> [COMPILE] ANDTHEN ; IMMEDIATE

: ANDTHENRUN ADD2 (CCMPILE] ' CFA ADD ; IMMEDIATE

EXPERT SYSTEM TOOLKIT

53

(%5}
Q)
-]

#84
(EXPERT-2 rule compiler MVP-FORTH)

: THENRUN <THEN> [CCMPILE] ANDTHENRUN ; IMMEDIATE

THENHYP <THEN> ADD¢ HERE GETCLAUSE
ADD HYPSTACK PUSH DROP ; IMMEDIATE

: ANDRUN [CGMPILE] ANDIFRUN ; IMMEDIATE

W R-NAWewN~SR

: BECAUSERUN 1 -IF-FINISHED? ! ADD5S
19 ([COMPILE] ' CFA ADD ; IMMEDIATE

12 : BECAUSE 1 -IF-FINISHED? ! ADD4
13 GETCLAUSE ADD ; IMMEDIATE

SCR #85
(EXPERT-2 rule compiler MVP-FORTH)

: DONE ADD@ @ ADD (COMPILE] FORTH DEFINITIONS ;
FORTH DEFINITIONS
¢ RULES [COMPILE] RULE HERE RULESTK ! ¢ #RULES !

STRINGSTART STRINGS ! HYPSTACK 256 ERASE
@ -FINISHED? ! ;

WO~ e wn - S

1@ EXIT

12 RULES starts rule compiling at STRINGSTART. This is
13 a memory location which must be selected to allow enough
14 buffer space to contain the programs rules.

SCR #86
(MVP-FORTH)

| el
H& WO O~IAUNEWNHS

el el
N WwN

EXPERT SYSTEM TOOLKIT

54

SCR

WO d WN D

SCR

-
WNHHWO-JA WU &S WN =

#9¢
(EXPERT-2 Digital circuit analyser

: WALL ; (something to forget)
RULES (start rule compiler)

{ Rule @
IFNOT E is true
ANDNOT F is true
THENHYP Chip 3 is bad

{ Rule 1

IF E is true

AND F is true
THENHYP Chip 3 is bad

$#91
(EXPERT-2 Digital circuit analyser

(Rule 2

IFNOT C is true
AND E is true
THENHYP Chip 2 is bad

(Rule 3

IFNOT D is true
AND E is true)
THENHYP Chip 2 is bad

#92
(EXPERT-2 Digital circuit analyser

(Rule 4

IFNOT E is true

AND C is true

AND D is true
THENHYP Chip 2 is bad

{ Rule 5

IF A is true

AND B is true
THENHYP Chip 1 is bad

DONE

EXPERT SYSTEM TOOLKIT

55

MVP-FORTH)

MVP-FORTH)

MVP-FORTH)

SC

O~ WM =D

9
1@
11
12
13
14
15

SCR
@
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

SCR

e
FROOLSAUEWNED

12

ol
U s

#96
(EXPERT-2 animal classification program

: WALL ; (something to forget)
RULES { start rule compiler)

(Rule g

IFNOT animal is bird

ANDIF animal has hair

THEN animal is mammal

BECAUSE hairy mild-givers are mammals.

{ Rule 1

IFNOT animal is bird
ANDIF animal gives milk
THEN animal is mammal.

#97
(EXPERT-2 animal classification program

(Rule 2
IF animal has feathers

THEN animal is bird
BECAUSE is ther a bird with no feathers?

{ Rule 3

IF animal flies

AND animal lays eggs
THEN animal is bird

{ Rule 4

IFNOT animal is ungulate
AND animal esats meat
THEN animal is carnivore.

#98
(EXPERT-2 animal classification program

{ Rule 5

IFNOT animal is ungulate
AND animal has pointed teeth
AND animal has claws

AND animal has forward eyes
THEN animal is carnivore.

(Rule 6

IF animal is mammal

AND animal has hoofs

BECAUSE ungulates have hooves
THEN animal is ungulate.

EXPERT SYSTEM TOOLKIT

56

MVEP~FORTH)

MVP-FORTH)

MVP-FORTH)

O &
NMBWNHFRVOION B WN S S

mm--amm-h-wmn—-'aﬁ

a

WO~ d W -G

e
Ry oy

L
W W

#99

(EXPERT-2 animal classification program

(Rule 7

IF animal is mammal

AND animal chews

BECAUSE ungulates chew cud
THEN animal is ungulate
ANDTHEN animal is even toed.

{ Rule 8

IF animal is mammal

AND animal is carnivore
AND animal has tawny color
AND animal has dark spots
THENHYP animal is cheetah.

$100

(EXPERT-2 animal classification program

(Rule 9

IF animal is mammal

AND animal is carnivore

AND animal has tawny color
AND animal has black stripes
THENHYP animal is tiger.

(Rule 18
IF animal is ungulate
AND animal has long neck
AND animal has long legs
AND animal has dark spots
THENHYP animal is giraffe.

$101

(EXPERT-2 animal classification program

(Rule 11

IF animal is ungulate

AND animal has black stripes
THENHYP animal is zebra.

{ Rule 12

IF animal is bixd

ANDNOT animal flies

ANDNCT animal swims

AND animal has long neck

AND animal is black and white
THENHYP animal is ostrich.

EXPERT SYSTEM
57

MVP-FORTH)

MVP-FORTH)

MVP-FORTH)

)

TOOLKIT

SCR #102
@ (EXPERT-2 animal classification program MVP-FORTH)

{ Rule 13)
IF animal is bird

ANDNOT animal flies

AND animal swims

BECAUSE penguin is bird that swims

AND animal is black and white

THENHYP animal is penguin.

WO -JhU b~

{ Rule 14)
IF animal is bird

AND animal flies

AND animal flies well

THENHYP animal is albatros.
DONE

e
W

s
'S

a
w

#1023
(MVP-FORTH)

WO~ WwN &

#1064
(MVP-FORTH)

EXPERT SYSTEM TOOLKIT

58

SCR 4108
(EXPERT-2 Stock. Program MVP-FORTH)

¢ INPUT# QUERY BL WORD NUMBER ;

VARIABLE CB

ZERO-CB # CB ! ;

CB? CBe o> ;

OO0 ~JRAUN B WA =

19 : BULL? CB @ 140 > ;

12 : BEAR? CB @ -100 < ;

SCR #109
(EXPERT-2 Stock Program MVP-FORTH)

i
3

." New data ? < Y/N > ™ KEY

9(Y) = .

" Input stock advances: " INPUT#

" Input stock declines: " INPUTH D-

" Input stocks traded: " INPUT#

108 SWAP M*/ DROP CB +!

." The new market strength =" CB@ .

9

384983889

Liv

0

WO~ dWwN S
(]
e |

L

1)

:

SCR #1190
(EXPERT-2 Stock Program MVP-FORTH)

: WALL ;
RULES

IFRUN START
THEN data available

WOo~-JAhU bWwN ==

IF data available

10 ANDRUN CB?

11 AND today's stock quotes are above yesterday's
12 THEN market is bullish '

13

14

15

EXPERT SYSTEM TOOLKIT

59

(=]
Q\qummhwmi—'aﬁ

=
U b L DD

SCR

WOoOI1MhWnNd= NS

#111
(EXPERT-2 Stock Program MVP-FORTH)

IF market is bullish
ANDRUN BULL?
THEN market is strongly bullish

IF market is bullish

ANDNOYTRUN BULL?

AND today's trading volume is more than twice normal
THEN bull run is over

IF data available

ANDNOT market is bullish
ANDRUN BEAR?

THEN market is strongly bearish

#$112

(EXPERT-2 Stock Program MVP-FORTH)
IF data available

ANDNOT market is bullish

ANDNOTRUN BEAR?

AND today's trading volume is more than twice normal

THEN bear run is over

IF bear run is over
THENHYP indications are to buy
IF bull run is over
THENHYP indications are to sell

IFNOT bear run is over

ANDNOT bull run is over

THENHYP do nothing -- wait

DONE

#113

{ MVP-FORTH)

EXPERT SYSTEM TOOLKIT

60

SCR #117

@ (EXPERT-2 Expert Program format MVP-FORTH)
1 =
2 : WALL ; B\
3
4 : DEMOWORD
5 CR ." ENTER A NUMBER { 1 TO 18) "
6 CR KEY 53 >
7 IF TRUE
8 ELSE FALSE
9 THEN ;
1@
11
12
13
14
15
SCR #118
(EXPERT-2 Expert Program format MVP--FORTH)

RULES

g
1
2
3
4 (RULE @)

5 IF we are ready to begin

6 ANDIFRUN DEMOWORD

7 BECAUSE a number > 5 is needed —~
8 THEN a number » 5 is available

9

13 { RULE 1)
11 IF a number > 5 is available.
12 THENHYP all conditions are satisfied

14 DONE

$119
(MVP-FORTH)

e §
BWNHFRQUVELIANBWN - R

[
w

EXPERT SYSTEM TOOLKIT

61

ARTIFICIAL INTELLIGENCE
PACKAGE
EXPERT SYSTEM TUTORIAL

for SUPER-FORTH 64™
By Mitch & Linda Derick

©Copyrlghl by Mitch & Linda Derick 1884, all rights reserved. SUPERFORTH is 2 TM of PARSEC RESEARCH

The Expert-2 Tutorial is designed to be used in
conjunction with the SUPER-FORTH Expert System Toolkit

documentation by Jack Park.

(C) 1984 MITCH DERICK AND LINDA DERICK
. ALL RIGTHS RESERVED.

COPYRIGHT NOTICE - This documentation, and the EXPERT-2
source program are copyrighted, 1984 by the authors.
This work is not released as a public domain product
for wholesale duplication and distribution. It may be
modified and used as a basis for the work of others,
and is intended toe be so used. However, trivial
changes and republication of this work will constitute
an infringement of the author s copyright.

TABLE OF CONTENTS
INTRODUCTION . . . o =+« & o o o o = + + + s + o = 2 o a o o » =«
WHAT DOES EXPERT-2 DO FOR ME? . . . & & ¢ 4 4« o o s « a s s =«

HOW DO I WRITE AN EXPERT-2 PROGRAM? « .« +« « &« &+ =

The RULE « « = = =« « « « & o o+ o o o o o o o o o o o o o &

Basic Operators: IF, BAND and THEN « « « o = = =« =

IF L] L] - - - - - - L] - . - - - t E E - - = - - - » L] a L]

w

AND
THEN . . . + « « =+« .

-

. - = & & & s ®

- - . - - - - »

Negative Context Operator Suffixes

IFNOT

AND NO T - L] L] - - L] L) L] L » » - - - - - L - L) - - [- L)
Expanding the Power of Expert-2 with Subroutines

RUN-Type Operators . . « s e s a4 e w s e = - .
I FRUN - - - . - - - L L] - - L] - - - - L » L] -
ANDRUN e e e 4 a4 e e e e e
THENRUN s 4 e s e s e a e e . .
ANDTHENRUN e e e e e e e s
THENHYP-Type Operator . e s e s s s s e e e 0w .
THENHYP e e s - ¥
BECAUSE-Type Operators e e s s 4 e s e s e e e e s e e
B ECAU SE L] L] L] L] » » L] » - - - - - - - -
BECAUSERUN« e o . e e e . c e e s s s s
Miscellaneous Operators . . .
WALL . . « « « o « = « & s = a4 e s e e O - T
RULE S - - L] - - . - L] . L] L L] - - L] -
DONE . - - - - - [] L] . L] - - - » - -
DIAGNOSE e+ s+ e = & & & & & & & & = = = s
WRITING AN EXPERT-2 PROGRAM . - e s
Guideline 1: Pormally state your goal/goals

Guideline 2; List the FACTS needed to reach the goal/goals

Guideline 3: Put these FACTS into chart form .

~] =1 Oh O

O 0 0o

10
10
11
11
12

12
12

13
13
13
14
14
14

15
15

16
16
17
20

Guideline 4:

Guideline 5:

Guideline 6:

INTRODUCTION TO PROGRAMMING IN FORTH

Using the chart, factor FACTS into natural

groupings .

Develop your logic flow using the "divide and

conquer" approach .

Convert the FACTS into QUESTIONS

Outputting Additional Information .

The Stack
Stack Operators
Constants and Variables
Memory Access
Logical Operators .
Control Words

Putting It All Together

SUGGESTED READING LIST

INDEX

22

23
26

32
33
33
35
37
37
38
38
39

45

46

LIST OF FIGURES

Example Rules + o & & + o« o«
Chart of Symptoms . . . « . « « o« & &

General Category Chart of Symptoms . .

Decision Tree . . .« « « « « s = =
Parameter Stack . “ B e e U E o e
Source Code for TIDY . . .

21
23
25
34
44

EXPERT-2 TUTORIAL

Introduction

If you want to use the Expert-2 system but are not familiar with
computers and/or FORTH language programming, then this tutorial is for

you. In this section, we shall answer the four most important
guestions a beginning user needs to know:

1. What does Expert-2 do for me?

2. How do I write an Expert-2 program?

3. How can I write simple FORTH routines?

EXPERT-2 TUTORIAL 1

What Does Expert-2 Do For Me?

In essence, Expert-2 is a way of simulating the knowldge and
experience an expert in a particular field of learning might have.

You, or another expert, formulate one or more hypothesis

that you wish to prove. You go about proving each hypotheses by
asking the user a series of questions to which he usually answers
"yes" or "no." As in "Animal, Vegetable or Mineral," careful

selection of questions eliminates entire categories of
possibilities and allows the user to come to the correct conclusion.

& In the example we will implement later, you are an "expert" on
childhood diseases. Your goal is to identify one of seven specific
diseases by asking questions about the symptoms. You will form seven
hypothesis {one for each disease)} and then try to prove one of these
to be correct. This is accomplished by both eliminating diseases for
which the symptoms do not match and by proving one hypotheses to be
true because the symptoms do match.

_ This process of asking questions, discarding hypothesis that do
not fit the given answers and concluding that one specific hypotheses
is true is what Expert-2 can do for you.

EXPERT-2 TUTORIAL 2

How Do I Write an Expert-2 Program?

In order to write an Expert-2 program, we must first understand
in general terms what the Expert-2 system is and how it works.

Expert systems fall under a category of computer science called
"artificial intelligence." With today’s state of the art, that means
that an expert system is about as intelligent as saccharin is sugar.
Saccharin may taste sweet, it may work fine for lots of things--but it
‘just is not sugar. Likewise an expert system can very capably do the
job it is intended to do but any intelligence it possesses has been
put there by you, the expert. Even then, Expert-2 is not so much
artificially intelligent as it is an "automated classifier."

By asking questions in an intelligent order, you can guide the
user through a series of computer-aided classifications. This is very
similar to the science of taxonomy: the science of classifying animals
and plants into hierarchies of superior and subordinate groups based
upon their characteristics.

So how does Expert-2 go about "classifying" questions and answers
until it can logically come to a conclusion, i.e., prove a hypotheses?
Let us make a high level "first pass" to get the general overall
picture; and then examine things in more detail.

The primary point to keep in mind is that the GOAL of Expert-2 is
to conclude, or prove, a particular hypotheses to be true. To
accomplish this, Expert-2 does the following:

1. Uses QUESTIONS and USER-RQUTINES to establish FACTS.
2. Uses FACTS to make DEDUCTIONS.

3. Uses both FACTS and DEDUCTIONS to prove HYPOTHESIS.

Since we are dealing with a computer system, we must have a
formal method of describing these QUESTIONS, USER-ROUTINES, FACTS,
DEDUCTIONS and HYPOTHESIS that is understandable both by us and by the
computer. This problem is cleverly solved by the use of RULES.

The RULE

A RULE is the basic building block of the Expert-2 system. The
entire purpose of a RULE is to establish a FACT or FACTS and then make
a DEDUCTION or HYPOTHESES based upon these facts. An Expert-2 program
is made up of a collection or set of rules. These rules are LOADed
into the computer and processed by Expert-2 into an Expert-2 program.

Expert-2 keeps special track of those RULES that conclude with a
HYPOTHESES (a THENHYP statement). These become the goal that Expert-2

EXPERT-2 TUTORIAL 3

tries to reach. Expert-2 will attempt to prove each HYPOTHESES true

in the order it compiled them. If the "current" HYPOTHESES is proven

to be not true, i.e., a QUESTION in its gquestion section is answered T
"false"; this RULE is discarded. Then the next HYPOTHESES in line is

made "current" and the system begins to prove it true or false.

Once any HYPOTHESES is proven true, Expert-2 types its conclusion
on the console and stops. If all HYPOTHESIS are discarded (proven
false), Expert-2 then types "CANNOT PROVE ANYTHING" on the console and

stops.

Just what is a RULE? A RULE is the mechanism Expert-2 uses to
convert FACTS into QUESTIONS, and QUESTIONS into DEDUCTIONS and
HYPOTHESIS. A RULE is composed of two sections: a guestion section
and a conclusion section. Basically you, the expert, ask the user
guestions in the question section, and then, based on the users
answers to those questions, you form a DEDUCTION or HYPOTHESES in the
conclusion section. The basic format of a RULE is:

operator QUESTION-statement
Question Section

(optional) operator QUESTION-statement

operator DEDUCTION or HYPOTHESES
Conclusion Section- —~

{optional) operator DEDUCTION or HYPOTHESES

You may ask any number of QUESTIONS within a RULE. The user must
answer "yes" or "no" to each QUESTION. Once a QUESTION is answered it
becomes a FACT. Expert-2 keeps track of these answers/facts for you.
If all of the QUESTIONS you asked in the question section are answered
with a "yes" then Expert-2 will mark all of the DEDUCTIONS or
HYPOTHESIS in the conclusion section to be true. If one or more
QUESTIONS are answered with a "no," then the conclusion section will

be marked false.

When executing, Expert-2 asks your questions by simply copying
the "QUESTION-statement" onto the CRT. For example, the QUESTION
statement:

IF animal has hair

would be displayed as:

IS THIS TRUE ? (Y=YES, N=NO, W=WHY)
animal has hair

The user would respond with a "¥" or "N." (We will talk about "w"

EXPERT-2 TUTORIAL 4

later) thereby converting the QUESTION-statement "animal has hair"
into a remembered FACT: either "animal does have hair" OR "animal
does not have hair."

Once all FACTS have been established, the DEDUCTION/HYPOTHESES
portion of the RULE can then make a statement. For example:

THEN animal is mammal

makes either the DEDUCTION that "animal is a mammal" if the question
section was all "true" or the DEDUCTION is inferred that the "animal
is not mammal" if part of the gquestion section was "false."

Another example is:
THENHYP animal is mammal

would make a HYPOTHESES that the "animal is mammal.” Note that the
negative form of a HYPOTHESES cannot be referred to in other RULES.

By now you are probably wondering how the system "knows" what
QUESTIONS have been asked, what FACTS have been resclved and what
DEDUCTIONS have been made. In other words, how are all of the RULES
"glued" together into one logical entity? The key to this answer lies
in the "statement" portion of the RULES.

A statement is simply a string of characters that follows an
operator and states a FACT. The way it glues RULES together is utter
simplicity! While LOADing, Expert-2 simply performs a character by
character comparison on each and every statement. Those statements
that are identical in every way are then logically linked or "glued"
together by Expert-2.

Note the phrase, "identical in every way." Expert-2 is dumb. To
a human, the statement "animal is mammal" is the same as the statement
"Animal is mammal.” To Expert-2 the capitalized "A" in "Animal" is
totally different than the lowercase "a" in "animal." These two
statements would be considered different and would not be logically
linked together by Expert-2. Likewise, typographical errors would
cause statements not to be linked. When testing an Expert-2 program,
watch for questions being asked more than once. If you notice any, -
check your screens carefully for a typo.

Let us see what all of this means by examining some rules similar
to a portion of the animal program listed in the manual. (Refer to
Figure T-1.)

EXPERT-2 TUTORIAL 5

(RULE 1)

IF animal flies

AND animal lays eggs T~
THEN animal is bird

(RULE 2)
IFNOT animal is bird

ANDIF animal gives milk

THEN animal is mammal

(RULE 3)
IF animal is mammal

AND animal has hoofs

BECAUSE ungulates have hoofs

THEN animal in ungulate

Figure T-1: EXAMPLE RULES

First look at RULE 1. When RULE 1 executes, two QUESTIONS will
be asked; does the animal fly and does it lay eggs? When the
QUESTIONS are answered, two FACTS will be known by the system:
whether the animal does or does not fly and whether the animal does or
does not lay eggs. No matter what the response, something will have
also been learned about the DEDUCTION "animal is bird." Either it is
a bird or it is not. The crux, the very heart of how Expert-2 works

is what happens next. Every single RULE that contains the identical —
statement "animal is bird" (follow the arrows) now automatically
"knows" what the result of RULE 1°s DEDUCTION was!
Another example is the "animal is mammal®" DEDUCTION in RULE 2.
Once RULE 2 is "satisfied," then all other RULES containing "animal is
mammal" know the answer.
Now that we know somewhat how Expert-2 works, let us take a look
at the tools (operators) we have available with which to write RULES.
There are three basic operators: IF, AND and THEN. Each of
which can be modified by additional suffix words. Let us examine the
three basic words using RULE 1 as our example:
Basic Operators: IF, AND and THEN
There are two operators that ask QUESTIONS in the question
section of a RULE: IF and AND.
IF
IF is used in the form: -

EXPERT-2 TUTORIAL 6

IF statement
where the statement following IF is used to ask a QUESTION. { The

"statement" portion of an IF phrase is referred to as an <antecedent
character string> in the EXPERT-2 manual.)

An example of IF .is:
IF animal flies

In this example, the statement "animal flies" will be typed onto
the CRT by Expert-2 and the user will give a true or false ("Y" or
LB) reply-

Note that the context of IF as used within a RULE is identical to
the common English usage of "if."

A RULE must always begin with some form of an IF-type operator.

IF statements return a "truth flag" to Expert-2 which reflect the
user ‘s answer to the QUESTION asked.

AND
AND is used in the form:
AND statement
where the statement following AND is used to ask an additional

question. (The statement portion of an AND phrase is referred to as
an <antecedent character string> in the manual.)

An example of AND is:

IF animal flies
AND animal lays eggs

In this example, the "animal lays eggs"” will be typed onto the
CRT by Expert-2 and the user will give a true or false reply ("Y" or
IlNll) R

The purpose of AND is to allow additional QUESTIONS, i.e., FACTS,
to be gathered within a single rule to support making a DEDUCTION or
proving a HYPOTHESES. This usage is identical to the English usage of
"and," i.e., "If this and that and those"

The use of AND within a RULE is optional. AND statements also
return a "truth flag" to Expert-2 which reflect the user’s answer to
the QUESTION asked.

THEN-type operators are used in the conclusion section of a RULE.

THEN

EXPERT-2 TUTORIAL 7

THEN is used in the form:
THEN deduction-statement

where the deduction-statement following THEN is used to make a
DEDUCTION. Note: A special form of THEN (THENHYP) is used to make

a HYPOTHESES. (The statement portion of a THEN phrase is referred to
as a <consequential character string> in the manual.)

An example of THEN is:
THEN animal is bird

In this example the statement "animal is bird" will be made into
a DEDUCTION (either true or false) when both QUESTIONS of RULE 1,
Figure T-1, have been turned into FACTS.

The purpose of THEN is to conclude a sequence of IF and AND
operator phrases. The usage is identical to the English usage of
"then," i.e., "if this and if that is true (or false)} then such and
such is also true {or false)."

Some form of the THEN operator (THEN or ANDTHEN) must always be
used to terminate an IF/AND sequence within a RULE. THEN statements
expect to be supplied with at least one "truth flag"” from previous IF
or IF/AND statements.

Negative Context Operator Suffixes

Just as it is possible in English to ask a question using
"positive logic," e.g., "If the animal flies ..."; it is also possible
to ask a guestion using "negative logic," e.g., "If the animal does
not fly" This is the purpose of the NOT operator suffix. There
are two forms of the NOT suffix; IFNOT and ANDNOT. Let us examine
them more closely again using Figure T-1 as an example.

IFNOT
IFNOT is used in the form:
IFNOT statement
where the statement following the IFNOT is used to establish the
opposite of a known fact. (The statement portion of an IFNOT phrase
is referred to as an <antecedent character string> in the manual.)
An example of IFNOT is:
IFNOT animal is bird

If the statement is established as a FACT by an IF or AND
phrase, or the statement is established as a DEDUCTION by a THEN

EXPERT-2 TUTORIAL 8

phrase; then all IFNOTs or ANDNOTs containing the same statement
are set to the opposite "truth value.”

As a general rule, IFNOTs or ANDNOTs should be used in place of
asking the user a "negative-logic" QUESTION. Rather than asking the
user a negative-logic QUESTION like "animal does not have feathers";
instead ask a positive-logic QUESTION like "animal has feathers"™ and
reverse the logic in another RULE via a NOT suffix. Otherwise your
Expert-2 program will be quite confused with double negatives like:
IFNOT "animal does not have feathers."

ANDNOT
ANDNOT is used in the form:
ANDNOT statement
where the statement following the ANDNOT is used to establish the
opposite of additional known FACTS. (The statement portion of an

ANDNOT phrase is referred to as an <antecedent character string> in
the manual.)

An example of ANDNOT is:
ANDNOT animal has feathers

Note that the ANDNOT operator only establishes the opposite of
additional known facts (just as AND acts). Like IFNOT, it does not
ask a QUESTION. If a RULE containing our example statement "animal
has feathers" is executed, the statement will not be typed onto the
CRT by Expert-2.

However, if the statement is established as a FACT by an IF or
AND phrase, or the statement is established as a DEDUCTION by a THEN
phrase; then all IFNOTs or ANDNOTs containing the same statement are
set to the opposite "truth value."

As a general rule, IFNOTs or ANDNOTs should be used in place of
asking the user a "negative-logic" QUESTION. Rather than asking the
user a negative-logic QUESTION like "animal does not have feathers";
instead ask a positive-logic QUESTION like "animal has feathers" and
reverse the logic in another RULE via a NOT suffix. Otherwise your
Expert-2 program will be guite confused with double negatives like:
IFNOT "animal does not have feathers."

Expanding the Power of Expert-2 with Subroutines

Subroutines are a way of greatly increasing the power and
flexibility of Expert-2. By using subroutines, you can allow Expert-2
to input numerical values, directly control its own inputs, print
large explanations, input complex answers or anything else you can
imagine. The only catch is that you must program these subroutines
yourself using FORTH.

EXPERT-2 TUTORIAL 9

Since Expert-2 is written in FORTH, all of the features of FORTH
become available to Expert-2. This includes any subroutines written
to be used by Expert-2.

All subroutines that you would want to use must be LOADed before
the word RULES. We will talk in detail about writing simple
subroutines in the section on "Programming in SUPER-FORTH."

Just what is a subroutine? A subroutine is a stand-alone, special
purpose routine that is written by you in FORTH to perform a specific
function that cannot be done for you by Expert-2. It is a small,
custom-made "mini program" that is "called" by Expert-2, executes and
does its special job, and "returns" back to Expert-2 to the next
phrase in the RULE.

Subroutines are "called" from Expert~2 via the suffix word RUN.
This usage is the same as the English use of the word "run," i.e., go
run subroutine XYZ.
The general format of a RUN-type operator is:
operator subroutine-name

where subroutine-name is the name of a previously defined subroutine.

Now let us examine each RUN-type operator in detail.

RUN-Type Operators

IFRUN
IFRUN is used in the form:
IFRUN subroutine-name

where the subroutine-name following IFRUN is called when the operator
executes. Note that an IFRUN phrase does not contain a "statement."
This is because the operator does not ask a QUESTION on the CRT to
establish a FACT. Instead, the called subroutine must return a "truth
value" which will be used in determining the truth of the DEDUCTION or
HYPOTHESES. (More about this "truth value" in the section on
programming in FORTH.)

When a RULE executes, any IFRUN phrase within the RULE will
always execute and call its associated subroutine.

An example of IFRUN is:
IFRUN INPUT.TEMPERATURE
In this example, the subroutine "INPUT.TEMPERATURE" will be

called whenever the RULE containing it executes.

EXPERT-2 TUTORIAL 10

ANDRUN

ANDRUN is used in the form:

ANDRUN subroutine-name

where the subroutine-name following ANDRUN is called when the operator
executes. Note that an ANDRUN phrase does not contain a "statement."
This is because the operator does not ask a QUESTION on the CRT to
establish a FACT. 1Instead, the called subroutine must return a "truth
value" which will be used in determining the truth of the DEDUCTION or

HYPOTHESES. (More about this "truth value"™ in the section on
programming in FORTH.)

An example of ANDRUN is:
ANDRUN INPUT.TIME

In this example, the subroutine "INPUT.TIME" will be called
whenever the RULE containing it executes.

The purpose of ANDRUN is to allow a subroutine or subroutines to
be called within a RULE in addition to whatever form of IF operator is

used.

The use of ANDRUN within a RULE is optional.

THENRUN
THENRUN is used in the form:
THENRUN subroutine-name

where the subroutine-name following THENRUN is called when the
-operator executes. Note that a THENRUN does not form a conclusion.
It simply calls a subroutine.

This is an important point to keep in mind: A RULE must come to
a conclusion. It does not matter whether a DEDUCTION or a HYPOTHESES
is proven true or false. The important point is that the RULE must
have at least a THEN or a THENHYP. A THENRUN may be added only in
addition to one of these two operator types.

A THENRUN or ANDTHENRUN will only execute when all IF or AND-type
phrases in a RULE have been satisfied as being true.

An example of THENRUN is:

THEN deduction-statement
THENRUN EXPOUND.CONCLUSION

In this example, the subroutine EXPOUND.CONCLUSION will execute

EXPERT-2 TUTORIAL 11

when the previous THEN has been satisfied.

ANDTHENRUN

ANDTHENRUN is used in the form:
ANDTHENRUN subroutine-name

where the subroutine-name following ANDTHENRUN is called when the
operator executes. This operator is similar to ANDTHEN in that it
allows an additional subroutine to be called whenever a THENRUN
executes,

An ANDTHENRUN must be preceded by a THENRUN; it cannot "stand
alone." However, multiple ANDTHENRUN ‘s may be included in the
conclusion portion of a RULE.

An example of ANDTHENRUN is:
THEN deduction-statement
THENRUN first.subroutine
ANDTHENRUN second.subroutine

In the example, the subroutine "second.subroutine" will execute
after the previous THEN has been satisfied and the previous THENRUN
subroutine "first.subroutine" has executed.

THENHYP-Type Operator

THENHYP
THENHYP is used in the form:
THENHYP hypotheses-statement
where the statement following THENHYP is used to make a HYPOTHESES.
(The statement portion of a THENHYP is referred to as a <consequent
character string> in the manual.)
An example of THENHYP is:
THENHYP animal is yellow bellied sapsucker
In this example, the statement "animal is yellow bellied
sapsucker"” will be made into a HYPOTHESES if all IF and AND-type

phrases in the RULE are true. Otherwise the HYPOTHESES will be proven
false and discarded.

BECAUSE-Type Operators

EXPERT-2 TUTORIAL 12

The purpose of BECAUSE-type operators is to give you (the expert)
a way to explain your reasoning to the user. When writing a BECAUSE-~
type phrase, you should put yourself in the user’s place. The series
of QUESTIONS you were leading the user through prompted him to answer
with a "why?"; instead of "yes" or "no." By putting yourself in the
users place, you should be able to see why he asked for further
assistance and compose an explanation to answer this question.
BECAUSE-type phrases can be placed anywhere desired within a RULE.

BECAUSE-type operators execute only when the user responds to a
QUESTION with a "W" ("Why?"). After BECAUSE-type operators execute,

Expert-2 re-asks the QUESTION it had originally asked. There are two
types of BECAUSE phrases; BECAUSE and BECAUSERUN.

BECAUSE
BECAUSE is used in the form:
BECAUSE explanation
where the explanation can be as many characters as will fit on the
remainder of the line (64 characters total). This explanation will be
printed out along with the rest of the RULE whenever the user responds
to a QUESTION with the answer "W" ("Why?").
An example of BECAUSE is:
BECAUSE INSECTS lay eggs and fly too
This whole line would be typed onto the CRT by Expert-2 and would

hopefully explain to the user what it was your line of reasoning was
for the QUESTION Expert-2 had just asked.

BECAUSERUN
BECAUSERUN is used in the form:
BECAUSERUN subroutine-name
where the subroutine-name following BECAUSERUN is called when the
operator executes. i.e., Whenever the user types in a "W" ("Why?") in
response to a QUESTION.
An example of BECAUSERUN is:
BECAUSERUN ?INSECTS-ARE-NOT-BIRDS
The subroutine "?INSECTS-ARE-NOT-BIRDS" would execute and do
whatever you programmed it to do; type out a detailed explanation,

type out an explanation plus data the system had collected via other
RUN-type operators, etc.

EXPERT-2 TUTORIAL 13

Think of BECAUSERUN as a more "intelligent" form of BECAUSE whose
purpose is still to clarify your line of thinking to the user.

Miscellaneous Operators:

There are several operators that serve no purpose other than to
"tell" Expert-2 what your intentions are. These operators will now be
discussed.

WALL
WALL is used in the form:
: WALL ;

where the colon, the characters "WALL" and the semicolon are all
considered to be part of WALL. Note the colon and semicolcon each must
be separated from "WALL" by at least one blank or space. (WALL is
actually being defined as a FORTH word that does nothing but serve as
a placeholder. Refer to the section on Programming in FORTH for the
reasoning behind the : and ;.)}

. WALL is used to "flag" the beginning of your Expert-2 program
{both subroutines and RULES). WALL should be the very first word in
your program since it serves as a boundary or "wall" between your
program and the SUPER-FORTH/Expert-2 code.

WALL is used in conjunction with the FORTH word FORGET. Typing
FORGET WALL (cr) will cause the system to "forget" everything loaded
into the system up to and including WALL.

RULES
RULES is used in the form:
RULES

RULES is a word that tells Expert-2 to get ready to accept your
set of RULES. RULES should be placed after any subroutines you
created but before any RULES.

What RULES does is to tell SUPER-FORTH to treat any further text
lecaded into the system as Expert-2 RULES and not SUPER-FQORTH
instructions.

NOTE: An error message of "CONDITIONALS NOT PAIRED" when loading
RULES is a good sign that you possibly forgot to include "RULES" in
your program code.

DONE

EXPERT-2 TUTORIAL 14

DONE is used in the form:
DONE

DONE is basically the opposite of the word "RULES." DONE should
be the last word in your program.

What DONE does is tell Expert-2 that no more RULES will be

loaded, so do any final processing that is necessary and process any
further text input as SUPER-FORTH instructions.

DIAGNOSE
DIAGNOSE is used in the form:
DIAGNOSE {(cr)

where DIAGNOSE (cr)} is typed in from the console.

DIAGNOSE, as its name implies, is the word that tells EXPERT~2 to
begin "diagnosing" a user ‘s problem.

EXPERT-2 TUTORIAL 15

Writing an Expert-2 Program

Now that we have covered the basics of Expert-2, let us use this 2N
knowledge to create a simple Expert-2 program. N,

There are many ways of writing a program. What we want to show
you is how to write your thoughts in an organized manner, so that the
program is understandable to Expert-2 and will lead the user logically
toward a definite goal or hypotheses.

If you have never done any programming before, the most obvious
approach is to simply sit down and start writing or "coding" Expert-2
RULES. Unfortunately, this simplistic approach to problem solving
will almost always end up in frustration and disaster. Fortunately,
though, over the years the computer science world has developed simple
guidelines that (when followed) assure success almost as surely as the
sit-down-and-code approach assures disaster.

These guidelines can be applied to Expert-2 in six straight-
forward steps: '

1. Formally state your goal/goals, i.e., the eventual
HYPOTHESES/HYPOTHESIS you wish to prove.

2. List the FACT/FACTS needed to reach the goal/goals.
3. Put these FACTS into chart form.

4. Classify these FACTS into general categories of
"natural groupings."

5. Develop your logic flow using the "divide and conguer"
approach.

6. Convert the FACTS into. QUESTIONS, i.e., RULES.

GUIDELINE 1:; Formally state your goal/goals, i.e., the eventual
HYPOTHESES/HYPOTHESIS you wish to prove.

Do not let the simplicity of this step lull you into skipping
over it. Countless billions of dollars have been wasted in the
programming industry because of programmers who omitted this step.
You have to know where you are going. The whole purpose of Expert-2
is to use your knowledge to lead a user from Point A to Point B. You
cannot lead the user to Point B if you yourself are unsure of what or
where Point B is. Or, even worse, you cannot get to Point B if your
concept of Point B keeps evolving as you code.

One point to keep in mind is that, if you cannot state your goal
in a succinct, concise manner, there is no way you are going to be
able to program it successfully. The "1711 start coding now and
things will become more cobvious as I go along” attitude only makes it T\
obvious that you should not have skipped this first step!

EXPERT-2 TUTORIAL 16

OK. 8o let us formally state our problem in as much detail as
necessary to explicitly cover all of the bases.

GOAL: By asking questions about a subject’s symptoms, identify
one of seven childhood diseases.

Develop a set of Expert-2 RULES that will ask QUESTIONS
concerning symptoms and will arrive at one of seven possible
HYPOTHESIS.

The seven childhood diseases that we wish to either prove as a
true HYPOTHESES or discard as a false HYPOTHESES are:

Measles

Mumps

Chicken Pox
German Measles
Flu

Whooping Cough
Common Cold

That pretty well sums up what our sample program is going to do.

GUIDELINE 2: List the FACT/FACTS needed to reach the goal/goals.

Just as Guideline 1 makes clear what our goal is; Guideline 2
tells us exactly what we need to prove to reach it.

Here we list the information needed to develop our QUESTION/RULE
base. We must supply enough information to be able either to
positively prove or disprove each HYPOTHESES. On the other hand, too
much information can lead to user confusion and possibly wrong
conclusions. Fortunately, you are the expert in this realm of
knowledge and the correct choices should readily become apparent.
This information must be stated such that it can be phrased as an
Expert-2 QUESTION.

EXPERT-2 TUTORIAL 17

The following are the facts needed to be ascertained for our
Childhood Diseases program., These facts are summarized from SYMPTOMS
The Complete Home Medical Encyclopedia, edited by Sigmund S. Miller,)

published by Avon Books, NY, NY.

HYPOTHESES 1:

Symptoms :

HYPOTHESES 2:

Symptoms:

HYPOTHESES 3:

Symptoms:

‘HYPOTHESES 4:

Symptoms :

Measles

Runny nose

High temperature -- fast rising

Harsh, hacking cough

Bloodshot eyes

Conjunctivitis

White spots inside cheeks

Heavy, brownish-pink rash first on scalp and neck, then
body

Mumps

Swelling of salivary glands.

Moderate to high temperature

Painful or impossible to suck on lemon N
Scant or excessive saliva

Lymph node in neck enlarged

Chicken Pox

Spotty rash, pimples, blisters all at same time
Achy body

High temperature

Chills

German Measles

Runny nose

Slight temperature

Light, rose-colored rash first on face and neck, then
body

Lymph nodes behind ear enlarged

Stiff joints

Headache

EXPERT-2 TUTORIAL 18

HYPOTHESES 5: Flu

Symptoms: Abrupt temperature and chills
Severe headache
Strong body aches
Weakness
Runny nose
Sore throat
Inflamed mucus membrane of eye
Cough '
Vomiting
Diarrhea

HYPOTHESES 6: Whooping Cough

Symptoms: Runny nose
Sneezing
Tearing
Light, hacking cough (at first)
Loss of appetite
No temperature
Dozen coughs, then whooping air intake

HYPOTHESES 7: Common Cold

Symptoms: Moderate temperature
Sore throat
Runny nose
Sneezing
Mild body aches
Moderate headache

As you can see, listing the facts for each HYPOTHESES is not a
trivial matter. Documenting a large complex problem can be very time
consuming and tedious. You should be aware, however, that any time
spent formally documenting the facts will be less than the time spent
by skipping this step and attempting to get an undocumented program
debugged.

This listing or documenting of the facts has four important
purposes.

1. All of the facts needed to reach a specific HYPOTHESES
are collected in one place rather than spread out in an
Expert-2 program’s RULE set.

This allows you to see both missing facts needed to
reach the goal and additional facts that could confuse
reaching the goal.

2. Exhaustively writing each fact necessary to reach a
goal reveals commonality between HYPOTHESIS. This

EXPERT-2 TUTORIAL 19

allows you to more easily perform Guideline 3 (Break
the facts into natural groupings). If a certain fact
or group of facts are necessary to prove two or more
HYPOTHESIS, they may be grouped together to form a
DEDUCTION (via a THEN-type statement) and thereby
greatly reducing the number of IF and AND-type QUESTION
statements you must program in the RULE set.

3. Having all of the facts for each HYPOTHESES in one
place is invaluable when you start debugging your
Expert-2 program. Once the facts are converted into
QUESTIONS, it becomes more difficult to grasp the
entire path to be taken to prove or disprove a
particular HYPOTHESES. If many facts have been reduced
down to DEDUCTIONS, it may be extremely difficult to
work "backwards" to see what facts really prove a
HYPOTHESES as opposed to what the code (which has a
"bug" in it) shows.

4. Future modification of a program may be impossible
without good documentation of the original data. - Many
times in the data processing world, expensive programs
are thrown out and re-written because proper guidelines
were ignored and the "new" programmer could not make
heads or tails out of an improperly documented program.

After the FACTS have been listed, you are ready to proceed to
Guideline 3.
GUIDELINE 3: Put these FACTS into chart form.

This is a very straightforward step. In Figure T-2, the
previously listed FACTS have been put into a chart format.

EXPERT-2 TUTORIAL 20

DISEASES

SYMPTOMS Chkn |Germ
Meas §Mump JPox JMeas

Fever, high, steady X
Cough, moderate X
No appetite

Fever, none

Cough, severe with whooping

Cough, light at first

Tearing

Sneezing

Diarrhea

Vomiting

Sore throat

Sweating

Weakness

Headache, bad

Headache, moderate

Stiff joints

Enlarged lymph nodes behind ear
Rash, face, neck then body

Rash, rose-colored

Fever, slight

Chills

Body aches, mild

Rash, spotty, pimples and blisters
Enlarged neck lymph nodes

Scant or excessive saliva

Cannot suck lemon

Fever, moderate

Swelled salivary glands

Rash, on scalp, then body

Rash, brownish pink

White spots inside cheek
Conjunctivitis

Bloodshot eyes

Cough, harsh, hacking

Fever, high, fast rising

Runny nose - 7 _
Stuffy nose, later X
Body aches, severe _ X

PP Dd Dd g

PP P
]
24 DG DO G M M
R
> >

PG DG B DG X DG M X
]

pe

Figure T-2: Chart of Symptoms

All of the FACTS are listed in a column on the left. The
HYPOTHESIS are listed in columns to the right. An "X" is placed
whenever a FACT is true for a given HYPOTHESES.

The purpose of putting the FACTS into chart format is so that all

EXPERT-2 TUTORIAL 21

of the necessary information is available in one concise location.
This makes implementing Guideline 4 much easier.

For larger problems, it may be necessary to make a chart several
pages long. For complex problems with many non-related possible
HYPOTHESIS, it may be necessary to create several separate charts with
each chart reflecting a different portion of the problem.

Once you have written out all of the needed facts and plotted
them into a chart format, you are ready for Guideline 4,

GUIDELINE 4: Using the chart you just made, factor or classify FACTS
into general categories of "natural groupings."

The purpose of this guideline is to help you to write a much more
organized "top-down" style Expert-2 program. The technique used here
is very much like the factoring used in high school algebra. What you
must do is examine the data in your chart and look for commonality of
FACTS between HYPOTHESIS. We will then make another chart composed of
these factored, general categories.

In looking at your chart or charts, you can see tens or even
hundreds of FACTS. Some of these FACTS should have some commonality
among them. By noting this commonality and asking a general QUESTION
concerning these FACTS, you can either follow one logic path, asking
more detailed QUESTIONS about the same subject or discard a whole
subject.

The animal classification program (Figure T-1)} contains a
splendid example of this type of factoring. A DEDUCTION is drawn
whether or not the animal in question is a MAMMAL. Once this is
established, whole sections of code can be eliminated or selected by
the use of "IF animal is mammal" or "IFNOT animal is mammal."

The childhood diseases program that we will be programming does
not have these straight forward kinds of commonality. We chose it
because most data bases do not have such clear cut divisions but are

still factorable.

This guideline is not a hard and fast rule. If you can factor a
lot of your data, that is good. You have simplified your task. If
your data is such that it cannot be easily factored, do not worry
about it. The programming task can be done either way. But the
benefits derived from factoring are great enough that you should
attempt at least one "factoring pass" through the data.

Let us now examine our chart (Figure T-2) and look for FACTS
which when combined to form DEDUCTIONS will separate whole groups of
HYPOTHESIS.

EXPERT-2 TUTORIAL 22

D I § E A § E S8
SYMPTOMS Chicken]German Whooping jCommon
Measles {Mumps Pox Measles]Flul Cough Cold

Fever - X X X X X X
Rash X X X
Cough X X X
Headache X X X
Body ache X X X
Sneezing X X
Sore throat X X
Chills X X
Conjunctivitis X X
Runny nocse X X X X X

Figure T-3: General Category Chart of Symptoms

The first grouping that came to mind was "fever."” There are six
FACTS that have "fever" as their common denominator. We then start a
new "General Category Chart" composed of these groups. As you can see
in Figure T.3, "fever" is the first entry in our General Category
Chart. (The importance of this chart will become more obvious in
Guideline 5.)

The second group of FACTS is "rash." This too goes into our
General Category Chart. We proceed until as many FACTS as possible
are listed. At this stage of the game, we have no idea which groups
are or are not going to be of use. So we keep on factoring until we
run out of relatively obvious groups. If at a later time we discover
we need more groups, we can always go back and look for more obtuse

groupings.

One technique you may wish to try is to attempt to physically
group FACTS together as you are originally creating the chart. This
may make it easier to "see" natural groupings.

The final result is shown in Figure T-3. This General Category
Chart combined with our exhaustive chart of FACTS will give us all of
the information needed to actually program our problem.

GUIDELINE 5: Develop your logic flow using the "divide and conquer"®
approach.

There are countless ways to program any moderately sized problem.
However, there are easy approaches and more difficult approaches.
There are approaches that clearly lead the user to a HYPOTHESES and
ones that confuse the user but still arrive at a suitable HYPOTHESES.
It is the purpose of this guideline to hopefully aim you in a more
logical direction.

In essence, the "divide and conquer" approach is a technique

EXPERT-2 TUTORIAL 23

where you eliminate half of your possible HYPOTHESIS at once by asking
a QUESTION which is true for half of them and not true for the other
half. You then proceed to "divide and conguer" both of these halves,
etc., until the problem is broken down to a level where you can set
about proving one individual HYPOTHESES.

Before we start to program our childhood diseases program using
the "divide and conquer" approach, let us momentarily pause and
examine an alternate "brute force" approach. Doing this will help you
to better understand and appreciate the "divide and conquer" method.

The most direct "brute force" method would be to make one RULE
for each childhood disease. There would be seven RULES.

For example the RULE for measles would then be:

{ RULE 1 -- Measles)

IF subject has rash on scalp, then body
AND subject has brownish pink rash

AND subject has white spots inside cheek
AND subject has conjunctivitis

AND subject has bloodshot eyes

AND subject has harsh hacking cough

AND subject has high, fast rising fever
AND subject has runny nose

THENHYP is Measles

The next RULE would contain all of the symptoms for mumps, the
next for chicken pox, etc. If any QUESTION in a question section is
answered negatively, EXPERT-2 will immediately discard that RULE and

move on to the next RULE.

At this level the problem is simple and easy to code. It might
even be a realistic approach to solving a problem of this size. There
are, however, disadvantages to this approach. The user immediately
begins answering highly detailed QUESTIONS; lots of QUESTIONS for
complex problems. When a negative response to a QUESTION causes
Expert-2 to try to prove a new HYPOTHESES, there is no contextual
indication to the user that this has happened. All that happens is
more, similar, detailed QUESTIONS are asked. The user therefore has
difficulty discerning the course you, the Expert, are following.

The "divide and congquer" approach has the advantage of giving the
user an inkling of where you are heading through the use of high level
questions.

Let us begin solving the childhood disease problem using the
"divide and conquer" approach. We will be referring to Figure T-4
which is a graphic illustration of the solution. This figure is
called a "decision tree" and is an extremely powerful tool for helping
you to visualize the logic paths you are creating.

EXPERT-2 TUTORIAL 24

Rash

N

Y N
Runny “nose Body ache
Y 1| Y
| | |
| i
Measles Chicken Pox Flu Whooping Cough
German Measles Common Cold Mumps

Figure T-4: Decision Tree

We begin coding our childhood diseases Expert-2 program by
examining Figure T-3, the General Category Chart of generalized FACTS.
Following the "divide and conquer" strategy, we look for a category
that will roughly divide the seven possible HYPOTHESIS intoc two
groups.

"Rash" splits the HYPOTHESIS into two groups quite nicely. Three
HYPOTHESIS (measles, chicken pox and German measles) have "rash" as a
symptom. The remaining four diseases do not. Referring to the .
decision tree, Figure T-4, we can graphically see "Rash" dividing the
problem into two parts. '

The next step is to further "divide and conquer" each of the two
groups we just created.

Again, referring to the General Category Chart, Figure T-3, we
look for a category that will divide those diseases that do have a
rash into two groups. Scanning down the list of symptoms, we find
that "runny nose" is a symptom that splits those diseases that do have
a rash. The "yes there is a rash" portion of the decision tree,
Figure T-4, shows us how "runny nose" further divides our possible
HYPOTHESIS.

Focusing our attention on the remaining "no rash"
HYPOTHESIS/diseases, we see (referring to the General Category Chart,
Figure T-3) that "body ache” is a quite reasonable separator. Flu and
the Common Cold have associated body aches; Whooping Cough and Mumps
do not. As before, the decision tree, Figure T-4, illustrates this
further subdividing of the seven HYPOTHESIS.

EXPERT-2 TUTORIAL 25

Another good choice for dividing the "no rash" diseases would
have been "sore throat." It might have even been a better choice.
This situation is where your expert knowledge would guide you into
making the wisest choice. 1If it is a toss up as to which category to
use, choose the one that will give the user the best idea of what you
are trying to prove.

OK. Let us see where we are so far. Referring to the decision
tree, Figure T-4, we can see that the problem has now been divided
into the four separate groups:

l. Measles Types:
German Measles
Measles

2. Chicken Pox

3. Flu Types:
- Flu .
Common Cold

4. MNon-rash, Non-flu:
Mumps
Whooping Cough

Is this enough division? There are still unused categories in
our General Category Chart. Should we break the problem down further
in order to utilize these remaining categories? Have the possible
HYPOTHESIS been categorized to small enough groups? In this case, we
have probably broken the problem down enough. But as you can see,
this is an objective, not subjective question and you, the expert,
will have to make the decision for your particular problem.

Remember though that none of this is "cast into concrete." If,
once you start coding RULES, you discover a better way to "divide and
conquer"; GO BACK AND REDO IT if it will gain you anything. If you
find that you need a finer subdivision of a HYPOTHESES, simply GO BACK
AND REDO IT. Although it is more work (sometimes much more work), it
will be worth it because you will have a more easily understandable
program and a less confused user.

Finally, after meticulous planning of our "strategy" (via our
decision tree, Figure T-4) and our "tactics" (via our chart of
symptoms, Figure T-2); we are ready for Guideline 6.

GUIDELINE 6: Convert the FACTS into QUESTIONS, i.e., RULES.

At last! We are now going to write the RULES. We have done our
homework and laid the foundation. Our "high-level logic" is laid out
for us in the form of the decision tree, Figure T-4. We should be
able to lead the user through an understandable logic path. Our "low-
level logic" is carefully documented in our table of FACTS, Figure
T-2. Using this data, we can be assured that we ask the correct and

EXPERT-2 TUTORIAL 26

necessary QUESTIONS to come to the correct HYPOTHESES.

Obviously, we must write code (RULES) that reflects all of the
logic paths. As a matter of personal preference, we will follow the
left (true) logic path first; then work our way to the right (false).

Using the decision tree, Figure T-4, as a guide; let us write
RULE 1.

Before writing a RULE, always ask yourself, "what s the purpose
of this RULE?" (This is the same old thing of knowing your goal.
Only this time it is at a very detailed level.) So, what do we want
RULE 1 to do?

Looking at the decision tree (Figure T-4) we see that if we
combined "rash" and "runny nose" into cne RULE we could make a
DEDUCTION that the disease "might be measles” of one sort or another.

Therefore:

({ RULE 1 -- might be Measles)

IF subject has rash

BAND- subject has runny nose

BECAUSE rash and runny nose might mean measles
THEN might be measles

Note the BECAUSE statement explains to the user why you are
asking these particular QUESTIONS.

Referring to Figure T-4 you can see that this particular logic
path has answered enough questions to led us to one of three
HYPOTHESIS; namely measles, German measles or chicken pox. At this
point, let us create an intermediate level RULE that will use the
already answered QUESTIONS to ascertain if the disease in question
"might be chicken pox." This intermediate level RULE is not
absolutely necessary for this problem but it shows the usefulness of
factoring your problem with RULES. This leads us to RULE 2:

(RULE 2 -- might be Chicken Pox)

IF subject has rash

ANDNOT subject has runny nose

BECAUSE no runny nose with chicken pox
THEN might be chicken pox

Notice that this RULE uses an ANDNOT. The DEDUCTION "might be
chicken pox" can only be true if the user previously answered "N" to
the question "subject has runny nose."

Also notice that the DEDUCTION drawn is that the disease "might
be chicken pox." This is a very important point! According to the
decision tree (Figure T-4), once we are "at this level"” if the disease
is not a form of measles, it must be chicken pox. Right? Wrong! A
rash and no runny nose does not necessarily mean chicken pox. What
about poison ocak? Eventually we must substantiate our conclusion of
"might be chicken pox" with enough specific QUESTIONS that we can make
a HYPOTHESES with certainty that the disease is undeniably chicken

EXPERT-2 TUTORIAL 27

pox. Be careful when programming that you do not fall into this type
of trap. You must always use enough FACTS to conclusively prove a

given HYPOTHESES to be true. =
On to RULE 3. This particular problem (childhood diseases) is

simple enough that we can now attempt to definitely prove that either
measles or German measles is the disease in question. More complex
problems, e.g., repairing an aircraft jet engine, may require many
more levels of intermediate RULES. But here, we can now ask enough
detailed QUESTIONS to "prove" measles to be the disease.

{ RULE 3 -- is Measles)

IF might be measles

AND subject has brownish pink colored rash

BECAUSE measles have brownish pink rash

AND subject has rash on scalp, then body

AND subject has white spots inside cheek

AND subject has conjunctivitis

AND subject has bloodshot eyes

AND subject has harsh, hacking cough

AND subject has fast rising, high fever

THENHYP 1is Measles

If Expert-2 cannot prove RULE 3 to be true, i.e., the subject
does not have measles; then Expert-2 will attempt to prove the next
HYPOTHESES. According to our decision tree (Figure T-4), this next
HYPOTHESES should attempt to prove, one way or another, whether the
o,

subject has German measles.

{ RULE 4 -- is German Measles)

IF might be measles

AND subject has rose colored rash

BECAUSE German measles rash is rose colored

AND subject has rash on face, then body

AND subject has moderate headache

AND subject has stiff joints

AND subject has enlarged lymph nodes behind ear
AND subject has slight fever

THENHYP is German Measles

The next step is to trace the false path (in our decision tree,
Figure T-4) and follow up on RULE 2 -- "might be chicken pox."

({ RULE 5 -- is Chicken Pox)}

IF might be chicken pox

AND subject has high, steady fever

AND subject has chills

AND subject has mild body aches

AND subject has rash, spotty, pimples and blisters
THENHYP is Chicken Pox

We have now written three HYPOTHESIS RULES for: German measles,
measles and chicken pox. (Remember that HYPOTHESIS RULES must contain .
a THENHYP.) Now we must take the false logic path for "subject has {
rash."” Just as we combined "subject has rash" and "subject has runny

EXPERT-2 TUTORIAL 28

nose” in RULE 1, so can we combine IFNOT "subject has rash" and
"subject has body ache" to separate out the flu-type diseases.

(RULE 6 -- might be flu/cold)

IFNOT ' subject has rash

AND subject has body aches

BECAUSE body aches tend towards flu or cold
THEN might be flu/cold

We can now use the DEDUCTION "might be flu/cold"” to definitely
prove if the subject has the flu or a common cold.

(RULE 7 -- is Flu)

IF might be flu/cold

AND subject has moderate cough
AND subject has possible diarrhea
AND subject has possible vomiting
AND subject has score throat

AND subject has- sweating

AND subject has weakness

AND subject has bad headache
THENHYP is FLU

{ RULE 8 -- is Common Cold)

IF might be flu/cold

AND subject has sneezing

AND subject has sore throat

AND subject has moderate headache
AND subject has mild body aches
AND subject has moderate fever
AND subject has runny nose
THENHYP is Common Cold

The last two RULES that we need to code are for either positive
identification of Mumps or Whooping Cough.

(RULE 9 -- is Mumps)

IFNOT subject has rash

IFNOT might be flu/cold

AND subject has swelled salivary glands
AND subject has enlarged neck lymph nodes
AND subject has scant or excessive saliva
AND subject cannot suck lemon

AND subject has moderate fever

THENHYP 1s Mumps

(RULE 10 -- is Whooping Cough)

IFNOT subject has rash

IFNOT might be flu/cold

AND subject has no appetite

AND subject has no fever

AND subject has cough, light at first
AND subject has severe whooping cough
AND subject has tearing

AND subject has sneezing

EXPERT-2 TUTORIAL 29

AND subject has runny nose
THENHYP is Whooping Cough

—
Notice the IFNOT "subject has rash."™ 1In originally testing these
RULES, we found that this statement was necessary. Without it, a
negative answer to the final test for measles (RULE 5) would cause
Expert-2 to try proving this RULE instead of responding with "CANNOT
PROVE ANYTHING."
That completes our Expert-2 program for determining childhood

diseases. The following is our completed code in its entirety:

(RULE 1 -- might be Measles)

IF subject has rash

AND subject has runny nose

BECAUSE rash and runny nose might mean measles

THEN might be measles

{ RULE 2 -- might be Chicken Pox)

IF subject has rash

ANDNOT subject has runny nose

BECAUSE no runny nose with chicken pox

THEN might be chicken pox

(RULE 3 -- is Measles)

IF might be measles

AND subject has brownish pink colored rash —_

BECAUSE measles have brownish pink rash
AND subject has rash on scalp, then body
AND subject has white spots inside cheek
AND subject has conjunctivitis

AND subject has bloodshot eyes

AND subject has harsh, hacking cough

AND subject has fast rising, high fever
THENHYP is Measles

(RULE 4 -~ is German Measles)

IF might be measles

AND subject has rose colored rash

BECAUSE German measles rash is rose colored

AND subject has rash on face, then body

AND subject has moderate headache

AND subject has stiff joints

AND subject has enlarged lymph nodes behind ear
AND subject has slight fever

THENHYP is German Measles

(RULE 5 -~ is Chicken Pox)

IF might be chicken pox

AND subject has high, steady fever

AND subject has chills

AND subject has mild body aches

AND subject has rash, spotty, pimples and blisters
THENHYP 1is Chicken Pox

EXPERT-2 TUTORIAL 30

{ RULE 6 —- might be flu/cold)

IFNOT subject has rash

AND subject has body aches

BECAUSE body aches tend towards flu or cold
THEN might be flu/cold

{ RULE 7 -- is Flu)

IF might be flu/cold

AND subject has moderate cough
AND subject has possible diarrhea
AND subject has possible vomiting
AND subject has sore throat

AND subject has sweating

AND subject has weakness

AND subject has bad headache
THENHYP is Flu

(RULE 8 -- is Common Cold }

IF ' might be flu/cold

AND subject has sneezing

AND subject has sore throat

AND subject has moderate headache
AND subject has mild body aches
AND subject has moderate fever
AND subject has runny nose
THENHYP is Common Cold

(RULE 9 -~ is Mumps)

IFNOT subject has rash

IFNOT might be flu/cold

AND subject has swelled salivary glands
AND subject has enlarged neck lymph nodes
AND subject has scant or excessive saliva
AND subject cannot suck lemon

AND subject has moderate fever

THENHYP is Mumps

{ RULE 10 -- is Whooping Cough)

IFNOT subject has rash

IFNOT might be flu/cold

AND subject has no appetite

AND subject has no fever

AND subject has cough, light at first
AND subject has severe whooping cough
AND subject has tearing

AND subject has sneezing

AND subject has runny nose

THENHYP is Whooping Cough

EXPERT-2 TUTORIAL

Introduction to Programming iﬂ FORTH

If you wish to expand the power of Expert-2 through the use of
"analytical subroutines," you must program those subroutines using
FORTH. Fortunately, it is relatively easy for a novice to use FORTH
to perform simple tasks.

Let us briefly review "analytical subroutines.™ An "analytical
subroutine” is a user coded extension of Expert-2., You "call" a
subroutine via the "RUN" suffix appended to a command; IFRUN, ANDRUN,
and THENRUN. The subroutine name must follow the command. The
purpose of the subroutines is to allow you to customize a general
purpose Expert-2 system to exactly fit your application.

The use of subroutines falls into two broad categories: 1)
asking more detailed QUESTIONS (wvia IFRUN and ANDRUN) than is possible
just with IF and AND and 2) outputting additional information to the
user (via THENRUN). Of course, subroutines can be made to perform any
other tasks depending upon how much effort goes into their
programming.

SUPER-FORTH is a language composed of “definitions" which are
commonly referred to as "words." Each "word" has a name. Typing that
name on the console or including the name within a new definition is
all that is needed to "execute" that definition.

Each word is made up of other "lower level" words that already
exist. These words can be either SUPER-FORTH "nucleus" words supplied
with SUPER-FORTH, words that you have previously created yourself or a
combination of both. (The very lowest level FORTH words, called
primitives, are actually made up of the machine language code for the
processor they are running on. This fact will be transparent to you.)

It is quite easy to create a new word to perform some specific
purpose. To tell SUPER-FORTH that you are defining a new word, you
start out with a : {(a colon) preceded and followed by at least one

space. (FORTH uses spaces as delimiters.) After the : comes the name
of the new word. Following the name come previously defined words
that will do whatever you want done. You end a definition with a ; (a

semicolon). This tells FORTH that the definition is finished.
Let us look at an example.
: DO-ALL DO-1ST DO-2ND DO-3RD ;

In this example, the : tells FORTH that we want to create a new
word and the name of this new word is to be "DO-ALL." When DO-ALL
executes, three previously defined words; DO-18T, DO-2ND and DO-3RD
are to sequentially execute. Finally the ; tells FORTH to stop
defining the new word.

Now simply using the new word DO-ALL will do DO-1ST, then DO-2ND
and finally DO-3RD. If desired, you could now use DO-ALL in an even
"higher level" word. For example:

EXPERT-2 TUTORIAL 32

: DO-EVERYTHING
START-UP
DO-ALL
DO-REST
FINISH-UP ;

Outputting Additional Information

Let us make a FORTH word that can be called as a subroutine to
output additional information to the user.

: MOREINFO CR ." Any text following the ‘dot quote”’
word up to, but not including a terminating quote
mark, will be output to the CRT. " ;

The word starts with a : and is named MOREINFO. The SUPER-~FORTH
word CR (pronounced "carriage return" or "c-r") skips to a new line.
(It outputs a "carriage return" command, hence the name CR.) The
word ." (pronounced "dot-quote") is the SUPER-FORTH word that prints all
of the text following it until the terminating quote mark. ." will
output a character string up to 127 characters. (If you need more
characters than 127, simply close the first ." with its terminating "
and add another CR and start a new ." statement.) WNote that the
single tick marks () are not counted as terminating quote marks.
Finally, a ; is used to tell SUPER-FORTH that the word is finished.

When MOREINFO is called via a "THENRUN MOREINFO" statement, the
text will be output to the CRT.

THE STACK

Many operations of SUPER-FORTH centers around what is called the
parameter "stack." If you are familiar with the operation of Hewlett-
Packard calculators, you already know how to use FORTH s stack. If
not, the stack is easy to understand.

The stack is used to hold parameters--numbers or data. Words
normally pass parameters to each other via the stack. Picture the
stack as one of those plate holders you see in a cafeteria. .(See
Figure T-5.) The last plate put into the holder is the first plate
removed. Likewise the last value put onto the stack is the first
value removed. You do not have to directly concern yourself with
‘putting parameters onto or taking them off of the parameter stack.
SUPER-FORTH does that automatically for you.

EXPERT-2 TUTORIAL 33

P \ % ~
/7 \3 / \\
/ < >
/ D N
, —a_ v

e — ——
w
P

Figure T-5: Parameter Stack

Executing a word that requires a parameter automatically "gobbles
up" the top stack parameter. If two parameters are required; two -
parameters are “gobbled."” Likewise, if a word returns a parameter,
that parameter is automatically put onto the parameter stack.

There is an SUPER-FORTH word called .S that will "non- _
destructively" list the contents of the parameter stack onto the CRT.
This is a very useful word to use when you are debugging your
subroutines. Let us try .S and see how it works.

First let us make sure the stack is empty. The easiest way to do
this is to type a few characters of gibberish onto the CRT and then
press carriage return. SUPER-FORTH will attempt to locate this
gibberish in its dictionary and will fail. When it fails, it will
display the error message *"NOT RECOGNIZED" underneath the characters
in question. Secondly SUPER-FORTH will empty all parameters from its
parameter stack. Try it.

Enter:
LKJL (cr)

(providing, of course, you have not previously defined a word named
LKJL!)

Now enter:

.5 {(cr)

EXPERT-2 TUTORIAL 34

SUPER-FORTH will respond with "EMPTY STACK."
Now put some numbers onto the stack by entering:

1 23 4 (cr) (Bach number separated by a space)
Now type:

.S (cr)

SUPER-FORTH will respond with 4 3 2 1 where the leftmost number is

the value on the "top" of the stack.

To print ocut a value on the top of the stack use the SUPER-FORTH
word . (a period called "dot"). Type:

. {cr)
SUPER-FORTH responds with 4.
‘Remember that the last value entered is the first value removed.

Try playing with the stack a while until you become familiar and
comfortable with its operation.

Stack Operators

Let us now go over the operation of a few simple stack operators.

+ (valuel \ value2 --- sum)
+ (pronounced "plus”) adds the top two values on the
stack and replaces them with their sum.

- (minuend \ subtrahend --- difference)
-~ (pronounced "minus") subtracts the top stack entry
from the second stack entry and replaces both values
with their difference. '

¥ (valuel \ value2 --- product)
* (pronounced "times”) multiplies the top two stack
entries together and replaces both values with their

product.

/ (dividend \ divisor --- quotient)
/ (pronounced "divide") divides the second stack entry
by the top stack entry and replaces both values with
their dividend.

/MOD (dividend \ divisor --- remainder \ quotient)
/MOD (pronounced "divide-mod") divides the second stack
entry by the top stack entry and replaces both values
with their dividend and their remainder. The remainder
takes its sign from the dividend.

EXPERT-2 TUTORIAL 35

(valuel \ value2 --- boolean truth flag)

= (pronounced "equals") compares the top two stack
entries and replaces them with a "truth flag" of "1" if
the two are equal and a "0" value if the two are not

equal.

> (valuel \ value2 --- boolean truth flag)
> (pronounced "greater-than") compares the top two
stack entries and replaces them with a "truth flag" of
"1" if the second stack entry is less than the top
stack entry and a "0" if the second stack entry is
equal to or greater than the top entry.

< (vailuel \ value2 --- boolean truth flag)
< (pronounced "less-than") compares the top two stack
entries and replaces them with a "truth flag" of "1" if
the second stack entry is greater than the top stack
entry and a "0" if the second stack entry is equal to
or less than the top entry.

0= (value --- boolean truth flag)
0= (pronounced "zero-equals") examines the value on the
top of the stack and replaces it with a true flag "1"
if the value is equal to 0 or with a false flag "0" if
the value is not equal to 0.

0< (value --- boolean truth flag)
0< (pronounced "zero-less-than") examines the value on
the top of the stack and replaces it with a true fiag
1" if the number is less than zero (negative) or with
a false flag "0" if the number is greater than or equal
to zero.

0> (value --- boolean truth flag)
0> (pronounced "zero-greater-than") examines the value
on the top of the stack and replaces it with a true
flag "1" if the number is greater than zero {positive)
or with a false flag "0" if the number is less than or
equal to zero.

Notice how all of the above SUPER-FORTH words always "gobble up"
all of their input parameters. This is an almost universally followed
rule of thumb for FORTH: A word "uses up" all of its inputs from the
parameter stack.

There are many times when this "gobbled up" data is also needed
as input for other words. The following stack operators are provided
to support just such instances.

DROP (value to be dropped ---)
DROP (pronounced "drop") discards the value on the top

of the stack.

EXPERT-2 TUTORIAL 36

DUP (valuel --- valuel \ valuel)
DUP (pronounced "dupe") duplicates the top value on the
stack. This is useful if you want to keep a certain
value and also feed it to a word. Just DUP the value

first.

OVER (wvalue2 \ valuel --- value2 \ valuel \ value2)
OVER (pronounced "over") copies the second stack entry
onto the top of the stack.

ROT (valuel \ valueZ \ value3 -- value2 \ value3 \ valuel)
ROT {pronounced "rote") rotates the stack by removing
the third stack entry and placing it onto the top of
the stack.

SWAP (value2 \ valuel --- valuel \ value2)

SWAP (pronounced "swap") exchanges the top two values
on the stack.

Go ahead and practice using these words while observing the
results via .S.

Constants and Variables

Constants and variables in SUPER-FORTH are called just that:
CONSTANT and VARIABLE. They are used in the form:

value CONSTANT name
VARIABLE name (Note no initial value)

Executing the name of a CONSTANT places the value of the CONSTANT
onto the top of the parameter stack.

Executing the name of a VARIABLE places the address of the
variable’s value onto the top of the parameter stack.

Memory Access

Memory access is performed via the FORTH words @ and !
(pronounced "fetch” and "store” respectively).

@ (memory address --- data)
@ (pronounced "fetch") gobbles an address and replaces
it with the 16-bit memory contents of that address.

! (data \ memory address ---)
! (pronounced "store") does the opposite of @. !
gobbles both the data and an address from the stack and
"stores" the 16-bit memory location (pointed to by the
address) with the supplied data.

EXPERT-2 TUTORIAL 37

The following are examples of memory accesses:

To create a VARIABLE named COUNT, you would type:
VARTABLE COUNT (cr)

To fetch data from the VARIABLE named COUNT, you would type:
COUNT @ (cr)

To store the data 1234 into COUNT, you would type:
1234 COUNT ! (cr)

To store a CONSTANT named COUNT-VAL equaling the value 1000, you
would first have to create the CONSTANT by typing:

1000 CONSTANT COUNT-VAL {cr)

Then store the CONSTANT ‘s value into the VARIABLE COUNT by
typing: '

COUNT-VAL COUNT ! (cr)

Logical Operators

These words perform "logical functions" on stack values. What
are "logical functions" you ask? The two that you would use most
often are:

OR (valuel \ value2 --- boolean truth flag)
OR (pronounced "or") replaces the top two stack values
with their boolean sum. That is, if either one or both
of the two values are TRUE (non-zero), the resulting
truth flag will be TRUE (1). If both values are FALSE
(zero), then the truth flag will be FALSE (0). This
action is identical to the English language concept of
llor. L1}

AND (valuel \ value2 --- boolean truth flag)
AND (pronounced "and") replaces the top two stack
values with their boolean product. That is, if both
values are TRUE (non-zero), the resulting truth flag
will be TRUE (l1). 1If any one or both values are FALSE
(zero), the resulting truth flag will also be FALSE
(zero). This action is identical to the English
language concept of "and."

Control Words

EXPERT-2 TUTORIAL 38

SUPER-FORTH has an extensive array of control-type words that allow
conditional decisions to be made (e.g., IF, ELSE, THEN) and different
types of looping structures. The use of these words is beyond the
scope of this brief introduction to SUPER-FORTH programming.

The books mentioned in the bibliography, especially STARTING
FORTH and ALL ABOUT FORTH are excellent teaching tools for learning
FORTH programming. Both of these books are available through Mountain

View Press.

Putting It All Together

Let us use some of these SUPER-FORTH words to actually write a
subroutine to input additional data.

The purpose of this subroutine will be to avoid the ambiguity of
what a "mild," "moderate," or "severe" fever actually is. For
purposes of this example, we shall ask the user to type the
temperature in question into the computer. (in a real-life problem
you might just ask if the fever was "between 98 and 100 degrees" or
"between 100 and 102 degrees," etc.

What we need to do is to write five simple subroutines. One will
ask the user to type in the temperature and will then save it in a
variable. The remaining four subroutines will determine if the fever
is mild, moderate, severe or if there is no fever at all. The fact
that we must have four separate subroutines is dictated to us by
Expert-2. Remember that we are replacing the QUESTION asked by an IF
or ANDIF statement that returns a single truth flag whenever it
executes. Since we have four questions and only one truth flag
returned each time, we obviously must have four subroutines.

To begin we must first define the Expert-2 code that will call
the subroutines. What is it we want to do? We want to come to one of
four DEDUCTIONS via THEN statements. The CONCLUSION being either no,
mild, moderate or severe temperature.

Since we can give the subroutines any name we want, let us give
them understandable, readable names that define their functions at a
glance:

GET-TEMP
?NO-TEMP
?MILD-TEMP
?MODERATE-TEMP
?SEVERE-TEMP

(Standard FORTH naming convention says that the name of a word
which does nothing but return a truth flag should begin with a
question mark.)

Now that we have named the subroutines, let us write the high
level Expert-2 code to call them.

EXPERT-2 TUTORIAL 39

We only have to ask the user to enter the temperature once.
Therefore, we need only to call GET-TEMP from one RULE, the first

RULE.

{ Rule 1)

IFRUN GET-TEMP
ANDRUN ?NO-TEMP
THEN no fever

({ Rule 2)

IFRUN ?MILD-TEMP

THEN fever is mild

{ Rule 3)

IFRUN ?MODERATE-TEMP
THEN fever is moderate
{ Rule 4)

IFRUN ?SEVERE-TEMP
THEN fever is severe

When RULES 1, 2, 3 and 4 execute, one of the DEDUCTIONS will be
proven true and three will be proven false. We could have embedded
GET-TEMP within the first subroutine called ?NO-TEMP but we have more
control of the program for future modifications if we call GET-TEMP
directly from the Expert-2 code.

Let us turn our attention to the subroutines themselves and
define exactly what we expect each one to do.

GET-TEMP

?NO-TEMP

?MILD-TEMP

?MODERATE-TEMP

?SEVERE-TEMP

EXPERT-2 TUTORIAL

Type a message to the user asking him
to enter the temperature in whole
degrees with no decimal points. Save
this temperature in the variable SAVED-
TEMP. Return a TRUE flag.

Compare the value in SAVED-TEMP with 98
degrees and return a TRUE flag if it
equals; a FALSE flag if not.

Test to determine if the value in
SAVED-TEMP is 99 or 100 degrees.

Return a TRUE flag if yes, a FALSE flag
if not.

Test to determine if the value in
SAVED-TEMP is 101 or 102 degrees.
Return a TRUE flag if yes; a FALSE flag
if not.

Test to determine if the value in
SAVED-TEMP is 103 degrees or higher.

Return a TRUE flag if yes, a FALSE flag __

if not.

40

GET-TEMP

We start our subroutines with GET-TEMP. GET-TEMP gets the
temperature from the user via the word INPUT. The word INPUT is a
very common, useful definition used to input a single-precision number
from the console. It is very similar in function to the INPUT command
bound in BASIC. The stack activity in parenthesis shows that the word
takes nothing from the stack but returns a single-precision value.

{ INPUT GET-TEMP 84AUGlé6)

1 CONSTANT TRUE
0 CONSTANT FALSE

VARIABLE SAVED-TEMP

: INPUT (--—- N)
QUERY BL WORD NUMBER DROP ;
: GET-TEMP (--- FLAG)
CR ." Please enter temperature in whole degrees"
CR ." without a decimal point: "
CR INPUT SAVED-TEMP !
TRUE ;

Note the definitions of TRUE and FALSE. Use of these CONSTANTS
makes the subroutines more readable.

INPUT is beyond the scope of this tutorial.

As you can see, GET-TEMP is very straightforward. The CR skips

to a new line. The message is output via ." ("dot~quote"). INPUT
ends up with the value on the top of the stack. SAVED-TEMP sets up
for the ! ("store”) by putting the address of the variable on the

stack. The ! uses the address to store the value into the variable.
Lastly, TRUE puts a true flag onto the stack to satisfy the
requirement that all Expert-2 IF statements must return a flag.

?NO-TEMP
?NO-TEMP is shown as follows:

: ?NO-TEMP (--- FLAG)
SAVED-TEMP @ 98 = ;

Again, the word takes nothing from the stack and returns a flag.
SAVED-TEMP sets up for the @ ("fetch") by putting the variable address
onto the top of the stack. The @ gobbled the address and copies the
previously saved value onto the stack. (The value still remains
unchanged in SAVED~TEMP.)

The value 98 is then put onto the stack so a comparison can be
made via the following =. The = gobbles up both the fetched value and

EXPERT-2 TUTORIAL 41

the 98 and returns a truth flag. This truth flag will be TRUE if the
values were equal and FALSE if they were not. No additional flag is
needed since a flag is returned (and put onto the top of the stack) by™.

?MILD-TEMP
?MILD-TEMP is defined as follows:

: ?MILD-TEMP (--- FLAG)
SAVED-VALUE @ 99 =
SAVED-VALUE @ 100 =
OR ;

?MILD-TEMP uses a simple, "brute-force" approach to test for 99
or 100 degrees by first testing for 99 then for 100 and then combining
the two resulting truth flags with an OR. The fetching and
comparisons are identical to what was done in ?NO-TEMP.

Note that it would be possible to do one fetch from SAVED-TEMP
and then use DUP and SWAP to get the value and flags into their proper
positions. While possibly executing a little faster, this style of
coding results in far less readable code. Hence the approach taken in

the example.

The OR at the end of ?MILD-TEMP performs an OR function of the
two truth flags left by the =’s. Since an OR will result in a TRUE
flag if either or both of its inputs are TRUE, a TRUE condition for
either 99 or 100 degrees results in a TRUE output from ?MILD-TEMP.

?MODERATE-TEMP

?MODERATE~-TEMP is defined as follows:

'+ ?MODERATE-TEMP (--- FLAG)
SAVED-VALUE @ 101
SAVED-VALUE @ 102
OR ;

?MODERATE-TEMP is identical to ?MILD-TEMP except that comparisons
are made on 101 and 102 degrees.

?SEVERE-TEMP

?SEVERE-TEMP and NOT are defined as follows:

: NOT (FLAG --- OPPOSITE FLAG)
0= ;
: ?SEVERE-TEMP (--- FLAG)

SAVED-TEMP @ 103 < NOT ;

EXPERT-2 TUTORIAL 42

?SEVERE-TEMP works on the premise that if the value in SAVED-TEMP
is "NOT less than 103," it must be equal to or greater than 103. Once
you understand this point, the rest is easy. The value is again
fetched from SAVED-TEMP by @. Putting 103 on the stack sets up for <
("less-than").

Now comes a slightly tricky part. The < returns a TRUE flag if
the value is less than 103 (which is exactly what it should do). Only
we want a TRUE flag if 103 is NOT less than the value. How do we
change the flag? With the NOT word! NOT simply says if the flag on
the top of the stack is false (i.e., 0), return a TRUE flag, else
return a FALSE flag {i.e., the truth flag was non-zero).

EXPERT-2 TUTORIAL 43

NOTES FOR BEGINNKERS

Using the ‘FORTH EDITOR
The FORTH EDITOR is used to edit source data for MVUP-FORTH

and Expert-2 programs. It is a "screepn-oriented® editor as opposed to
the "file-oriented” editor you may be used to using. Thig is because
of the way FORTH handles its data stored on disk.

The more common computer languages Keep data stored on disk in
the form of "files." Where a file is usually considered to be a
sequential collection of data. Files are accessed by names. For

example, tc edit the source code for a program named °CHILDHQOD," you
might type: "EDIT CHILDHOOD."®

The ‘FORTH editor, on the other hand, does not use files.
Instead it uses "screens"” or "blocks." FORTH divides its mass
storage up into 1824 byte "blocks." Hence a 258K disk will contain
282 Blocks. MJP-FORTH definitions and/or Expert-2 RULES are edited
onto these blocks or "screens.” The word block is generally used when
referring to the physical 19824-byte entities, “blocks,” while
*gcreens” generally refer to blocks which contain source code and are

edi ted by the editor.,

LOAD

Once you have edited your source code onto screens, you use the
MUP-FORTH words LOAD or THRU to *"load" the code into the computer.
LOAD is used in the formi

scri LOAD <(erd

where scr# ig a zcrsen (block) number. This will causze one screen
(biock) to be LOADed and compiled.

For example to load screen {88 you would trpe:

180 LOAD (cr)

IHRY

THRU is an extension of LOAD. THRU causes multiple seguential
gcreens to be LOADed. THRY is used in the form:

beginning=-scr# ending—-scr# THRU (cr)

where the beginning and ending screen numbers sgpecify Cinclusively>
the range of screens to be sequentially LOADed and compiled.

To load screens 1900 through 185, you would Lrpe:

188 185 THRU (cr)

EXPERT-2 TUTORIAL h3a

Creating 3 LOAD Screen

1t i# highly desirous to create what i3 called a "load screen.”
A "1oad screen” is simply a screen which |tself contains LOAD and THRU
commande instead of source code. When a load screen is LOADed via a
LOAD command, (or multiple load screens via a THRU command), the LOAD=
and THRUs contained cn these screens are g#xscuted and the appropriate
source code is compiled. This apprcocach saves you from repeatedly
having to enter iarge amounts of data just to get your program com-=
piled. Figure T-4 is an example of a load screen.

¢ CHILDHOOD DISEASE LOAD SCREEN MVP 34082° 2

: WaLL ;
280 28 THRU ¢ SUBROUTINES)
54 LOAD ¢ INPUT >

RULES
78 329 THRU ¢ RULES 9-1{9a)
81 LOAD ¢ RULE 11)
83 LOAD (¢ RULE 12
90 183 THRU ¢ RULES 13-17)
DONE

Figure T—6: Typical LOAD Screen

The Comment Line

A screen is composed of 14 lines of 44 characters each., The
first line of a screen is normally reserved as the "comment line.”
The comment line should begin with a ((left parenthesis) for “"start
comment” and ends with a > (right parenthesia) for "stop comment.”
The text on this line usually reflects what source code is on the
acreen. ODften the date and the person editing initials are placed in
the righthand portion of the comment line. (is used in the form:

(THIS LINE WILL BE & COMMENT LIME.) (cr)

INDEX

The significance of the comment)ine becomes apparent when you
use the word INDEX. INDEX is used in the form:

beginning~scr# ending-scr# INDEX <crd

where the beginning and ending screen numbers zpecify (Iinglusively) =z
sequential range of screens whose comment lines (& or topmost)ine?

are to be listed on the CRT. If your comment lines reflect what is on
the zcreens, INDEX will give you a good picture of what and where »our

EXPERT-2 TUTORIAL L43B

source data |is,

1¥ you wish to see what is on the top line of screens 180 through
120, just type:

190 120 INDEX (cr)

The Edi tor

The MVP=-FCORTH editor is a very simple "line" editor. It allows
you to edit one line at at time. In terms of editors, this editor is

very dumb. There are much more sophisticated, less error-prone
edi tors available. This editor was chosen for MUP-FORTH because:

1. It uses the same editor commands as listed in Starting FQRTH.

2, It is transportable between different computer systems
wi thout any customization being necessary.

3. It does not have to be used with a cursor-addressable
console., :

4. It is relatively small and compact.

Editor Commands

EDITOR

The editor lives in its own "vocabulary,” therefore you must
enter this vocabulary’s name before MUP-FORTH can recognize any editor
commands. This is very easy to do. Simply type the word EDITOR., 1If
vou type an editor command and the system responds with a *NQT
RECOGNIZED" message, type EDITOR and try again., Note: UWhenever you
compile any FORTH or Expert-2 definitions, e.g., via a LOAD or THRU,
the system exits the EDITOR vocabulary. To start editing again,
simply type EDITOR. EDITOR is used in the form:

EDITOR <cr)

Since the editor is written in MUP-FORTH, editor commandg are
also MUP-FORTH words and therefore must follow the same syntax rules.
The peint to Keep in mind is that individual! commands must be sep-—
arated by at least one space and commands do not ex2cute until a
carriage return is entered to terminate the command line.

Sereen-Orjented Commands

LLIST

To bagin any "editing session,” you must first list the screen to

EXPERT-2 TUTORIAL 43C

be edited via the word LIST. LIST is used in the form:
scr# LIST <(cr)

For example, to LIST screen 16@¢ you would type:

189 LIST <(cr)

I+ you type LIST without first putting the desired screen number
on the stack, whatever value that is on the stack will be used. There
is no telling what will be displayed., If the number is greater than
the number of blocks MUP-FORTH "thinks" are on the current drive, you
will get the error meszage "BLOCK NUMBER OUT OF RANGE." If this
happens, just try again makKing certain to put the number of the scraen

cn the stack before typing LIST.,

L Command

Once you liast a screen via the word LIST, that ecreen number is
saved by the editor and you can relijst that screen simply by trping
the command L. L also shows what Tine you are currently editing if
any and your current cursor location. The L command is used in the

form:
L <ecr)

At this point in an editing session, trping L would relist screen
180,

N Command

Once a screen is listed, it is poseible to list the next sequen-
tial screen by typing the editor command N (for “next") followed by a
space and the command L to actually list the screen. The N command is
dsually used in the form:

N L (cr)

At this point in an editing session, typing N L wouid list scrzen
181,

B Command

Conversely, to list the previocus ssquential screen, type B (for
"before") followed by space and L to list the screen. The B command

iz usually used in the form:
B L <cr2
ALt this point in an editing session, typing B L would list screen

109 again.

EXPERT-2 TUTORIAL 43D

FLUSH

When you are finished editing a particular screen, you must write
that changed screen back onto the disk. This is done via the FLUSH
command. FLUSH will write to disk anx blocks/screens which have been
modi fied or changed. If you do not FLUSH a modified screen, it will
protably only remain in memory. If you turn off the computer or
reboot, vyou will loge that data. FLUSH is used in the form:

FLUSH <cr)

% you had made editing changes to screen 189, FLUSH would update
the disk with that new screen.

EMPTY-BUFFERS

I¥ you happen to confuse a screen so badly that you simply want
to quit and start over, you can erase all of the screens in memorx
with EMPTY-BUFFERS. Once you have emptied the buffers, »ou must
relist any screen you desire to edit, OFf course, to be effective,
EMPTY-BUFFERS must be done in place of FLUSH! EMPTY~BUFFERE is used
in the form:

EMPTY-BUFFERS (cr>

If you had made editing changes to screen 1988, EMPTY-BUFFERS
would cause you to have a fresh copy of screen 109 before the last st
of changes were made.

Before changing disks, rebooting or powering off the computer,
always do one of the following:

1. Type FLUSH ~- to save any existing data.

2. Type EMPTY-BUFFERS -~ to empty the current buffers.

COPY

Sometimes it is necessary to copy the contents of one screen to
another screen, This can be accomplished through the use of COPY.

COPY is used in the form:
from-scr# to-scr# COPY (cr)

Note that the from {zource) screen is szecond on the stack and the
to (destination) screen is on the top, I+ you switch these, you wil]
clobber the very screen you want to duplicate. Be careful! C(Aiso co
not forget to FLUSH afterward!?

To copy screen 100 onto screen 181, you would twrpe:

EXPERT-2 TUTORIAL 43E

180 161 COPY FLUSH (cr)

WIFPE

There is one last standard acreen~oriented command. It is often
necessary to clear a screen to blanks. Although it is possible to
clear a screen line by line, it is much easier to use the WIPE
command. This command i3 used in the form:-

WIPE {cr

The screen that was LISTed last (either through LIST or L> will be
"wiped" to blanks. (Do not forget to do a FLUSH.)

To be safe, always type the L command (and carriage return).
before typing in the word WIPE. That war vou will be certain which

screen is going to be erased.

TIDY

There is one non-standard screen-oriented command that is some-
times very useful. This command is called TIDY. Since this command
is not included with SUPER-FORTH, it is defined in Figure T-6. Its
purpose is to "tidy" up a screen that may contain "control charac-
ters."” "Control characters" are undisplayable characters that, due to
the simplicity of the SUPER-FORTH editor, are sometimes put into a
screen. You cannot see these characters when you LIST a screen, but
when you try to LOAD that screen, the compiler does see these charac-
ters and stops.

If you seem to be having problems with a particular screen in
that the source code does not load properly, try running TIDY in the
form:

scr# TIDY (cr)

Do not forget to do a FLUSH.

(?NOT-PRINTABLE TIDY)}

?NOT-PRINTABLE (CHAR --- FLAG)
DUP BL < ©SWAP 126 > OR ;

TIDY (SCREEN# ---)

BLOCK 1024 OVER + SWAP

DO I Cé ?NOT-PRINTABLE
IF BL I C! UPDATE
THEN

LOOP ;

L

Figure T-6: Source Code for TIDY

EXPERT-2 TUTORIAL - L4

SUGGESTED READING LIST

e
All About FORTH by Glen B. Haydon, Mountain View Press.
MVP-FORTH Source Listings by G. Haydon and R. Kuntze, Mountain
View Press.
Starting FORTH by Leo Brodie, Prentice-Hall.
Thinking FORTH by Leo Brodie, Prentice-Hall.
All of the above books and other FORTH books may be obtained from:
MOUNTAIN VIEW PRESS
P. O. Box 4656
Mountain View, CA 94040 o~
o~

EXPERT-2 TUTQRIAL 45

INDEX

! 38-39 Hypothesis 3, 16-17
* 36

+ 36 IF 6-7, 27-28, 30
- 36 IFNOT 8-9, 29, 31
. 36 IFRUN 10-11, 33
.5 35-36 INPUOUT 42

/ 36

/MOD 36 NOT 43

0< 37

= 37 OR 39

0> 37 OVER 38

: 33

: 33 Questions 3-4

< 37

= 37 ROT 38

> 37 Rule 3

Q 38-39 RULES 14
AND (Expert-2) 7, 27-31 SWAP 38

AND (FORTH) 39
ANDNOT 9, 27, 30 THEN 8, 27, 30-31
ANDRUN 11, 33 THENHYP 12, 28-30
ANDTHEN 8 THENRUN 11-12, 33
ANDTHENRUN 12 TIDY 44
BECAUSE 13, 27-28, 30-31 U 52-53
BECAUSERUN 13-14 User Routines 9-10
CONSTANT 38-39 VARIABLE 38-39

CR F34

WALL 14

Deduction 3

DIAGNOSE 15

DONE 15

DROP 37

DUP 38

Fact le

Goal 17

EXPERT-2 TUTORIAL 46

Now, you can begin building you own EXPERT programs.

Let's see how we can help each other. We

would like to do several things for users of EXPERT
Systems.....

Referral service for contract jobs

Cross pollination of ideas and programs

Comments and corrections

Keep you aware of future developments
We can only do these things if we know something about
you. Please answer the following questions and return

the form ta: PARSEC RESEARCH

Drawer 1766
Fremont, CA 94538
1) Name
Address
City C State ZIP
Phone ()

2) Primary interest in EXPERT systems

3) Specific program being developed

4) Interested in: Referrals Exchanging Ideas

Marketing outlet for programs Ocher

