PROMAL LANGUAGE

Systems Management Associates, Inc.

PREOMAL
(PROgrammer”s Micro Application Language)
LANGUAGE MANUAL
A PROMAL LANGUAGE DESCRIPTION AND REFERENCE

For Apple II and Commodore 64 Computers

SYSTEMS MANAGEMENT ASSOCIATES, INC.
3325 Executive Drive
Raleigh, North Carolina 27609
(919) 878-3600

Rev. C — Sep. 1986

Copyright (C) 1986 SMA Inc.

Rev.

C

3-2 Systems Management Associates, Inc. PROMAL LANGUAGE

PROMAL LANGUAGE MANUAL

CHAPTER l: INTRODUCTION

This manual will introduce you to the PROMAL programming language, which we
think will find to be the most enjoyable and creative language available
for your computer. This manual will guide you step by step through a descrip-
tion of the PROMAL language, with examples along the way. It assumes that you
already have a working knowledge of BASIC (or some other high-level language)
and elementary computer concepts such as bits, bytes and memory addresses.
Comparisons are often given between PROMAL programs and the equivalent BASIC
program, so that you may draw on your previous experience.

You should study the manual carefully, because PROMAL is significantly
different from BASIC. As a BASIC programmer, you may find some aspects of
PROMAL a little strange at first reading. But if you give it a fair trial,
we“re sure you will socom want to do all of your programming in PROMAL.

We assume that you have already read the companion manual MEET PROMAL!,
which provides a "hands—-on" introduction to the PROMAL system as a whole. You
will find the operational aspects of the PROMAL EXECUTIVE, EDITOR, COMPILER,
and LIBRARY described in detail in the PROMAL USER”S MANUAL. This manual
explains the heart of the PROMAL system, the PROMAL programming language, which
you can use to create your own programs. PROMAL is especially well suited for:

Text processing applications

Scientific and Engineering applicatiocns
Educational applications

Interactive programming

Small business programming

Compilers, assemblers, editors or system software

* % k * ¥ %

Not only do PROMAL programs for these applications often run 20 to 100 times
(or more) faster than BASIC, they are actually easier to program than BASIC!
Programe that used to take weeks or months of assembly-language drudgery can
now be quickly developed with PROMAL instead.

WHY USE PROMAL?

Why should you learn PROMAL when you already know BASIC? Why should you
learn PROMAL instead of one of the older, structured languages such as PASCAL
or C?

Perhaps the most important reason is that PROMAL is in many respects
the most structured language available, because the PROMAL compiller reads
indentation as part of the syntax of the language. As you will see, the fact
that indentation always shows the true structure of your program will make your
programs easler to write, and more importantly, easier to maintain.

Another important consideration is that PROMAL is the only compiled language
available from a single vendor for the IBM PC, Apple II, and Commodore 64 - the
three biggest—selling machines in history. If you plan to develop commercial
software, or just think you might change computers some day, this will be
important to you. And PROMAL gives you top performance on all machines.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-3

CHAPTER 2: PROMAL PROGRAMMING LANGUAGE OVERVIEW

A PROMAL source program is a file of text composed of lines, normally
created using the PROMAL EDITOR. Each line is called a statement. A program
has a certain organization to it, which is similar to a recipe. A program
starts by declaring its name, and then identifies what "ingredients" are used
in the program. Ingredients are identified by the kind of data to be used, the
name of the data, and the quantity required. The list of ingredients is called
the declarations part of the program. After the declarations part of the
program comes the actual instructions which tell how to manipulate the data.
For clarity, the instructions are usually broken up into a number of proce-
dures, each of which has a name suggestive of its function.

For example, consider the actual PROMAL program in the right column, below,
and observe the similarities with the recipe at the left.

A Kitchen Recipe A PROMAL Program

FRIED CHICKEN: {-- Your recipe name --> PROGRAM LONGESTLINE
INCLUDE LIBRARY

2 1b. Chicken pes. <-— Main ingredients -—> BYTE LINE [81] ;current line

1/4 1b. shorteniag and amounts needed BYTE LONGEST ;longest length
WORD IFILE sinput file

SEASONED FLOUR: {—— Sub Procedure Name --> PROC SIZELINE

1/2 cup flour {—— Ingredients for --> BYTE LENGTH ;cur line length

1 tsp. salt sub-procedure

1/4 tsp. paprika
BEGIN ; Procedure
Mix all ingredients <-— Instructions for --> LENGTH=LENSTR(LINE)

for seasoned flour. sub—procedure IF LENGTH > LONGEST
LONGEST = LENGTH
END
Heat oven to 450. {— Main Process ~-> BEGIN ; Main Program
Melt shortening. setup IFILE=QPEN({ "TESTFILE.T")
Coat chicken with LONGEST=0

seasoned flour.

Cook about 45 min. <-- Loop walting for —--» WHILE GETLF(IFILE,LINE)

until golden brown. a condition SIZELINE ;test if biggest
Serve with gravy. {-— How to serve up =--» OUTPUT "Longest = #I",LONGEST
the results END

The program above reads a file and prints the length of the longest line in
the file. It is useful to get the feel for what a complete (although very
simple) PROMAL program looks like before delving into the details.

Copyright (C) 1986 SMA Inc. Rev. C

3-4 Systems Management Associates, Inc. PROMAL LANGUAGE

If you have programmed in BASIC, probably the first thing you will notice
about the program above 1s that there are no line numbers. Line numbers are
not used and not needed in PROMAL programs. You will soon discover that this
makes PROMAL programs much easier to write and understand. PROMAL statements
normally start in columm 1. Let”s look briefly at the statements that compose
the program, just to get the general idea of what they do.

PROGRAM LONGESTLINE

This line starts the program. The name LONGESTLINE is the command you will
eventually type from the EXECUTIVE when you want to run this program.

INCLUDE LIBRARY

This line tells the PROMAL COMPILER to include the definitions of all the
built-in library routines (which are needed for input—output, etc.). You will
normally have this statement near the start of every program.

BYTE LINE [81] seurrent line

This line declares that you will be using a variable called LINE which is
an array of 81 BYTEs. One byte can store one character, so this array can hold
an 80 character line plus a line terminator. The ";" indicates the start of a

LU)

comment. The rest of a line after a ";" is ignored by the compiler.

BYTE LONGEST ;longest length

This line declares a simple (non-array) variable called LONGEST. It is
used to hold the number of characters in the longest line. In PROMAL, unlike
BASIC, all variables must be declared before they are used (not just arrays).

WORD IFILE sinput file

This line declares a variable of type WORD. Later you will learn that a
WORD is usually used to hold an address. 1In this case, the address will be a
"file handle" for the file of text to be read. You can think of a file handle
as just a number identifying a particular file.

PROC SIZELINE

This line begins the definition of a PROMAL procedure, which is similar to
a BASIC subroutine. It has been given the name SIZELINE by the programmer.

BYTE LENGTH seur line length

This is a variable of type BYTE which is only used within the procedure.
This will be explained further later on.

BEGIN

This line signals the beginning of actual executable instructions within
the procedure.

LENGTH=LENSTR{LINE)

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Managemeunt Assoclates, Inc. 3-5

This is an assigmment statement which uses the built in function LENSTR to
determine the number of characters currently in the array LINE, and install
that number into LENGTH.

IF LENGTH > LONGEST
LONGEST = LENGTH

The IF statement tests if the current length is larger than the largest
line length so far, and if so, updates the value of LONGEST to LENGTH. Other-
wise, the second statement is simply skipped over.

END

The END statement indicates the end of the procedure (like a BASIC RETURN
statement).

BEGIN

Since there are no more PROCEDURES, the BEGIN signals the beginning of the
main program. 1In PROMAL, the wain program always comes last. This may seem a
little strange at first, but follows from the general rule that everything,
including all subroutines, must be defined before being used.

IFILE=OPEN({ "TESTFILE.T")

This is actually the first statement which would be executed in the
program. 1t tells the computer to "OPEN" the file called "TESTFILE.T" for
reading, and instzalls the file handle into IFILE. Any subsequent input
references to IFILE will read from "TESTFILE.T".

LONGEST=0

This statement works just like its BASIC equivalent, and initializes the
value of LONGEST to O.

WHILE GETLF(IFILE, LINE)
SIZELINE stest 1f biggest

These two statements comprise a loop. The WHILE statement attempts to read
one line from the file into the LINE array. If successful, the SIZELINE
subroutine is called, and the WHILE statement is repeated again. This process
is repeated until end-of-file 1is reached, in which case the GETLF function is
unsuccessful, and control passes through without executing SIZELINE again. In
PROMAL, subroutines are called by merely typing their names; no GOSUB is
needed.

QUTPUT "Longest = #I", LONGEST

This statement 1s similar to a BASIC PRINT statement. It would show an
answer on the screen, for instance:

Longest = 67

Copyright (C) 1986 SMA Inc. Rev. C

3-6 Systems Management Associates, Inc. PROMAL LANGUAGE

asguming the longest line was 67 characters. The "#I" in the OUTPUT statement
is a code which tells the computer how to format the answer; in this case,
telling it to print it as an integer number.

END
This line terminates the program.
It is not important to understand the details of the program at this point,

but just to get the general idea of what a program looks like. The following
sections will explain the rules for writing a program in detail.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-7

CHAPTER 3: ELEMENTS OF THE PROMAL LANGUAGE

In the last chapter we got a quick "top down" view of how a simple complete
PROMAL program looks. In this chapter, we will take a "bottom up" look at some
of the elements of the PROMAL language in greater detail. Then we will learn
how to combine these elements into statements and programs.

VOCABULARY

The following reserved words have special meaning in PROMAL programs, and
form the basic vocabulary of the language:

AND CON EXT INT OWN TO
ARG CHOOSE FALSE LIST FROC TRUE
ASM DATA FOR NEXT PROGRAM UNTIL
AT END FUNC NOT REAL WHILE
BYTE ELSE IF NOTHING REFUGE WORD
BEGIN ESCAPE IMPORT OR REPEAT X0R
BREAK EXPORT INCLUDE OVERLAY RETURN

The reserved words may be spelled with either upper or lower case letters, or a
mix of both. Therefore BEGIN, begin, Begin, and Begln are equivalent. These
reserved words are also sometimes called keywords. In PROMAL (unlike BASIC)
you must separate keywords from each other or from other names with blanks or
other punctuation. This helps make programs readable and does not impose any
speed or memory size penalty on the program. As a practical matter you may
also wish to consider the standard library routine names listed at the start of
the LIBRARY MANUAL as reserved words, although this is not strictly true
because you do not have to use the LIBRARY. You may even change the names in
the LIBRARY, although this is definitely not recommended (for reasons of
conslstency with other programmers).

RAMES

Names are used to identlfy constants, variables, data, functioms, proce-
dures and programs in PROMAL. You may choose names (also called identifiers)
as you wish, following these rules:

1. A name may be from one to 31 characters In length.

2. The first character must be alphabetic.

3. The remaining characters must be alphabetic, numeric, or the underline
character " " (left—pointing arrow on the Commodore 64, which has no
underline key).

4. Either upper or lower case alphabetic characters may be used. Both are
considered equivalent. The PROMAL compiler treats all alphabetic
characters as upper case in identifiers. Therefore XYZ and xYz are
considered the same name.

5. A name may not duplicate one of the reserved words in the basic vocab-
ulary above.

Unlike Commodore or Apple BASIC, which only looks at the first two
characters of a name, all characters of a name are "significant"™ in PROMAL.
For example, EXTRAPOLATEX]1 and EXTRAPOLATEY1 will be considered as two
different variables, even though the first eleven characters are identical.

Copyright (C) 1986 SMA Inc. Rev. C

3-8 Systems Management Associates, Inc. PROMAL LANGUAGE

Similarly, TON is a legal name, even though it contains the reserved word TO
(which would make it 1llegal in BASIC). After complilation, programs using long
names do not use any more memory or execute any slower than programs with short
names, s0 you should select names which are meaningful. For example,

AMOUNT DUE is probably a better choice for a name than AD.

Some examples of legal names are:

A ZERO OldInventory X Y Data
aBe for4 s D2C0
Ch d2000 DearJohn ET

Some examples of ILLEGAL names (for the reasons indicated) are:

B~-4 (second character is not alphanumeric or)
3D (first character is not alphabetic)
LIST (duplicates a reserved word)

Again, remember that you cammnot run variable names and PROMAL keywords
together the way you can in BASIC. For example,

IFID=MEORID=YOU

may be an acceptable way to start an IF statement in BASIC, but in PROMAL you
would have to write:

IF ID=ME OR ID=YQU
instead.
DATA TYPES

A data type refers to the kind of data that a program can manipulate.
PROMAL has four built-in data types, three of which are very simple and quite
close to the data types that are used in machine language. This primitive
simplicity greatly contributes to PROMAL”s speed of execution. The four types
are:

Type Meaning
BYTE An unsigned integer number between 0 and 255, or

a single ASCII character, or
the Boolean value TRUE or FALSE.

WORD An unsigned integer number between 0 and 65,535.
INT A signed integer number between -32,767 and +32,767.
REAL A floating point number between approximately 1.E-37 and

1.E+37. Similar to BASIC s standard numeric data type.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-9

The data type BYTE is a distinguishing characteristic of the PROMAL lang-
uage. This is very lmportant, because byte variables can be manipulated very
rapidly and are frequently needed for the types of applications PROMAL is
intended for. As the name implies, a BYTE variable occuples only one byte of
memory. WORD and INT (integer) variables each occupy two bytes (16 bits). In
memory, the low order 8 bits are stored in the first byte and the high order 8
bits are stored in the next higher address. This i1s the conventional way to
store addresses for the 6502 family processor used in the Apple II and Commo-
dore 64. BYTEs, WORDs, and INTegers may not have any fractlonal part; thus 1l
and 12 are okay but 11.5 is not.

REAL variables occupy 6 bytes of memory each. They are similar to the
numeric data type used in BASIC (5 bytes each), but are accurate to 11 signifi-
cant digits instead of 9 significant digits like BASIC. REAL variables have
the greatest flexibility because they can store very large and very small
numbers, including a decimal fraction. However, they are manipulated much more
slowly than the other data types (but not as slowly as in BASIC), and therefore
should be used with discretion. PROMAL also provides facilitles for formatted
output, so that you can precisely control the number of digits and number of
decimal places printed for REAL output.

BASIC programmers may note the absence of character strings as a standard
data type. But PROMAL can handle strings very well as an array of type BYIE.
String handling is not difficult and will be discussed in detail later.

LITERAL NUMBERS, CHARACTERS, AND STRINGS

Numbers may be written in the usual way. A number written without a
decimal point 1s assumed to be of type BYTE, INT, or WORD, depending on its
size and sign. Unsigned values less than 256 are assumed to be BYTE. Larger
values are type WORD. Any negative number 1s assumed to be INT.

Examples of legal BYTE, INT or WORD type numbers are:

0 1 137 22340 65535 -78

The following are illegal as BYTE, INT or WORD type numbers (for the reasons
indicated):

1,333 ; {Cannot have a comma)
120.6 ; (Cannot have a decimal point - OK for REAL numbers)
65539 ; {Out of range — must be less than 65536)

Literal numbers may also be specified in hexadecimal, by using a "$§"
prefix. Hexadecimal (base 16) numbers are often more convenient for specifying
memory addresses or bit patterns. For example, it is easier to remember that
the Commodore 64 VIC-2 video chip is at address $DO00 than at its decimal
equivalent, 53248. 1If you are not famlliar with hexadecimal numbers, you may
wish to consult your computer”s reference manual. FExamples of legal hex
numbers are:

50 $a $2BD SFFFF 50012

Copyright (C) 1986 SMA Inc. Rev. C

3-10 Systems Management Associates, Inc. PROMAL LANGUAGE

The following are ILLEGAL hex numbers (for -the reasons indicated):

51B3.4 ; (Cannot have decimal point in hex number)
FFFF 5 (No $ prefix)
5102B0 ; (Out of range — must be less than $10000).

REAL numbers must be specified with a decimal point- In BASIC, you can
write a real number without a decimal point, but mot in PROMAL. If you forget
to write the decimal point, PROMAL may accept the number as a valid byte,
integer, or word value, without an error indication. However, if you pass this
value to a function or procedure that is expecting a REAL value (such as OUTPUT
using a #R format), the procedure or function will try to interpret your result
as REAL, resulting in a garbage value. Therefore you should always be careful
to specify a decimal point for a real comstant. You may also write REAL
literal numbers using the "E" format sclentific notation, as in BASIC.

Examples of legal REAL numbers are:

0. .0 123. 3.1415926535 -.0000007 56.00
1l.2ell -.003E-10

The following are 1llegal real numbers (for the reasons indicated):

76000 ; (no decimal point - will be treated as out-of-range integer)
2,333.00 ; (cannot have z comma)
1.21E450 ; (value out of range; must be less than 1E+37)

In specifying literal numbers, you should keep in mind the size limits for
the various data types. Only REAL numbers may be larger than 65535 decimal
($FFFF) and may have a fractional part.

PROMAL programs often need to specify single ASCII characters for some
operation (Appendix A contains a summary of the ASCII character set). To
specify a single literal character, enclose it in single quotes, for example:

’al ’Q’ ’4’ ~d s - -

The PROMAL compiler will substitute the numeric ASCII value of the character.
For example, writing “A” is equivalent to 65 or $41 (see table, Appendix A). If
you need to show the single quote character itself (”) as a literal character,
you must double it (7777).

A literal string is a group of characters enclosed in double quotes.
Examples of literal strings are:

"A" "Hello There! [l “26" n+_*/" wn

When the compiler encounters a literal string in your source program, it
generates the ASCII representation of the string, followed by a $00 byte
terminator, in your object program. Literal strings use one byte per charac-
ter, plus a string terminator which is always a $00 byte. Therefore the string
"A" occupies two bytes of memory and the string "Hello There!" occupies 13
bytes in your compiled program. The last example ("") above is called the null
string, and contains no characters. This is not the same as a string contain-
ing a blank. A blank is a character and occupies space in memory. The O-byte
terminator is always generated automatically by the compiler. A literal string

Copyright (C) 1986 SMA Inc. Rev., C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-11

may contain O or more characters. As we will see later, character strings may
be up to 254 bytes long, but as a practical matter, a literal character string
is limited to the number of characters which will fit on a single line.

The most common use of a literal string is to output a message, which is
just as easy as a BASIC PRINT statement:

PUT "Hello world!"

PUT is actually a bullt in procedure which should be followed by the address of
a string which 1s to be printed. So for example when the PROMAL compiler sees:

PUT "Hello world!”

it actually generates a string for you in memory (terminated by a 0 byte), and
generates a call to the PUT procedure, passing PUT the address of the string to
print. The compiler uses the address of the first character of the string as
the “value™ of the string. If you don"t understand this completely yet, don"t
worry about it. The importance and usefulness of this will be explained more
fully later.

If you need to include the double—quote character itself (") in a literal
string, it should be doubled. For example:

PUT "She said, ""I"11l be back."""
will actually cause the program to print:
She said, "I1°11 be back."”

You can also embed unprintable codes (such as ASCII control characters or
special characters, such as characters to trigger color changes on the Commo-
dore 64) in a string by writing the character \ (£ pounds sterling key on the
Commodore 64, which has no backslash key) followed by exactly two hex digits
giving the desired character code. For example:

PUT "New line \ODstarting here"

will embed a $0D (ASCII carrlage return) in mid-string. If you wish to include
the \ itself in a string, you should double it, in the same manner as the
quote. A particularly useful pair of embedded codes on the C-64 are \12 and
\92, which start and stop reverse video output, respectively. On the Apple II,
\OF and \OE will enable and disable reverse video.

It is important to remember the difference between a character and a
string. A literal character is always a single character enclosed in single
quotes. A literal strimg is zero or more characters enclosed in double quotes.
This means that “A” and "A" do not have the same meaning to the PROMAL compil-
er. “A” occupies a single byte and has the value 65. "A" occupies two bytes,
65 followed by 0, and has the "value™ of whatever address the PROMAL compiler
assigns to the first character.

Copyright {C) 1986 SMA Inc. Rev. C

3-12 Systems Management Associates, Inc. PROMAL LANGUAGE

Note that you may use PUT only to print characters and strings on the
screen. If you need to print the value of a variable, you will need to use
OUTPUT instead, which is described later.

VARTABLES

PROMAL variables are used to hold wvalues, in much the same way as BASIC
variables. However, as we have already seen, PROMAL variables may have long
names. PROMAL variables also have a "type" associated with them, which must be
BYTE, INT (integer), WORD, or REAL. BASIC variables also have a type, but the
type is implied by the name of the variable itself. For example, a % suffix in
BASIC indicates an integer type variable and a $ suffix indlcates a string type
variable. When using PROMAL, however, you must declare the type and name of
every varlable explicitly instead. No speclal suffixes are used.

DECLARING VARIABLES

In PROMAL programs, all variables must be declared before they are used. A
variable declaration tells the PROMAL compiler the name of the variable, what
type of variable it is, and how much space it will need. A sample variable
declaration might be:

INT SCORE ; Game score

This declares that you will be using a variable with the name SCORE, and that
it will be of type INT. Therefore the variable SCORE will be able to take on
signed values between -32767 and +32767. Omly one variable may be declared on
a line. It is considered good programming practice to put a comment after the
variable name explaining what it is used for, as is shown above.

In BASIC, you did not have to declare variables (except for the DIM state-
ment, which is a declaration for arrays). Having to list all your variables at
the top of the program may seem like a nuisance at first, but you will come to
appreclate the value of it. When you pick up a PROMAL program, you can quickly
find out the names of all the variables in the program and what they are used
for by reading the declarations. If you want to add a new variable, you won't
have to search the whole program to make sure the name you choose has not
already been used for something else; you just look at the declarations. If
you forget to declare a variable before you use it, the PROMAL compiler will
flag the variable name with an error message saying "UNDEFINED" when you try to
use it.

There is an even more iwmportant reason why variables need to be declared.
This 1s best illustrated with an example from BASIC. Suppose you decide to
modify an existing BASIC program which uses a variable called X0. You add a
few lines to the program, using the wvariable X0, but the program mysteriously
doesn”t work. Eventually you discover that the reason is that you typed X0
{X~-"letter 0") but the original variable was X0 (X-"zero”). In this case,
BASIC automatically creates a new variable, initialized with a value of zero,
instead of using the existing variable X0 which you really wanted. 1In PROMAL,
you would not have this problem because the compiler would flag X0 as UNDE-
FINED. As a matter of historical interest, one of the NASA space program’s
planetary probes was lost due to a navigational error caused by precisely this
kind of bug in a FORTRAN program (like BASIC, you don”t have to declare
variables in FORTRAN).

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inmc. 3-13

As you learn the PROMAL language, you will find other instances like this
where PROMAL imposes a certaln structure on your programming to help improve
the clarity and style of the program.

Unlike BASIC variables, which are automatically initialized to 0, PROMAL
does not provide any initialization of variables. This means that you cannot
assume anything about the value of a variable until you have assigned some
wvalue to it. The initial value of a variable is simply whatever happened to be
“left over" in the memory location PROMAL assigns to the variable. Chapter 7
describes a convenlient method for initializing all variables to zero with a
single statement.

CONSTANT DEFINITION

A constant is a name given to a numeric value which will not change
throughout the program. A constant must be defined with a CON statement before
it can be used. For example:

CON LF=10 ; ASCIT linefeed character

defines the symbol LF to be 10. After this, anytime the PROMAL compiller
encounters the name LF, it will substitute the value 10 instead. There are two
differences between constants and variables. First, the value of the constant
is permanent and is assoclated with the constant name at compile time. Second,
no memory is set aside to save the value of the constant in the data area.
Instead, any time the constant is referenced, the compiler generates the value
of the constant (in the same manner as a literal constant) in the executable
code of the program. Only one constant can be defined on a line. Again, it is
considered good practice to add a comment to a constant definition explaining
what the constant is. If you are an assembly language programmer, you may
recognize that a PROMAL constant is equivalent to an assembly language
"aquate”. You may also define the type of the constant explicitly, for
example:

CON WORD STARTLOC=8$40

defines STARTLOC to be of type WORD with a value of 40 hexadecimal. If you
don"t specify the type explicitly, PROMAL will assume type BYTE if the value 1s
less than $100, INT if it has a minus sign, and type WORD otherwise. Later we
will learn more about constant definitions, after we learn about operators

and expressions.

You may mot declare a REAL constant. Instead, you should use a DATA
statement if you wish to associlate a name with a permanent value of type REAL.
Disallowing REAL constants saves memory and reduces the complexity of the
compiller.

Copyright (C) 1986 SMA Inc. Rev. C

3-14 Systems Management Associates, Inc. PROMAL, LANGUAGE

ARRAY VARIABLES

PROMAL allows arrays of any of the four data types, with up to eight
subscripts. Subscripts for the array are enclosed in square brackets "[]",
not in parentheses like BASIC. This makes it easy to tell the difference
between an array element and a function call (where parentheses are used to
enclose the arguments, as will be discussed later). Like all other variables,
arrays must be declared before they can be used. An array variable declaration
is similar to a simple variable declaration, but is followed by the number of
elements of the array desired. For example:

BYTE BUFFER [81]

declares an array of type BYTE which can hold 81 elements (BUFFER[0] through
BUFFER[80]). It is important to observe that if you define an array as X[N],
then the last element is X[N-1], not X[N], because X[0] is the first element.

It is considered good programming practice to define a constant which
controls the size of a subsequently declared array. This will usually make it
easler to alter the program later. For example:

CON BUFSIZE = 100
BYTE BUFFERL [BUFSIZE]
BYTE BUFFER2 [BUFSIZE]

You may not use a variable as the dimension for an array, however. This is
because the PROMAL compiler allocates memory for the array at compile time; the
size of the array must be known at compile time, not when the program is
actually run.

The subscripts for an array of any type must always be of type WORD. If an
array subscript evaluates to type BYTE, it will be "promoted” to WORD automa-
tically. A subscript which evaluates to type REAL will cause the compiler to
generate an error message. The maximum subscript which can be used is
dependent on the amount of free memory. When you refer to am array name
without subscripts (or backets), the address of the array will be used. The
importance of this will be illustrated later.

It is possible to define both simple variables and arrays at specified
locations in memory. For example you can define the screen memory as an array
starting at $0400 (1024). This is kind of declaration is called an external
variable, described in Chapter 6, "Interfacing”.

CAUTION: When array elements are referenced, PROMAL does not perform any
bounds checking (because of the adverse affect on performance). Therefore a
sequence like:

WORD I
BYTE BUF[10]
BYTE LINE[8]
I=12

BUF [1]=0

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inc. 3-15

will not produce an error message and will move the ¢ into part of the LINE
array instead of the BUF array as was intended. You should always take care to
insure that array indices stay in bounds, or strange and invariably unpleasant
results will occur!

Multiple dimenslon arrays have the subscripts separated by commas. For
example:

BYTE SCREENIMAGE [80,25]
REAL STIFFNESS [10,20,3]
IF SCREENIMAGE [0,I] = ~ -~
SCREENIMAGE [0,1] = SCREENIMAGE [1,I]
BEND = TORQUE * STIFFNESS[I,J,K]

The amcunt of memory required to store an array is the product of its
declared dimensions times the size of each element. The SCREENIMAGE array
above uses 2000 bytes, and the STIFFNESS array uses 3,600 bytes. Multiple
dimension arrays are mapped into memory such that incrementing the first
subscript will address elements that are physically adjacent in memory. Or,
another way to visualize this is to say that SCREENIMAGE is organized as 25
groups of 80 bytes each (mot 80 groups of 25 bytes each). Therefore if you
wish to have a two dimensional array of text, the column subscript should come
first and the row subscript second, as was done for SCREENIMAGE above. This is
discussed further in Chapter 7.

DATA DEFIRITION

A data definition is similar to a variable but has a predefined initial
value which is determined at compile time. TFor example:

DATA REAL PI = 3.1415926535
defines a data item of type REAL which will be predefined to the value of PI.

Unlike constants, data definitions can define arrays as well as simple
variables. The DATA definition is most frequently used to define a table of
values which will not be changed by the program. The DATA definition looks
similar to a variable declaration, except that it starts with the word DATA and
is followed by an "=" and the desired value (or values). TFor example:

DATA BYTE MYTABLE [] = 23, 12, 8, 4, 2, 1, O

This line defines an array called MYTABLE of type BYTE having 7 elements.
Notice that the size of the array is not given in the brackets; the PROMAL
compiler counts the number of elements for you. You must explicitly define the
value of a2ll elements. The first element of the array will be MYTABLE[QO] and
will be initialized to 23. The last element will be MYTABLE[6] and have the
value 0.

You may mot define multiple~dimension DATA arrays. Only a single dimension
is permitted for DATA declarations.

Copyright (C) 1986 SMA Inc. Rev. C

3-16 Systems Management Associates, Inc. PROMAL LANGUAGE

You may not change the value to a data item with an assignment statement.
If a data name appears on the left side of an assignment statement, the
compiler will generate a "Variable Expected” error. It is possible to force
the data items to be altered with an assignment statement to a varlable array
which overlaps the data items, but this is considered poor programming practice
(and will also cause your program to be reloaded from disk if you try to
re—execute it, because data items are included in the checksum which the
EXECUTIVE uses to determine if a program has been corrupted).

If you wish to use a table of data items to set the initial values of a
variable array which will subsequently be altered, the correct procedure is to
copy the data array to another variable array (using the BLKMOV procedure,
described later), and then alter the variable array.

The data definition 1s the one statement in PROMAL which can consist of
multiple lines. In order to continue the data definition on additiomal lines,
either the = sign or a comma should be the last character of the preceding
line. For example:

DATA WORD LIST [] =
0,45,13,27,
0,46,13,28,
1,46,14,28,
1,47,14,29

defines an array of 16 words.

DATA statements are frequently used to define an array of strings which can
be used for messages, etc. during the program. For example:

DATA WORD ERRORMSG [] =
"Function Successful.”,
"Illegal widgit.", H
"Widgit not found.", H
"You must specify a Widgit Number first.” ;

e

WMo PO

This statement defines a table of four words, each initialized to point to a
string. Later in your program, if you wanted to print the "Widgit not found."
error message, you could simply write:

PUT ERRORMSG[2]

PUT is a bullt-in LIBRARY procedure which displays the string specified, in
this case the third string in the table.

Please note that the type of the above data array is WORD, not BYTE. This
is because each element of the array is a string. You may recall from our
discussion of strings that the "value" of a string is the address of its first
character; therefore a WORD is necessary to hold this address.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-17

OPERATORS

An operator 1s a special symbol which indicates an action to be performed.
PROMAL provides the following operators:

Op. Description Example Result
+ Addition 3+5 8

- Subtraction or negation 48 - 11 37

* Multiplication -10.32 * ,034 -.35088
/ Division (fraction discarded except REAL) 200 / 30 6

A Remainder (mod) 200 % 30 20

< Left shift 7K1 14

>> Right shift $A0 >> 4 $0A

< Relational operator less than 4 <9 TRUE

<= Relational operator less than or equal 6 <=6 TRUE

<> Relational operator not equal “ATOTA” FALSE

= Relational operator equal “A"=65 TRUE

>= Relational operator greater than or equal 10 >= “a~ FALSE

> Relational operator greater than 3>8 FALSE
AND Logical AND operator 3>1 AND 4<10 TRUE

OR Logical OR operator 2<{=1 OR 8>9 FALSE
XOR Logical exclusive OR $00 XOR SFF $FF

NOT Logical complement NOT TRUE FALSE

Address of variable #X addr of X
:{ Extract low byte of WORD or INT $§1234:< $34

:> Extract high byte of WORD or INT $1234:> $12

1+ Convert to WORD $5A:+ $005A
= Convert to INT SFF:— +255

I Convert to REAL 45:, 45.0

@< 1Indirect through pointer to BYTE PTREL see text
@- Indirect through polnter to INT PTR @- see text
@+ Indirect through pointer to WORD (PTR+2) &+ see text
@. Indirect through pointer to REAL PTR @. see text

Some of these operators may look familiar from your experience with BASIC;
others are entirely new. These operators may be combined with operands, which
may be numbers, characters, strings, constants, variables, data, or functions,
to produce expressions. We shall now examine the most important of these
operators in detail.

ARITHMETIC EXPRESSIONS

Like BASIC, arithmetic expressions are evaluated from left to right (in the
absence of parentheses), with multiplication and division having a higher
priority than addition and subtraction. Therefore the expression:

3+ 4 %S

evaluates as 23, not 35. A summary of operator precedence is given below.

Copyright (C) 1986 SMA Inc. Rev. C

3-18 Systems Management Associates, Inc. PROMAL LANGUAGE

OPERATOR PRECEDENCE

{operators In the same row have equal precendece)

i<, >, i+, -, 1., @G @+, @-, @., # Highest precedence
NOT

2/, %, KL

- (negative)

+, -

{, &=, <>, =, >=, >

AND OR XOR Lowest precedence

The arithmetic operators, +, -, *, and /, work in the expected fashion,
but with a few twists. First of all, remember that PROMAL deals with integers
(whole numbers) as well as real numbers. The result of arlthmetic on type
BYTE, WORD or INT cannot have a fractlonal result. Therefore 5 / 2 evaluates
as 2, not 2.5 (any fraction 1s always discarded). However, 5. / 2. evaluates
as 2.5, because the presence of the decimal point tells the PROMAL compiler
that the numbers are REAL.

Note for Commodore 64: Be careful not to type the shifted “+" character on
the keyboard when you want a plus sign. It looks like a plus sign, but isn’t
(the same applies to BASIC).

Most operators take two operands. For most operators, these two operands
do not have to be of the same type. In a mixed expression involving operands
of different types, the operands are usually “"promoted” to the "higher" type
automatically, where BYTE is the "lowest”™ and REAL is the "highest” type. The
table below summarizes the results of a partially evaluated expression of the
type shown in the left column when an operator is encountered with a new
operand of the type shown in the top row:

RESULT TYPE FOR MIXED MODE EXPRESSIONS

Next operand involved is...

Present
Type is.-.. BYTE WORD INT REAL
BYTE BYTE WORD INT REAL A
WORD WORD WORD INT REAL €—
——Result type
INT INT INT INT REAL €
REAL - REAL REAL REAL REAL (—J

The TYPE of the data being operated on must be considered. For example,
adding two variables of type BYTE will always result in a value which is also
of type BYTE, even if the result 1s toc large to fit in a BYTE variable. For
example, if X is a wvariable of type BYTE which has been previously assigned the
value of 254, then the expression X+4 will NOT have a value of 258, but 2. This
is because BYTE variables can only take on values between 0 and 255, so that
when you add 4 to 254, the result is (258-256) = 2,

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-19

If you don"t quite understand this, think of PROMAL BYTE, INT and WORD
variables as being like the odometer on your car. Most odometers go up to
99,999.9. If your odometer reads 99,998.0 and you drive 4 more miles, the
cdometer will read 00,002.0, not 102,000.0. A PROMAL variable of type BYTE
only goes up to 255 ($FF hex), and then "wraps around” again starting at 0. A
numeric expression which overflows the maximum value representable simply
"wraps around” like this with no indication of an error. Similarly, if you
subtract a larger BYTE operand from a smaller BYTE operand, the result is
"wrapped around” but still positive. For example, 3 - 4 evaluates to 255
{(think of what happens if you turned back the odometer 4 miles when it had a
reading of 3).

Since by definition a BYTE type variable is unsigned, you cannot apply the
negation operator to it directly, so the byte is automatically promoted to type
INT (integer) before the negation is performed. This "promotion” iz only done
in the temporary work area called the accumulator where PROMAL does its
arithmetic; it does not change the type or size of the original variable.

An operand of type WORD also is always positive, but in this case the
largest possible "odometer reading” is 65535 (FFFF hex). For example if Y is a
variable of type WORD with a value of 1, then Y-3 1s 65534 ($FFFE), not -2.

Only integers and reals may take on negative values. To understand how
integers work, again consider your auto odometer. If you started out at 0 and
turned the odometer back 1 mile it would read 99,999.0. Turn it back another
mile and it would read 99,9998.0. 1If you wanted to use your odometer to
measure both forward and backward movement from 0, you might define everything
from 0 to 49,999.9 as positive, and everything from 50,000.0 and above as
negative, effectively splitting the total number of representable numbers in
two (half positive and half negative). This is exactly how INT variables work
in PROMAL.

In two bytes there are 65,536 possible numbers, which we divide in two,
with O to 32767 being considered positive (%0000 to $7FFF). The other half of
the numbers represent negative numbers, with -1 represented by $FFFF. The most
negative number possible is -32768, or $8000. However, since there 1s no
+32768 number representable, the number —-32768 is disallowed. This number
scheme 18 called "two”s complement” arithmetic, and is standard on almost all
computers.

For example, consider the following fragment of a PROMAL program:

BYITE X
WORD Y
WORD ANSWER
254

= 300
ANSWER = X + Y

X
¥

This will produce the expected result of ANSWER=554. However, if you
change the last line to read:

ANSWER = X + 3 + ¥

Copyright (C) 1986 SMA Inc. Rev. C

3-20 Systems Management Associates, Inc. PROMAL LANGUAGE

then the result will be ANSWER=301, because X and 3 are both type BYTE, so X +
3 evaluates to 1; this is then promoted to a word and added to Y to give 301.
If the order of the operands was changed to:

ANSWER = X +Y + 3

then the result would be 557, because X + Y would be evaluated first, with X
being promoted to WORD before making the addition.

Most of the time you will not have to worry about mixing different types in
an expression, but when you do you should bear in mind the order of evaluation.
You can "force" an operand to be promoted (or "demoted") from one type to
another with the "type cast" operators, which are:

Extract low order byte from word or integer (or convert real to byte).
Extract high order byte from word or integer.

Convert to word (unsigned).

Convert to Integer (signed)

. Convert to real (floating point).

I+ VA

These operators are written immediately after the operand which they are to
change. For exanmple:

ANSWER = X:+ + 3 + ¥

would result in ANSWER=557, because the :+ operator will promote or "cast" X to
a word before performing the addition with Y. The expression X:+ is read as "X
cast to a word".

There are four special cases for arlthmetic operators.

1. The % operator (remainder) cannot be applied to REAL operands. The sign
of the result is always considered positive for the % operator.

2. If you multiply or divide two operands of type BYTE, both operands will
be promoted to WORD, and the result will be type WORD.

3. Taking the negative of a BYTE or WORD converts to an INT. No error
is given 1f the result is out of range (result truncated to 16& bits).

4. Dividing by zero will produce a fatal run—-time error. A "zero divide"
error can be triggered by any of the following:

a. Division by 0 (X / 0).

b. Remainder by O (X % 0).

c. A REAL result larger than the largest representable value (about
1.E+37).

d. Conversion of a REAL to a BYTE, WORD, or INT which cannot be
represented (e.g., 100000. :+).

Copyright (C) 1986 SMA Imc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-21

RELATIONAL OPERATORS

The relational operators (<, <=, <>, =, >=, >) are the same as theilr
BASIC counterparts, and return a value of TRUE or FALSE. In PROMAL, TRUE is
represented by a byte of value 1 and FALSE by a byte of value 0. For purposes
of comparison in a conditional statement such as an IF statement (which we will
study later), any non-zero value is considered TRUE. The result of a compari-
son using a relational operator is always type BYTE. Promotion of operands in
a comparigen is the same as for the arithmetic operators, but the result is
always type BYTE.

The fact that the result of a relational operation can be interpreted as 0
or 1 as well as FALSE or TRUE can be useful. For example, the two statements:

IF PHASORS > 100
SCORE = SCORE + 1

can be replaced by the single equivalent statement:
SCORE = SCORE + (PHASORS > 100)

because the expression (PHASORS > 100) will evaluate as 1 if TRUE and 0 other-
wise.

The relational operators all have equal priority of evaluation and are of
lower priority than any arithmetic operators, so that "normal"” comparisons will
produce the expected result when written without parentheses. For example the
expression:

3*3>3+3
evaluates as TRUE (1).

Please note that you may mot compare two strings by simply using the
relational operators on the variables involved, because this would merely
compare the addresses of the strings, which has no relation to the conteant of
the strings. To compare strings, use the CMPSTIR function, described in the
LIBRARY MANUAL.

LOGICAL OPERATORS

The logical operators (AND, OR, NOT, XOR) may be combined with relational
operators or used for bit-by-bit Boolean operations. These operators may only
be used on operands of type BYTE, which is normal if using them in conjunction
with relational operators. All logical operators have an equal priority of
evaluation which is lower than the arithmetic and relational operators, so that
"normal” combinations of operators will produce the expected result without
parentheses. For example the expression:

X> 100 AND Y =0
1s equivalent to:

(X > 100) AND (Y = 0)

Copyright (C) 1986 SMA Inc. Rev. C

3-22 Systems Management Associates, Inc. PROMAL LANGUAGE

and will evaluate TRUE if X 1is greater than 100 and Y is 0.

AND, OR and XOR are useful in performing bit-by-bit Boolean operations and
masking operations (on type BYTE operands only). For example:

PORT AND $0F

will "mask off” the high order 4 bits of PORT. As you may have already discov—
ered, these masking operations are frequently needed to manipulate selected
bits within a byte.

The operator NOT is a unary operator which converts any non-zero byte to O,
and 0 to 1. To perform a bit-by-bit complement, use XOR $FF ilastead.

SHIFT OPERATORS

The operators << and >> perform left and right shifts, respectively. The
operand to be shifted appears on the left side of the operator, and the shift
count on the right, for example:

XVAL << 4

shifts the value of XVAL left by four bits. Shifts may be applied to all data
types except REAL; however, the shift count must be of type BYTE. The shift
count should be in the range of 0-8 for BYTE operands and 0-16 for WORD or INT
operands. Shift operators have the same precedence of evaluation as multipli-
cation and division. One of the most frequent uses of shifts is to perform
multiplications or divisions by powers of 2. For example:

COUNT << 3
will compute eight times the value of COUNT much faster than:
COUNT * 8

Right shifting by N is equivalent to (and much faster than) dividing by 2 to
the Nth power. Shifts are also sometimes used in conjunction with the logical
operators for manipulating data into specific bits of a register. Bits shifted
out of a byte or word are lost; O bits are always shifted into the word (even
if it is a negative integer). The result of a shift on type INT is type WORD.
There 18 no built-in operator to perform bit rotations.

INDIRECT AND ADDRESS OPERATORS

The operator # is the address operator. It can only be applied to a
variable or data name (not to a number, string, constant or function). The #
operator returns the address of the varlable which follows it. For example:

WORD PTR
REAL STRENGTH

PTR = #STRENGTH

Copyright (C) 1986 SMA Inc. Rev. C

FROMAL LANGUAGE Systems Management Associates, Inc. 3-23

sets the variable PTR to the address of the variable STRENGTH in memory. The #
operator can also be used to find the address of a particular element in an
array, for example:

WORD PTR
DATA BYTE COMDCHAR [] = “D”,”X",”P~,”A","E","Q"

PTR = #COMDCHAR[2]
will set PTR to the address of the character “P~.

The operators @<, @-, @+ and @. are indirect operators. They are used
to access data "pointed to” by some variable or expression. The expression to
the left of the indirect operator should be of type WORD. If it is of type
BYTE, it will be promoted to type WORD automatically. For example!:

WORD POINTER
REAL VALUE[10]
POINTER = #VALUE[7]

IF POINTER@. > 0.5

Here POINTER is set to the address of a certain element of an array 6f REALs.
Later, the expression POINTER@. can be used to test the value of that element.

The expression "POINTERE." can be thought of as "the real number pointed to by
POINTER."

One of the most common uses of the indirect operators is to extract charac-
ters from strings. TFor example, consider the following program fragment:

BYTE BUFFER [80]
WORD PTR
BYTE CHAR

PTR= BUFFER

CHAR = PTR @<

This sequence will set CHAR to the first character of the array BUFFER.
Although this could also have been done with the more straightforward state-
ment:

CHAR = BUFFER[0]

the use of PIR allows more versatility, since PTR could point to amy array, not
just the BUFFER array. Pointers and indirect operators are very useful in

passing arrays and strings to subroutines to be operated on, as you will see in
Chapters 5 and 7.

Note that you may nmot use the indirect operators to identify the destination
variable for an assignment statement. Therefore

Copyright (C) 1986 SMA Inc. Rev. C

3-24 Systems Management Associates, Inc. PROMAL LANGUAGE

PTR@C = 10 ; ILLEGAL!

is not legal. You may use the predefined array M, which is defined in the
Library as an array of bytes encompassing all of memory, to solve this
problem. The above example could be correctly written as:

M[PIR] = 10 ; Right!

The use of pointers and the array M is discussed further in the section on
subroutines and in Chapter 5 and 7.

GLOBAL VARIABLES

Variables are normally declared first in your program, before the executable
statements. These variables are called global varlables, because they can be
accessed from anywhere in your program. Later another kind of variable will be
introduced called a loecal variable. Local variables are defined imside
subroutines, and are known only inside that subroutine. Global variables are
defined before any subroutines (or between subroutines), and are known
everywhere thereafter in the entire program, (including inside all
subroutines). This distinction will be clarified in Chapter 5, where
subroutines are discussed.

Now that you know how to declare variables and form expressions, you are
ready to learn how to bring these pieces together with the reserved words to
form statements, and then combine these statements into a complete working
program.

Copyright {(C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Imc. 3-25

CHAPTER 4: STATEMENTS

INTRODUCTION

In this chapter you will learn about PROMAL language statements. If you
have only programmed in BASIC and not in another "high-level” language you
should study this chapter very carefully. If you have programmed in Pascal or
"C" this chapter will be important for understanding the differeunces as well as
the similarities of PROMAL and other "structured” languages.

Some PROMAL statements are similar to statements in BASIC. For example,
XV = YV + 17

is an assignment statement, which is very similar to a BASIC LET gstatement.
However, there are some important differences between BASIC statements and
PROMAL statements, including:

1, Statements do not have line numbers.

2. Only ome statement is permitted on a line.

3. A statement may not occupy more than one line (with the exception of
the DATA statement).

4. Keywords and variables must be separated from each other by blanks or
other punctuation marks as required by the statement.

SYNTAX DIAGRAMS

In many ways, PROMAL allows you a great deal more flexibility in construct-
ing statements than BASIC. In order to help you determine exactly what makes
up a legal statement, a set of syntax diagrams is included in Appendix P. These
syntax dlagrams tell you graphically how to construct a legal PROMAL statement.
Syntax diagrams are not difficult to use, once you are familiar with them. If
in the following descriptions you are unsure about a PROMAL statement”s correct
syntax, vou may refer to the diagrams in Appendix P, and the accompanying
discussion of how to read then.

PROGRAM STATEMENT
Every PROMAL program must start with a PROGRAM statement of the form:

PROGRAM Name [OWN [EXPORT]]
~or-
OVERLAY Name [EXPORT]

where Hame is a legal PROMAL identifier not used for any other purpose. The
PROGRAM line declares the command name by which you will execute the program
when it is loaded into memory. You should always make the PROGRAM name the
same as the file name you COMPILE. The OWN keyword iIs optiomal, and is
normally not used. If specified, it will cause the compiled program to be
loaded into memory with the global variables allocated immediately after the
program, rather than being shared with other programs in high memory. This and
the EXPORT and OVERLAY keywords are discussed further in Chapter 8 and in the
optional Developer”s Guide.

Copyright (C) 1986 SMA Inc. Rev. C

3-26 Systems Management Associates, Inc. PROMAL LANGUAGE

ASSIGNMENT STATEMENT

The assignment statement is the simplest and most fundamental statement in
PROMAL (or in any other language). You are familiar with it in BASIC. Its form
is:

variable = expression

where expression can be a constant, a variable, a function, or a combination of
these in an arithmetic or relational expression. See the Syntax Diagrams in
Appendix P for all the possibilities. The assignment statement assigns the
contents of (or results of) the expression on the right side of the "=" sign to
the variable on the left side.

The varlable on the left cannot be a DATA item. Here are some sample
assignment statements:

X=0
ENDPAGE = TRUE

SMALLX =MIN(XL,X2,6X3)
VAL{I]=3.14159%RADIUS[I]*RADIUS[I]
YBIGGER = Y > X AND Y > Z

CONDITIONAL STATEMENTS

A conditional statement is a sgtatement which alters the order of execution
of statements based on evaluating a condition. In BASIC, the conditional
statements are IF, FOR...NEXT, ON...GOTO, and ON...GOSUB. PROMAL has condi-
tional statements which are more powerful and easier to read and understand
than the related BASIC statements. The PROMAL conditional statements are the
IF, WHILE, REPEAT, FOR, and CHOOSE statements.

IF STATEMENT

By far the most common conditional statement is the IF statement. It can
take several forms. The simplest form is:

IF expression
statement 1 TRUE
statement 2
e FALSE
statement n v

In this form, the expression is tested, and if it is TRUE, then all the
indented statements following it are executed. If it is FALSE, then control
passes directly to statement n, on the same level of indentation as the IF.

For example:

IF X > 10
OLDX = X
X=10

Z=X

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inc. 3-27

In this case, the conditional expression tests if X is greater than 10. If so,
then OLDX is set to X and X is set to 10. If not, the two statements after the
IF statement are skipped. 1In either event, the line Z = X 1s always executed.

BASIC programmers, please note that you camnot put THEN, GOTO, or anything
else on the same line as the IF, after the condition! You must put the state-—
ments to be executed on the lines after the IF, and they must be indented. The
indentation must be exactly two columns to the right of the IF. The proper
indentation is easily obtained by using the TAB key (or CTRL I) in the PROMAL
EDITOR.

If you have ever taken any courses In programming, you probably were told
that indentation is a good way to show a program”s structure. PROMAL simply
enforces this concept. The indentation does show the structure of the program.
This is probably the most important feature of the PROMAL language. By using
indentation as a syntactical element of the language, PROMAL is able to do away
with a host of confusing statement delimiters and begin-end brackets which
pervade other structured languages.If you don”t indent, you"ll get an error
message when you compile your program.

A second form of the IF statement has an ELSE clause:

IF expression

statement 1 TRUE !'ALS!

ELSE
statement 2

statement n g

)
In this form, the indented statements after the IF are executed if the express-
i1on is TRUE, and the statements after the ELSE are executed otherwise. This
form is used to select one of two mutually exclusive paths. For example:

IF X > 100
POINTS = 3
ELSE
POINTS = 1
SCORE = SCORE + POINTS

If X i8 greater than 100, POINTS is set to 3 and control passes to the last
line. If X is not greater than 100, POINTS is set to 1 and control passes to
the last line.

The final form of the IF statement has one or more ELSE IF clauses before
the final ELSE, for example:

IF CHAR = "D~
DRAW

ELSE 1F CHAR
ERASE

ELSE IF CHAR
EXIT

ELSE
QUTPUT "ILLEGAL COMMAND."

It
A
[
v

It
\
L
)

Copyright (C) 1986 SMA Inc. Rev. C

3-28 Systems Management Asgociates, Inc. PROMAL LANGUAGE

This form is used to choose one of a number of mutually exclusive paths.

Please note that the only thing that can follow an ELSE on the same line 1s an
IF and a condition. The ELSE without an IF must be the last ELSE associated
with the initial IF. Also be sure that ELSE and IF are typed as two words, not
one.

IF statements may be “"nested” to any depth needed. For example:

IF X > 100 3 1
IF Y > X ;2
Z=34X ; 3

Y=0 ; &
ELSE HE
=1 ; 6

IF X > 200 H
Z=Y-100 ; 8

Q=Y+z ; 9

In this example, each IF controls all the statements with greater indentation.
For example, i1f the first IF (statement 1) is false, then control will pass
directly to statement 9. If statement 1 is true, then statement 2 decides if
statements 3 and 4 should be executed or skipped. The only way statement 8
will ever be executed is 1f statement 1 is true, statement 2 is false, and
statement 7 1s true. You should have no doubt about which IF statement an ELSE
"belongs to”; it is always the one with the same indentation.

Indentation plays a key role in making programs readable. You will soon be
able to just scan over a PROMAL program or subroutlne and immediately be able
to understand its logic. Since PROMAL does not have a GOTO statement, there
will be no mystery as to how you get to a certain statement. By just looking
at the indentation, you will have a "plcture" of the program organization.

WHILE STATEMERT

Next to IF, WHILE is the most commonly needed control statement in PROMAL.
It has the following form:

WHILE expression
statement 1 TRUE

statement n FALSE

The WHILE statement evaluates the conditional expression. If it is TRUE, the
indented statements are executed, as in an IF statement. After the last
indented statement is executed, control returns to the WHILE statement and the
condition 18 re-tested. The loop is repeated until the expression evaluates as
FALSE; contrel then passes to statement n, which starts in the same column as
the WHILE statement. The indented statements in a WHILE lcop may be executed
zero or more times. For example:

Copyright (C) 1986 SMA Inc. Rev. G

PROMAL LANGUAGE Systems Management Associates, Imc. 3-29

il
<o

SUM
X=0
WHILE < XLIMIT
SUM + X

+1

s
2
MO

This program fragment forms the sum of the integers from 0 to XLIMIT. At the
end of the loop, Z will be equal to XLIMIT.

REPEAT STATEMENT
A REPEAT statement is very similar to a WHILE statement, except that the

condition is tested at the end of the loop instead of the top. The REPEAT
statement has the following form:

REPEAT
statement 1

UNTIL expression

The indented statements are executed one or more times. After the first
execution of the indented statements, the conditional expression is evaluated.
If the result is FALSE, control passes back to the top of the loop. If the
statement is TRUE, control passes to the next statement after the UNTIL. For
example:

REPEAT
CHAR = GETC
UNTIL CHAR = “A”

GETC is a standard LIBRARY function which returns a key from the keyboard.
Therefore this loop waits for an “A” to be typed, ignoring all other input.

FOR STATEMENT

The FOR statement Is similar to a BASIC FOR-NEXT loop, but is more restric-
tive. A FOR loop has the form:

FOR Iter = Low TO Hi
statement 1

statement n

Iter must be a variable of type WORD, and Low and Hi must be expressions which
evaluate to the lower and upper bounds for the loop. For example:

WORD BUFFER [100]

WORD I

FOR I = O TO 99
BUFFER [I] = O

éopyright (C) 1986 SMA Inc. Rev. C

3-30 Systems Management Assoclates, Inc. PROMAL LANGUAGE

will initialize the array BUFFER to 0. Note that the iteration varilable must
be a simple variable, not an array element or expression, and must be type
WORD. Also note that the loop must iterate upward, not downward (as is
permitted in BASIC). There is no "STEP" size option as in BASIC; the step slize
is always 1. The indented block of a FOR loop 1s always executed at least
once, even if Low is greater than Hi. These restrictions allow the FOR loop to
execute very rapidly. If you need a FOR loop which doesn”t meet thesge
requirements, use a WHILE loop instead.

CHOOSE STATEMENT

The CHOOSE statement 1s a multi-way branch, somewhat similar to BASIC’s
ON—-GOSUB statement, or the CASE statement of Pascal. It has the following
form:

CHOOSE expression
choice 1
statement 1
choice 2
statement 1
ELSE
statement j

statement k

The CHOOSE statement works like a multiple-choice test. The expression is
evaluated, and each of the choices listed below is compared to it in success-
ion. When a match is found, the indented statements are executed. If no match
is found, the indented statements after the ELSE are executed (think of the
ELSE as "none of the above"). In any event, control always winds up at
statement k, the first non-indented line after the ELSE. For example:

CHOOSE GETC
-B-
X=0
START
e
CONTIN
~Le
X=9999
LASTLINE
ELSE
PUT "Illegal key letter”
X=1

The program fragment above inputs a character from the keyboard (function
GETC). If the character is “B”, then X is set to 0 and the START subroutine is
called, and control transfers to the last line (¥X=1). If the character is “C”,
the CONTIN subroutine is called instead, and control then passes to the last
line. TIf the character does not match any of the cholces, then an error
message 1s output (the PUT does this), and control passes to the last line.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-31

The choices for the CHOOSE must match the type of the expression in the
CHOOSE line exactly, and the expression must mot be type REAL. Note that this
means if you have a CHOOSE with an expression of type WORD or INT, and your
choices are small BYTE constants such as 0, 2, 100, etc., you must remember
to promote the choices to type WORD or INT.

WRONG! RIGHT

WORD NUM WORD NUM
CHOOSE NUM CHOOQSE NUM
1 l:+

PROCESS_I PROCESS_}
2 2:+

PROCESS_? PROCESS_Q
ELSE ELSE

PROCESS OTHER PROCESS_pTHER

Any CHOOSE statement can be simulated with an IF statement with an appro-
priate number of ELSE IF clauses. However, CHOOSE will often be more efficient
since you do not have to spell out each comparison explicitly.

The CHOQSE statement also has an alternative form where the word CHOOSE
appears alone, for example:

CHOOSE

CHAR < ~ -
CONTROLCHAR

CHAR > $7F
ILLEGALCHAR

ELSE
NORMALCHAR

In this form, each of the choices is evaluated in succession until one
evaluates TRUE. If all of the choices are FALSE, then the indented statements
after the ELSE are executed. This 1s exactly equivalent to an IF with several
ELSE IF clauses, except you do not have to write the ELSE IF s explicitly.

BASIC users should note that after the indented statements are executed
for one of the choices, control automatically passes to the first non-indented
statement after the ELSE; you do not need to put a GOTO after each like you do
for a BASIC ON-GOSUB. Alsc note that the ELSE is mandatory, because it indi-
cates the final choice ("none of the above").

BREAK STATEMENT

Sometimes it is desirable to "break out”™ of a loop at a point other than
where the conditional test is done. The BREAK statement provides this capabi-
lity for WHILE and REPEAT loops (but mot for FOR loops!). For example:

Copyright (C) 1986 SMA Inc. Rev. C

3-32 Systems Management Associates, Inc. PROMAL LANGUAGE

WHILE TRUE ; (do forever)
IF 16K = “(°
IF (I+1)@< >= “a” AND (I+1)@{ &= 7z~
IF (I+2)8< =)~
BREAK
I=I+1
FOUND=1

This program segment will search all of memory for a single lower case alpha-
betic character enclosed in parentheses. Executing BREAK causes control to
immediately pass to the statement after the end of the most recent WHILE loop
(i.e., to the FOUND=1 statement).

NEXT STATEMENT

The NEXT statement 1s used to cause an immediate jump to the top of the
current WHILE or REPEAT loop (but not a FOR loop). For example:

INQUOTE=FALSE

COUNT=0
REPEAT
CHAR = GETC
IF CHAR="""
INQUOTE=NOT INQUOTE
NEXT
IF INQUOTE
NEXT
COUNT=COUNT+1
UNTIL CHAR=CR

This program segment counts the number of characters typed up to the next
carriage return, excluding characters enclosed in quotes (including carriage
returns in quotes). The NEXT statements pass control back to the top of the
loop so as to ignore characters in between (and including) quotes. There may
be better and easier ways to do this -— this is just for illustration.

NOTHING STATEMENT

The NOTHING statement does not perform any action, and the PROMAL COMPILER
does not generate any object code for a NOTHING statement. This may seem of
dubious merit, but is actually useful. For example:

REPEAT
NOTHING
UNTIL GETC = CR

This loop simply waits for a carriage return from the keyboard, ignoring all
other characters. The NOTHING statement fulfills the syntactical requirement
that at least one indented statement must follow the REPEAT, but it performs no
action. If you tried to leave out the NOTHING statement, you would get an
error message from the compiler.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-33

SHORTCUTS FOR CONDITIONAL STATEMENTS

You may recall that TRUE is represented by a byte with value 1 and FALSE by
a byte with value 0. Several "shortcuts” can be used to take advantage of this
fact to generate faster executing PROMAL statements. First of all, for a
varlable FLAG of type BYIE,

IF FLAG=TRUE
can be written equivalently but more economically as:

IF FLAG

Also the sequence:

IF X > 100
FLAG = TRUE
ELSE
FLAG = FALSE

can be more economically written as:
FLAG = X > 100
ESCAPE AND REFUGE STATEMENTS

The ESCAPE statement and REFUGE statement are unique to PROMAL and do not
have a counterpart In other structured languages or BASIC. PROMAL, like many
wodern structured languages, does not have a GOTQO statement, which results in
much cleaner, more readable and more bug~free programs. There are occasions
when you might wish you had a GOTO. This is best illustrated by an example.

Suppose you had a complex applicatlon program, with many layers of subrout-
ines. Suppose further that at some low-level subroutine you come to a point
where you need a plece of logic that could be paraphrased as:

IF Disaster
Print error message
Exit back up to the top level routine.

This is a common problem. Unfortumately, other languages do not provide a way
to "exit back up to the top level routine”. Instead, you must "unwind" all the
CALLs with RETURNS. 1In other structured languages, you typically "solve™ this
problem by testing some global "Disaster” flag after returning from a lower
level subkroutine to short—circuit further processing, for example:

LOYERSUB ; call lower subroutine
I# DISASTER ; 1f had problem in LOWERSUB
RETURN ;3 don”t go any further

Each higher level subroutine would perform the same logic, until you "unwind"
all the way back up to the desired routine. While this method works, it is
unwieldy and dilutes the performance and clarity of the program with a lot of
duplicate error checking.

Copyright (C) 1986 SMA Inc. Rev. C

3-34 Systems Management Associates, Imc. PROMAL LANCUAGE

PROMAL solves this problem a different way. The REFUGE statement can be
thought of as an “executable label"”, and the ESCAPE statement as a GOTO which
can exit back to a previously executed REFUGE.

The syntax of the ESCAPE and REFUGE statements is:

REFUGE n
ESCAPE n

where n is a constant between O and 2, allowing up to 3 different "refuges" to
be defined concurrently in a single program. (Note: actually, there is also a
REFUGE 3, but this is reserved for a special purpose and is described in the
optional DEVELOPER"S GUIDE). Executing:

REFUGE 2
defines the statement after it as refuge number 2. Subsequently executing:
ESCAPE 2

will cause an immediate re-entry into the last subroutine (or main program)
executing a REFUGE 2 at the line after the REFUGE statement, and will restore
the context of the subroutine at that point. By restoring context, we mean
that all intermediate variables, return addresses, etc., which would normally
be "pending” when a RETURN is executed are discarded, up to the point where the
refuge was executed. An ESCAPE 1s somewhat like a NEXT or BREAK statement,
except that Iinstead of just jumping to the beginning or end of a loop, you can
jump to anywhere you“ve been before. It is the programmer”s responsibility to
insure that you do not try to ESCAPE to a REFUGE in a routlne that has already
returned (which will leave control in no-man”s land!). On the next page is an
example of fragments of a program using a REFUGE and ESCAPE:

Copyright {C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc.

3-35

PROC ERROR ; print error wessage and escape
ARG WORD ERRNO

BEGIN

PUT NL, ERRORMSG[ERRNQ],NL ;display message
ESCAPE 1

END

PROC CHECKCHAR

BEGIN

IF CHAR <> LEGAL
ERROR 3

END

PROC PROCESSWORD
CHECKCHAR
END

PROC DOPHRASE
PROCESSWORD
END

PROC DOLINE
REFUGE 1 ;Come here after error
WHILE GETL(LINE)

DOPHRASE

END

Copyright (C) 1986 SMA Inc.

Rey. C

3-36 Systems Management Associates, Inc. PROMAL LANGUAGE

CHAPTER 5: PROCEDURES AND FUNCTIONS

PROMAL provides a greatly enhanced subroutine capability compared with
BASIC. Some of the most important characteristics of PROMAL subroutines are:

1. Subroutines may be either PROCedures or FUNCtions. Functions return a
value which may be used in an expression. Procedures do not return a
value.

2. Both procedures and functions must be defined (or "declared”) before
they can be called.

3. Functions and procedures are called by merely referencing their name in
a statement.

4. Both procedures and functions may be passed ARGuments which they may
operate on.

5. Both procedures and functions may have local variables which are known
only within the scope of the subroutine. These local variables may
duplicate other names outside the subroutine without interference.

6. Procedures and functions may be called recursively.

Let us now explain these concepts and show how to make effective use of
subroutines.

BUILT-IN FURCTIONS AND PROCEDURES

PROMAL does not have any built-in statements to do input and ocutput, like
BASIC PRINT and INPUT statements. JInstead, PROMAL relies on a LIBRARY of
pre—defined subroutines and functions to provide input and output. These
routines are always resident in memory, and are used by the EDITOR, EXECUTIVE,
and COMPILER as well as programs you write. When you use these subroutines,
they could easily be mistaken for a special statement. For example:

OUTPUT "Hellc World!"™

appears just like a statement. There is no "CALL" or "GOSUB" keyword to reveal
that this is really a subroutine call, with a passed argument of "Hello
World!". This 1s no accident. A design intent of PROMAL is that subroutines
should give you much of the power of adding your own statements to the lang-
uage. You call subroutines of your own in the same way.

The built-in subroutines are described ian detail in the LIBRARY MANUAL. At
this point we would like to introduce you to just the most important of these
routines, so that you can perform basic input and output operations.

Before you can call a subroutine, you must define it. For the LIBRARY
subroutines, this is done by having the following statement near the top of
your program:

Copyright (C) 1986 SMA Inec. Rev. C

PROMAL LANGUAGE Systems Management Associlates, Inc. 3-37

INCLUDE LIBRARY

This defines all the standard LIBRARY routines to the PROMAL compiler. For
now, it is sufficient for you to know that this LIBRARY gives the name and
location of each of the bullt—in routines. You can display the Library with a
TYPE L command from the EXECUTIVE.

SIMPLE OUTPUT

Probably the most fundamental of the standard procedures is called PUOT. It
outputs single characters or strings to the screen. It can have one or more
arguments. For example:

PUT "Hello world!" ,NL

This statement calls the PUT procedure and passes 1t two arguments to be
displayed. The first argument is the string "Hello world!”, and the second
argument is NL, the pre-defined "newline" character (which is the ASCII control
character CR and has the value 13 for the Apple/Commodore version of PROMAL).
Unlike a BASIC PRINT statement, you must explicitly output an NL each time you
want to start a new line. This makes it easy to build up a composite line with
several calls to PUT.

Please note that, unlike BASIC, yod cannot print the numeric value of a
variable with the PUT statement. You can only print strings or characters. To
print a numeric value, you will want to use the OUTPUT procedure.

FORMATTED AND NUMERIC OUTFUT

OUTPUT is a procedure for performing formatted output to the screen. It
accepts one or more arguments. The first argument must be a strimg. It is
called a format string, because it tells the format in which any additional
arguments should be printed. If you have ever used a BASIC version which
supports PRINT USING, OUTPUT is similar. Actually, it is most similar to the
PRINTF function in the C language.

The format string contains text to be printed on the screen as well as
formatting information. The special lead-in character # is used to start a
field specification (sometimes called a field descriptor), which tells how to
print something. For example:

INT 3ECS

SECS = 673
OUTPUT "The answer is #I seconds.", SECS

These statements will display:
The answer is 673 seconds.
The value of the argument SECS replaces the format field specification #I. The

"#1" indicates that the second argument should be displayed as an integer. The
most commonly needed field specifications include:

Copyright (C) 1986 SMA Inc. Rev. C

3-38 Systems Management Associates, Inc. PROMAL LANGUAGE

#1 Print the argument as a signed integer number.

#wW Print the argument as an unsigned number (not for REAL variables!)
#1 Print the argument as a hexadecimal number.

#s Print the argument as a string. -

#C Print a carriage return.

#E Print the REAL argument in scientific notation.

#R Print the REAL argument with a decimal point.

The OUTPUT statement can have more than two arguments. The format string must
have a field specification for each argument to be printed. For example:

WORD N

N = 257
OUTPUT "#C#W decimal = #H hexadecimal.”,N,N

will display:
257 decimal = 101 hexadecimal.

after a carriage return. Notice that the #C does not go with any argument; it
just prints a carriage return.

You can also specify a "field width" in the format string (for example, to
make columns of numbers line up). These options are fully described in the
LIBRARY MANUAL. For REAL ocutput, you normally specify both a field width and
the number of decimal places to he displaved, in the form:

fhw.dR

where w 18 the field width (from 3 to 12 characters), and d is the desired
number of decimal places. For example:

REAL BUCKS

BUCKS = 276.10
QUTPUT "$#7.2R",BUCKS

will display:

$ 276.10
whereas BASIC would always print $ 276.1 instead.
SIMPLE INPUT

Now that you know how to output to the screen, let”s see how you input from
the keyboard. The procedure GETL is used to get one line from the keyboard and
store it in an array as a string. GETL allows all editing features (backspace,

ingert, delete, CTRL-B, etc.) allowed by the EXECUTIVE. It returns when the
RETURN key is pressed. For example:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Imc. 3-39

BYTE LINE[81]

GETL LINE

reads one line from the keyboard and puts it in array LINE. After the call,
the LINE array will be terminated by a 00 byte. It will not include the
carriage return. Normally only one argument is present for the GETL procedure,
and that argument is the address of where to put the line. Remember that the
name of an array without a subscript evaluates as the address of the array.
Optionally, you may include a second argument which is the maximum line length
to accept (excluding the O byte terminator). For example:

GETL LINE, 20

will read a line from the keyboard up to 20 characters long. Additional
characters on the line will be ignored. 1If the second argument is not
specified for GETL, a maximum of 80 characters cam be input.

The GETL statement is much more powerful than a BASIC INPUT statement
because GETL supports a complete set of line-editing keys, as shown in Table 1
of the USERS MANUAL. These keys are consistent with the editing keys used in
the PROMAL EXECUTIVE and EDITOR.

One of the most useful features of GETL is the abllity to recall prior lines
by pressing CTRL-B. Another powerful feature for many applications is the use
of function keys to "call up" pre-defined strings of up to 31 characters (much
like many commercial "keyboard enhancers”). The LIBRARY MANUAL describes how
to use FKEYSET to define a string to be substituted for a function key.

NUMERIC INPUT

How do you read in a numeric value from the keyboard? This is not quite as
simple in PROMAL as in BASIC, because PROMAL does not have a built-in statement
to read a number. Instead, you do it in two parts. First, you read a line
into a buffer as described above. Then you convert the value represented by
the string using function STRVAL or STRREAL. STRVAL converts a string to the
numeric value it represents of type INT, or WORD. STRREAL is used to convert
type REAL numbers. It is similar to the BASIC function VAL. For example, to
read a number called HEIGHT from the keyboard, you could write:

BYTE BUF [81]

WORD HEIGHT

BYTE INDEX

GETL BUF

INDEX = STRVAL(BUF,#HEIGHT)

The STRVAL function expects at least two arguments. The first argument is the
address of the string to be converted. The second argument is the address of
the variable to receive the value. To specify the address of the variable
(rather than the value), you need to specify the # operator, as shown above.
Forgetting the # in front of the variable is a common error that results in the
value beilng installed at whatever address is the current value of HEIGHT, so be
careful! Algso remember that the destination variable must be type WORD or INT,

Copyright (C) 1986 SMA Inc. Rev. C

3-40 Systems Management Assoclates, Inc. PROMAL LANGUAGE

not BYTE. Besides installing the value of the number into HEIGHT, function
STRVAL will return an Index of type BYTE. This index indicates the number of
characters which were scanned in the string before the end of the number. If
the INDEX is returned as 0, it indicates that no numeric digits were entered,
probably representing an error condition. For example, 1f you typed

123

then INDEX would be returned as 3 and HEIGHT as 123. This method may seem a
little ungainly and roundabout at first, but it allows a great deal of
flexibility and programmer-defined error recovery, which is essential for
serious programming. STRVAL also supports hexadecimal input, formatted input,
and variable numbers of inputs on a line. These options are described in the
LIBRARY MANUAL.

BASIC users accustomed to using the INPUT statement to prompt for a numeric
input from the keyboard and input it may want to incorporate the following
general purpose PROMAL routine. This INPUTR function will give a prompt for
input and return the REAL value that the user enters from the keyboard. If an
illegal input is entered from the keyboard, it repeats the prompt.

FUNC REAL INPUTIR ; Prompt
; Prompt for numeric input from keyboard, return one REAL value.
ARG WORD PROMPT ; Desired prompt

REAL TEMP ; Value to be returned

BYTE INDEX ; Index to # chars scanned

OWN BYTE BUF[21] ; Temp buffer for typed input line
BEGIN

REPEAT

PUT NL,PROMPT ; Display prompt

GETL BUF,20 ; Get typed input

INDEX=STRREAL(BUF, #TEMP)

IF INDEX=0 ; No legal digits?

PUT NL,"Please enter a numeric value”

UNTIL INDEX > O
RETURN TEMP 3 Return value typed in
END

A sample program fragment using this routine for Input might look like this:

REAL HEIGHT

REAL WIDTH

REAL AREA

HEIGHT=INPUTR ("Height of triangle? ™)

WIDTH = INPUTR{ "Base of triangle? ")

AREA=0. 5*HEIGHT*WIDTH

OUTPUT "#CArea of triangle is #12.4R square units.#C", AREA

Copyright (C) 1986 SMA Imc. Rev. C

PROMAL LANGUAGE Systems Management Asgociates, Inc. 3-41

An example in the STRVAL section of the LIBRARY MANUAL contains a variation of
the routine above for entering WORD or INT data instead of REAL values. For
your convenience, both these functions are provided on disk as source files
INPUTR.S and INPUTW.S, so you can easlly include them in your programs or
modify them to sult your individual needs.

The LIBRARY contains many more Input-Output routines, including file input
and output. We will postpone a discussion of these routines until later.

USER-DEFINED SUBROUTIRNES

When you define your own PROMAL subroutine, you write it in the following
general form:

{header}
{arguments}
{local wvariables}
BEGIN

{body}

END

The {header} is a single line that identifies the start of the subroutine.
It has the form:

PROC name
or
FUNC Type Name

which defines whether the subroutine will be a procedure or a functionm. For
example:

PROC SORT
declares the start of a procedure called SORT.
FUNC BYTE TESTPORT

declares the start of a function called TESTPORT which will return a value of
type BYTE. The type returned may be BYTE, WORD, INT, or REAL.

The {arguments} and {local variables} will be discussed very shortly.

The {body} part of the procedure or function is contained between the BEGIN
and END statements. It contains the executable statements of the procedure or
function. When program control reaches the END statement, the subroutine will
return to the calling program. Optionally, the RETURN statement can be used to
return before the END statement.

For FUNCtions, a RETURN statement 1s required and must be followed by an
expression which evaluates to the value to be returned by the function. For
example:

Copyright (C) 1986 SMA Inc. Rev. C

3-42 Systems Management Associates, Inc. PROMAI, LANGUAGE

RETURN YVAL+1

will return the value of YVAL+1l as the value of the function. Function values
will be covered in more detall shortly.

PASSED ARGUMENTS

A powerful feature of PROMAL is the ability to use arguments passed to
procedures and functions. BASIC does not support passed arguments (except in a
very limited seunse in simple function definitions using FNx, which is rarely
used). To use passed arguments, the PROMAL subroutine definition should
include one argument declaration line for each argument which is to be passed
to the subroutine. An argument declaration looks like a simple variable
declaration, with the word ARG in front:

ARG Type Name

Type is the desired data type which may be BYTE, INT, WORD, or REAL. Name is
the desired name of the subroutine, formed in the same way as other variable
names.

For example:

PROC SORT
ARG WORD N
ARG WORD PTR

declares two passed arguments, N and PTR, both of type WORD. The order in
which the arguments are declared is the same as the order in which the corres—
ponding values will be passed. TFor example, if the SORT procedure above was
called with:

BYTE ARRAY[100]

SORT 26, ARRAY

then when SORT begins executing, N will have the value of 26 and PTR will have
the address of ARRAY. As you can see, a procedure 1s called by simply writing
the name of the procedure to be called. Arguments are passed by putting the
arguments after the procedure name. Each argument can be an expression, and
arguments are separated by comm